Ле Туан Ань, А. Т. Солдатенков, Ж. А. Мамырбекова^а, С. А. Солдатова, К. Б. Полянский⁶, Тран Тхан Тунг, В. Н. Хрусталёв^в

СИНТЕЗ И МОЛЕКУЛЯРНОЕ СТРОЕНИЕ ЗАМЕЩЕННЫХ 2-ГИДРОКСИПЕРГИДРО[1,3,2]ДИОКСАБОРИНИНО[5,4-с]ПИРИДИНОВ, ПЕРГИДРО[1,3]ДИОКСАНО[5,4-с]ПИРИДИНА И ИХ ПРЕДШЕСТВЕННИКА – 4-ГИДРОКСИ-1-МЕТИЛ-4-ФЕНИЛ-3-(ФЕНИЛГИДРОКСИМЕТИЛ)ПИПЕРИДИНА

Конденсацией 4-гидрокси-1-метил-4-фенил-3-(фенилгидроксиметил)пиперидина с триизопропилборатом получен 4,8а-дифенилзамещенный 2-(2-пропокси)пергидро[1,3,2]диоксаборинино[5,4-*c*]пиридин, а в присутствии воды – его 2-гидроксиамещенный аналог. Взаимодействием того же пиперидола с формальдегидом синтезирован 1-метил-4,8а-дифенилпергидро[1,3]диоксано[5,4-*c*]пиридин. Методом РСА проведено сравнительное изучение молекулярного строения трех указанных продуктов.

Ключевые слова: 4-гидрокси-4-фенил-3-(фенилгидроксиметил)пиперидин, пергидро[1,3,2]диоксаборинино[5,4-*c*]пиридины, пергидро[1,3]диоксано[5,4-*c*]пиридин, триизопропилборат, молекулярное строение.

В работах [1-3] сообщалось о синтезе 2,4,8а-триарилпергидро[1,3,2]диоксаборинино [5,4-c] пиридинов с арильным заместителем при атоме бора. Получение указанных производных новой гетероциклической системы диктовалось тем обстоятельством, что многие из них по предсказаниям программы PASS [4] должны обладать (с высокой степенью вероятности) действием на центральную нервную систему. В той же связи было молекулярное строение В-фенилзамещенного подробно изучено пергидродиоксаборининопиридина – рацемического диастереомера, для которого было установлено цис-сочленение двух гетероциклических фрагментов с тремя хиральными атомами С(4), С(4а) и С(8а), имеющими конфигурацию R, S и S соответственно [2]. В настоящей работе описан синтез на основе замещенного у-пиперидола 1 В-(2-пропокси)- (2а) и В-гидроксипергидро[1,3,2]диоксаборинино[5,4-с]пиридина (2b), а также их структурного аналога 2с. в котором циклический атом бора замешен на группу CH₂; обсуждается строение соединений 1 и 2b,с на основании результатов РСА. Выбор диоксанопиперидина 2с связан не только с целью сопоставления наиболее важных особенностей его молекулярной структуры с таковыми диоксаборининопиперидина 2b и пиперидола 1, но и с тем, что соединение 2с может обладать определенной степенью биоизостерии со своими борсодержащими аналогами, так как машинный скрининг по программе PASS указывает для него высокую вероятность воздействия на центральную нервную систему: возможность лечения нарушений когнитивных функций мозга (вероятность 74%) и лечение 1726

болезни Альцгеймера (57%), антагонизм в отношении рецепторов нейромедиатора ГАМК (69%).

Производное диоксаборинина **2а** было синтезировано с выходом 56% кипячением пиперидола **1** с триизопропилборатом в сухом гексане в атмосфере азота (вариант *a*). Осуществление этого процесса в присутствии влаги (вариант *b*) привело к образованию с выходом (70%) соединения **2b** – продукта частичного гидролиза его предшественника **2a**.

