И. В. Украинец, Н. Л. Березнякова, В. А. Паршиков, О. В. Горохова

4-ГИДРОКСИХИНОЛОНЫ-2

150.* ЭФФЕКТИВНЫЙ СИНТЕЗ, СТРОЕНИЕ И БИОЛОГИЧЕСКИЕ СВОЙСТВА АЛКИЛАМИДОВ 4-МЕТИЛ-2-ОКСО-1,2-ДИГИДРОХИНОЛИН-3-КАРБОНОВОЙ КИСЛОТЫ

Предложен простой и эффективный способ получения алкиламидов 4-метил-2-оксо-1,2-дигидрохинолин-3-карбоновой кислоты. Приводятся результаты изучения диуретической активности синтезированных соединений.

Ключевые слова: диуретики, 4-метил-2-оксо-1,2-дигидрохинолин-3-карбоновая кислота, амидирование, РСА.

Ни 4-метил-2-оксо-1,2-дигидрохинолин-3-карбоновая кислота (1), ни ее легкодоступные низшие алкиловые эфиры, к сожалению, не способны напрямую амидироваться первичными и вторичными аминами. По этой причине синтез соответствующих N-R-амидов, представляющих интерес в качестве потенциальных биологически активных веществ, возможен только после дополнительного активирования карбонильного атома углерода карбоксильной группы. Наиболее очевидным, доступным и широко используемым на практике методом достижения необходимого эффекта, как известно, является превращение кислот в хлорангидриды. Тем не менее, при обработке кислоты 1 хлористым тионилом (галогениды фосфора легко трансформируют 1,2-дигидрохинолин-2-оны в ароматические 2-хлорхинолины [2] и поэтому в данном случае неприемлемы) такой, на первый взгляд, тривиальный синтез осложняется образованием ярко-окрашенных цианиновых красителей, способных даже в незначительных концентрациях сильно загрязнять конечные вещества [3]. Учитывая это, амидирование кислоты 1 было предложено проводить не через хлорангидрид, а путем превращения ее под воздействием N,N'-карбонилдиимидазола (CDI) в промежуточный имидазолид 4-метил-2-оксо-1,2дигидрохинолин-3-карбоновой кислоты (2). Используя данный подход, образование побочных красящих веществ удалось подавить, однако при этом возникла новая синтетическая проблема – реакционная способность имидазолида 2 оказалась необычно низкой для такого класса соединений. И хотя после его длительной обработки анилинами в безводных высококипящих растворителях соответствующие анилиды все-таки были получены [4], рамки практического использования метода в целом значительно сужаются возможностью получать амиды на основе только лишь

^{*} Сообщение 149 см. [1]. термически устойчивых аминов с достаточно высокими температурами

кипения. Легкокипящие и, тем более, газообразные амины с имидазолидом **2** в нормальных условиях реагируют очень медленно. Вместе с тем, давно известен простой и эффективный способ получения даже очень неустойчивых хлорангидридов, заключающийся в пропускании сухого хлористого водорода в раствор имидазолида в инертном органическом растворителе [5]. Синтезы проводят при охлаждении, что позволяет свести на нет практически все побочные процессы. Действительно, применив этот метод к имидазолиду **2**, нам удалось синтезировать бесцветный хлорангидрид 4-метил-2-оксо-1,2-дигидрохинолин-3-карбоновой кислоты (**3**), на основе которого с высокими выходами затем были получены целевые алкиламиды **4а–h** (табл. 1).

4 a R = Me, b R = Et, c R = Pr, d R = *i*-Pr, e R = *cyclo*-Pr, f R = Bu, g R = *i*-Bu, h R = *s*-Bu

В спектрах ЯМР ¹Н синтезированных алкиламидов **4а-h** усложняющие интерпретацию наложения не наблюдаются, поэтому наличие всех протонсодержащих функциональных групп легко подтверждается соответствующими химическим сдвигам, интенсивностью и мультиплетностью их сигналов (табл. 2).

Особенности пространственного строения изучены методом РСА на примере *втор*-бутиламида **4h** (см. рисунок и табл. 3, 4). При этом установлено, что в независимой части элементарной ячейки исследуемого соединения находятся две молекулы (**A** и **B**), различающиеся некоторыми геометрическими параметрами. Бициклический хинолоновый фрагмент и атомы $O_{(1)}$, $C_{(10)}$ и $C_{(15)}$ в обеих молекулах лежат в одной плоскости с точностью 0.02 Å, несмотря на заметное отталкивание между 4-метильной группой, соседними заместителем при атоме $C_{(8)}$ и атомами ароматического цикла. В молекуле **A** об этом свидетельствуют укороченные внутримолекулярные контакты $H_{(15a)}...C_{(5)}$ 2.79 (сумма ван-дер-ваальсовых радиусов 2.87 Å [6]), $H_{(15a)}...H_{(5)}$ 2.30 (2.34) и $H_{(15b)}...C_{(10)}$ 2.47 Å (2.87 Å),

Со- еди- не- ние	Брутто- формула	C	Найдено, % ычислено, Н	2 % N	Т. пл., °С	Вы- ход, %	Диурети- ческая актив- ность,* % к кон- тродю
4a	$C_{12}H_{12}N_2O_2$	<u>66.76</u> 66.65	<u>5.68</u> 5.59	<u>13.03</u> 12.95	297–299	96	- 14
4b	$C_{13}H_{14}N_2O_2$	<u>67.90</u> 67.81	<u>6.23</u> 6.13	<u>12.12</u> 12.17	274–276	93	+ 32
4c	$C_{14}H_{16}N_2O_2$	<u>68.74</u> 68.83	<u>6.67</u> 6.60	<u>11.56</u> 11.47	220–222	92	-21
4d	$C_{14}H_{16}N_2O_2$	<u>68.89</u> 68.83	<u>6.71</u> 6.60	<u>11.58</u> 11.47	283–285	87	+ 8
4 e	$C_{14}H_{14}N_2O_2$	<u>69.35</u> 69.41	<u>5.72</u> 5.82	<u>11.47</u> 11.56	308-310	79	+ 17
4f	$C_{15}H_{18}N_2O_2$	<u>69.66</u> 69.74	<u>6.95</u> 7.02	<u>10.73</u> 10.84	206–208	90	+ 20
4g	$C_{15}H_{18}N_2O_2$	<u>69.70</u> 69.74	<u>7.05</u> 7.02	<u>10.88</u> 10.84	259–261	93	+ 11
4h	$C_{15}H_{18}N_2O_2$	<u>69.81</u> 69.74	<u>7.10</u> 7.02	<u>10.92</u> 10.84	245–247	85	- 35
	Гипотиазид	_	_	_	_	-	+ 61

Характеристики алкиламидов 4-метил-2-оксо-1,2-дигидрохинолин-3-карбоновой кислоты 4а–h

* Усиление (+), угнетение (-) диуреза по отношению к контролю, принятому за 100%.

а в молекуле **В** – укороченный внутримолекулярный контакт $H_{(15f)}...C_{(10b)}$ 2.53 Å (2.87 Å). Карбамидный фрагмент развернут