2 a $Z = BOCHMe_2$, b Z = BOH, c $Z = CH_2$

Производное диоксана 2с получено с выходом 84.5% конденсацией формальдегида с диолом 1 при их нагревании в кислой среде (вариант *c*). С целью установления строения, уточнения относительной конфигурации стереогенных центров и определения других стереохимических особенностей соединений 1, 2b и 2c был проведен их РСА. На рис. 1-4 представлены общие виды молекул соединений 1, 2b и 2c и их упаковка в кристалле (приведена кристаллографическая нумерация атомов). Длины связей, валентные и торсионные углы указанных веществ приведены в табл. 1-3 соответственно. Длины валентных и водородных связей, а также углы между ними во фрагментах соединения 1 D-H···A (D – атом донора, А – атом акцептора) – в табл. 4. Строение соединения 1 показано на рис. 1. Оно кристаллизуется в триклинной пространственной группе $P\overline{1}$, с двумя кристаллографически независимыми молекулами в элементарной ячейке. Геометрические параметры этих молекул очень близки (в табл. 1 приведены их средние значения), поэтому ниже мы приводим обобщенное описание молекулы соединения 1, которое является диастереомером с асимметрическими атомами С(3), С(4) и С(8) в первой независимой молекуле и С(22), С(23) и С(27) во второй независимой молекуле. Относительные конфигурации этих хиральных центров - rac-3S*,4S*,8R* и *rac*-22*S**,23*S**,27*R** соответственно.

Пиперидиновый цикл рассматриваемого пиперидола 1 имеет конформацию почти идеального *кресла* [диапазоны значений модулей торсионных углов двух независимых молекул составляют 53.0(2)-63.2(2) и $55.4(2)-59.0(2)^{\circ}$]. Заместители Me, CH(OH)Ph и Ph занимают в этих молекулах экваториальные положения, а гидроксильная группа – аксиальное. Плоскость фенильного заместителя в пиперидиновом кольце фактически перпендикулярна плоскости C(2)C(3)C(5)C(6) или C(22)C(23)C(25)C(26)

2b

2с Рис. 1. Молекулярные структуры соединений 1, 2b и 2с

1728

Связь	l, Å			
	1*	2b	2c	
N(1)–C(2)	1.472(3)	1.469(2)	1.471(2)	
N(1)–C(6)	1.473(3)	1.477(2)	1.463(2)	
N(1)–C(7)	1.465(3)	1.462(2)	1.468(2)	
C(2)–C(3)	1.524(3)	1.528(2)	1.534(2)	
C(3)–C(4)	1.550(3)	1.550(2)	1.544(2)	
C(3)–C(8)	1.540(3)	1.544(2)	1.541(2)	
C(4)–O(2)	1.435(3)	1.443(2)	1.449(2)	
C(4)–C(5)	1.537(3)	1.539(2)	1.530(2)	
C(4)–C(15)	1.525(3)	1.532(2)	1.535(2)	
C(5)–C(6)	1.511(3)	1.518(2)	1.520(2)	
C(8)–O(1)	1.429(3)	1.434(2)	1.435(2)	
C(8)–C(9)	1.515(3)	1.517(2)	1.511(2)	
B(1)–O(1)		1.377(2)		
B(1)–O(2)		1.371(2)		
B(1)–O(3)		1.355(2)		
C(1)–O(1)			1.409(2)	
C(1)-O(2)			1.412(2)	

Длины (*l*) некоторых связей в молекулах соединений 1, 2b и 2c

* Приведены средние значения для двух независимых молекул.

(углы между этими плоскостями равны 88.2 и 86.1° соответственно). Фенильные циклы расположены практически друг над другом и в каждой независимой молекуле их плоскости почти параллельны (углы между ними равны 16.8 или 17.3°). Кроме того, фенильные циклы одной независимой молекулы практически перпендикулярны фенильным циклам второй. Такое расположение заместителей определяется, по-видимому, системой прочных внутримолекулярных О–Н···О и межмолекулярных О–Н···N водородных связей (табл. 1, рис. 1 и 2). В кристалле реализуется цепочечная упаковка молекул вдоль оси *b* (рис. 2).

2-Гидроксидиоксаборининопиперидин **2b** имеет *цис*-сочленение гетероциклов (рис. 1), обусловленное расположением в исходном соединении **1** гидроксильных групп, по которым происходит циклизация. Конформация пиперидинового цикла – слегка искаженное *кресло* [диапазон значений модулей торсионных углов $45.3(1)-64.1(1)^{\circ}$], конформация борининового цикла – слегка искаженная *софа* с отклонением атома C(3) от среднеквадратичной плоскости остальных атомов цикла на 0.578 Å. Атом бора имеет обычную планарную конфигурацию (сумма валентных углов при нем составляет 360.0°). Так же, как и пиперидол **1**, соединение **2b** является диастереомером с тремя асимметрическими атомами C(3), C(4) и C(8). Относительные конфигурации этих хиральных центров при циклизации сохраняются – *rac*- $3S^*$, $4S^*$, $8R^*$.

N/	ω, град.			
910,1	1*	2b	2c	
C(2)–N(1)–C(6)	109.6(2)	109.1(1)	110.2(1)	
C(2)-N(1)-C(7)	110.4(2)	110.5(1)	108.6(1)	
C(6)-N(1)-C(7)	110.2(2)	110.5(1)	109.0(1)	
N(1)-C(2)-C(3)	112.0(2)	111.1(1)	113.4(1)	
C(2)–C(3)–C(4)	109.3(2)	112.1(1)	111.1(1)	
C(2)–C(3)–C(8)	109.4(2)	108.6(1)	109.8(1)	
C(4)–C(3)–C(8)	116.4(2)	112.4(1)	108.7(1)	
O(2)–C(4)–C(3)	109.9(2)	109.6(1)	107.8(1)	
O(2)–C(4)–C(5)	105.9(2)	105.6(1)	106.3(1)	
O(2)–C(4)–C(15)	110.6(2)	110.1(1)	109.1(1)	
C(3)–C(4)–C(5)	107.7(2)	110.8(1)	109.6(1)	
C(3)–C(4)–C(15)	113.0(2)	111.4(1)	115.1(1)	
C(5)–C(4)–C(15)	109.4(2)	109.1(1)	108.5(1)	
C(4)–C(5)–C(6)	112.8(2)	113.6(1)	112.2(1)	
N(1)-C(6)-C(5)	111.0(2)	110.2(1)	110.5(1)	
O(1)–C(8)–C(3)	109.8(2)	112.2(1)	109.1(1)	
O(1)–C(8)–C(9)	111.6(2)	110.3(1)	108.5(1)	
C(3)–C(8)–C(9)	115.0(2)	115.8(1)	113.8(1)	
O(1)–B(1)–O(2)		122.8(1)		
O(1)–B(1)–O(3)		119.5(1)		
O(2)–B(1)–O(3)		117.7(1)		
B(1)-O(1)-C(8)		122.4(1)		
B(1)-O(2)-C(4)		120.2(1)		
C(1)-O(1)-C(8)			110.6(1)	
C(1)-O(2)-C(4)			111.8(1)	
O(1)-C(1)-O(2)			112.4(1)	

Некоторые валентные углы (@) в молекулах соединений 1, 2b и 2с

* Приведены средние значения для двух независимых молекул.

Таблица З

пскоторые тореновные углы (0) в молекулах соединении 1, 20 и 20	Некоторые торсионные углы (6	(θ) в молекулах с	соединений 1, 2b и 2c
---	------------------------------	-------------------------------------	-----------------------

Угол	θ, град.		
	1*	2b	2c
C(8)–C(3)–C(4)–O(2)	64.3(2)	51.6(1)	54.9(1)
C(8)–C(3)–C(4)–C(15)	-59.8(2)	-70.5(1)	-67.2(1)
C(4)–C(3)–C(8)–C(9)	75.5(2)	86.3(1)	-177.5(1)

* Приведены средние значения для двух независимых молекул.

Рис. 2. Упаковка молекул в кристалле соединения 1 вдоль оси а

Рис. 3. Упаковка молекул в кристалле соединения 2b вдоль оси а

Общее строение молекулы **2b** идентично строению молекулы исходного пиперидола **1**. Фенильный заместитель в пиперидиновом кольце фактически перпендикулярен плоскости C(2)C(3)C(5)C(6) (угол между этими плоскостями равен 84.0°). Два фенильных фрагмента расположены *син*-перипланарно относительно борининового цикла, однако вследствие образования последнего угол между ними увеличивается до 37.2°. Интересно, что в кристалле **2b** сохраняется также и общий цепочечный структурный мотив вдоль оси *b* за счет межмолекулярных водородных связей O(3)-H…N(1) [O…N 2.792(2), H…N 1.89 Å, угол O-H…N 171°] (рис. 3).

В диоксанопиперидине 2с также имеет место иис-сочленение гетероциклов (рис. 1), которое определяется теми же причинами, что и для соединения 2b. Для пиперидинового цикла характерна обычная конформация кресла [диапазон значений модулей торсионных углов 49.4(2)-59.8(2)°]. Следует отметить, что при образовании 1,3-диоксанового цикла, также имеющего обычную конформацию кресла [диапазон значений модулей торсионных углов 54.9(1)-61.9(2)°], происходит инверсия асимметрического атома С(8). Таким образом, относительные конфигурации хиральных центров C(3), C(4) и C(8) в диастереомере 2c становятся rac-3S*,4S*,8S*. При этом плоскости фенильных заместителей располагаются уже антиперипланарно относительно вновь образующегося при циклизации диоксанового цикла, с углом между ними, равным 44.8°. Кроме того, меняется и расположение фенильного заместителя в пиперидиновом кольце – он значительно отклоняется от перпендикулярного расположения к плоскости C(2)C(3)C(5)C(6), свойственного соединениям 1 и 2b (угол между этими плоскостями равен 53.2°).

Рис. 4. Упаковка молекул в кристалле соединения 2с вдоль оси а

Фрагмент	l, Å		7 8	0
D–H···A	D–H	Н•••А	<i>d</i> , A	ө, град.
O(2)–H•••O(1)	0.86	1.94	2.714(2)	149
O(4)–H•••O(3)	0.88	1.93	2.716(2)	148
O(1)-H···N(2)*	0.91	1.82	2.727(3)	178
O(3)–H•••N(1)	0.92	1.80	2.722(3)	173

Длины (*l*) валентных и водородных связей во фрагментах D–H…A соединения 1, расстояния (*d*) между атомами D и A, углы (θ) D–H…A

* Для генерации эквивалентных атомов использованны симметрические операции: x, y + 1, z.

Таблица 5

Основные кристаллографические данные и параметры уточнения
для соединений 1, 2b и 2c

	1	2b	2c		
Брутто-формула	C ₁₉ H ₂₃ NO ₂	C ₁₉ H ₂₂ BNO ₃	C ₂₀ H ₂₃ NO ₂		
Молекулярная масса	297.38	323.19	309.39		
Т, К	120	115	120		
Сингония	Триклинная	Моноклинная	Моноклинная		
Пространственная группа	$P\overline{1}$	$P2_{1}/c$	$P2_{1}/c$		
a, Å	10.426(3)	11.1303(11)	10.796(2)		
b, Å	11.190(3)	12.8639(16)	14.304(3)		
<i>c</i> , Å	14.416(5)	12.5271(16)	10.6135(19)		
α, град.	89.556(8)	90	90		
β, град.	71.331(7)	107.045(5)	102.105(6)		
ү, град.	88.007(10)	90	90		
$V, Å^3$	1592.4(8)	1714.8(4)	1602.6(5)		
Ζ	4	4	4		
$d_{ m c}$, г · см ⁻³	1.240	1.252	1.282		
<i>F</i> (000)	640	688	664		
μ, мм ⁻¹	0.080	0.083	0.082		
20 _{max} , град.	54	56	56		
Число отражений					
измеренных	14760	17682	11032		
независимых	6823	4133	3768		
наблюдаемых					
$c I > 2\sigma(I)$	4119	3342	3110		
Число уточняемых параметров	399	218	209		
$R_1 (I > 2\sigma(I))$	0.0645	0.0494	0.0521		
wR_2 (все данные)	0.1553	0.1305	0.1243		
GooF	1.007	1.028	1.008		

Упаковка молекул 2c в кристалле стопочная вдоль оси a (рис. 4), молекулы расположены на ван-дер-ваальсовых расстояниях, и какие-либо короткие контакты в структуре отсутствуют.

Сопоставление данных РСА для соединениий **2b,с** свидетельствует о том, что последние оба имеют изостерическое *цис*-сочленение гетероциклов. Единственным структурным различием является *цис*-1,3диаксиальное относительное расположение обоих фенильных заместителей в борининовом ядре молекулы **2b** и их *транс*-расположение в диоксановом цикле молекулы **2c**.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры снимали на приборе IR-75 в таблетках KBr. Масс-спектры получали на приборе Finnigan MAT Incos 50 с прямым вводом образца в источник ионов при ионизирующем напряжении 70 эВ. Спектры MP^1 H и ^{13}C записывали на приборе Bruker WM-400 (400 и 100 МГц соответственно) в растворе CDCl₃, внутренний эталон TMC.

Рентгеноструктурный анализ соединений 1, 2b,c. Монокристаллы соединений 1 и 2b выращивали из ацетона, а соединения 2c – из диэтилового эфира. Параметры элементарных ячеек и интенсивности отражений для соединений 1, 2b и 2c измерены на автоматическом трехкружном диффрактометре Bruker SMART 1000 CCD (λМоКα-излучение, графитовый монохроматор, φ- и ω-сканирование). Основные кристаллографические данные представлены в табл. 5. Структуры всех соединений определены прямыми методами и уточнены полноматричным МНК в анизотропном приближении для неводородных атомов. Атомы водорода гидроксильных групп в соединениях 1 и 2b локализованы объективно в разностных фурье-синтезах и включены в уточнение в изотропном приближении с фиксированными позиционными и тепловыми параметрами. Положения остальных атомов водорода в соединениях 1, 2b и 2c рассчитаны геометрически и уточнены в изотропном приближении с фиксированными позиционными (модель "наездника") и тепловыми [U_{iso}(H) = 1.5 U_{eq}(C) для групп CH_3 и $U_{iso}(H) = 1.2 U_{eq}(C)$ для всех остальных групп] параметрами. Все расчеты проведены с использованием комплекса программ SHELXTL PLUS (Version 5.10) [5]. Таблицы координат атомов, длин связей, валентных и торсионных углов и анизотропных температурных параметров для соединений 1, 2b и 2c депонированы в Кембриджском банке структурных данных (депонент ССDС 693537-693539).

6-Метил-2-(2-пропокси)-4,8а-дифенилпергидро[1,3,2]диоксаборинино[5,4-с]пиридин (2а). Смесь 1 г (3.37 ммоль) пиперидола 1 и 2.07 г (11.0 ммоль) триизопропилбората в 50 мл сухого гексана кипятят 2 ч в атмосфере сухого азота в приборе Дина–Старка с хлоркальциевой трубкой. Гексан отгоняют, остаток перекристаллизовывают из ацетона, получают 0.69 г (56%) продукта, т. пл. 185–186 °C (бесцветные кристаллы). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.22 и 1.33 (6H, два д, $J_1 = J_2 = 6.1$, CHC<u>H</u>₃); 1.79 и 2.01 (2H, два м, H-8); 2.38 (3H, с, NCH₃); 2.46 (1H, т, ²*J* = 10.8, H-4a); 2.63–2.95 (4H, м, NCH₂); 4.03 (1H, м, C<u>H</u>CH₃); 4.95 (1H, уш. с, H-4); 6.75–6.99 (10H, м, H Ph). Масс-спектр, *m/z* ($I_{отн}$, %): 365 [M]⁺ (2), 323 [M–C(CH₃)₂]⁺ (29), 322 (5), 251 (7), 191 (11), 172 (38), 159 (26), 105 (20), 77 (26), 71 (35), 70 (52), 57 (67), 44 (100), 43 (72), 42 (65). Найдено, %: С 72.41; H 7.55; N 3.62. С₂₂H₂₈BNO₃. Вычислено, %: С 72.34; H 7.73; N 3.83.

2-Гидрокси-6-метил-4,8а-дифенилпергидро[1,3,2]диоксаборинино[5,4-с]пиридин (2b). Кипятят в приборе Дина-Старка в течение 8 ч смесь 4 г (13.4 ммоль) пиперидола **1**, 2.6 г (13.83 ммоль) триизопропилбората и 50 мл 1734 гексана в атмосфере влажного воздуха. Реакционную массу обрабатывают как описано выше для соединения **2a**, получают 3.04 г (70%) продукта **2b**, т. пл. >230 °C (бесцветные кристаллы). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.78 и 2.06 (2H, два м, H-8); 2.40 (3H, с, NCH₃); 2.43 и 2.70 (2H, два м, NCH₂); 2.46 и 2.53 (1H, т, ³*J* = 11.0, H-4a); 2.90–3.10 (2H, м, NCH₂); 4.90 (1H, м, H-4); 6.70–7.05 (10H, м, H Ph). Спектр ЯМР ¹³С, δ , м. д.: 25.3 (С-8); 40.7 (NCH₃); 45.2 (С-5); 45.9 (С-7); 56.9 (С-4а); 65.7 (С-4); 74.0 (С-8а четв.); 124.5–128.8 (10С, С₆H₅); 141.6 (С Ph четв.); 144.4 (С четв аром.). Масс-спектр, *m/z* (*I*_{отн}, %): 323 [M]⁺. Найдено, %: С 70.37; H 7.05; N 4.20. С₁₉H₂₂BNO₃. Вычислено, %: С 70.61; H 6.86; N 4.33.

6-Метил-4,8а-дифенилпергидро[1,3]диоксано[5,4-с]пиридин (2с). Смесь 2.0 г (6.7 ммоль) пиперидола **1**, 0.31 г (10.1 ммоль) формальдегида, 14 мл воды и 7 мл конц. H₂SO₄ кипятят 5.5 ч, далее охлаждают, экстрагируют этилацетатом (2 × 20 мл экстракт 1). Водный слой подщелачивают 20% раствором NaOH до pH 10, экстрагируют этилацетатом (3 × 10 мл экстракт 2), экстракт 2 сушат над MgSO₄. Остаток после упаривания экстракта 2 кристаллизуют из эфира. Получают 1.75 г (84.5%) соединения **2с**, т. пл. 133–135 °C (белые кристаллы). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.80 (2H, м, H-8); 2.17 (3H, с, CH₃); 2.22–2.60 (4H, м, H-5,7); 2.81 (1H, м, H-4a); 4.83 (1H, д, ³*J* = 2.5, H-4); 5.01 и 5.10 (2H, два д, *J*₁ = *J*₂ = 6.4, H-2); 7.21–7.50 (10H, м, H Ph). Масс-спектр, *m/z* (*I*_{отн}, %): 309 [M]⁺. Найдено, %: С 77.82; H 7.55; N 4.32. C₂₀H₂₃NO₂. Вычислено, %: С 77.64; H 7.49; N 4.53.

СПИСОК ЛИТЕРАТУРЫ

- 1. К. Б. Полянский, Ле Туан Ань, А. Н. Андресюк, А. Т. Солдатенков, *ЖОрХ*, **39**, 1439 (2003).
- 2. Ле Туан Ань, К. Б. Полянский, А. Н. Андресюк, А. Т. Солдатенков, Ж. А. Мамыр- бекова, Л. Н. Кулешова, В. Н. Хрусталев, *Изв. АН, Сер. хим.*, 806 (2004).
- 3. Ле Туан Ань, К. Б. Полянский, Ж. А. Мамырбекова, А. Т. Солдатенков, С. А. Солдатов, В. В. Курилкин, П. Б. Терентьев, *XIC*, 1253 (2008).
- 4. А. В. Садым, А. А. Лагунин, Д. А. Филимонов, В. В. Поройков, *Хим.-фарм. журн.*, **37**, № 1, 21 (2003).
- 5. G. M. Sheldrick, SHELXTL. Version 5.10, Bruker AXS Inc., Madison (1998).

Российский университет дружбы народов, Москва 117198 e-mail: asoldatenkov@mail.ru

^аУниверситет Авово-Аджаме, Республика Кот Д'Ивуар, Абиджан e-mail: bekro2001@yahoo.com

⁶ChemBridge Corporation, Москва 119048 e-mail: kirill198@post.ru

^вИнститут элементоорганических соединений им. А. Н. Несмеянова РАН, Москва 119991 e-mail: vkh@xrlab.ineos.ac.ru Поступило 26.10.2007 После доработки 07.03.2008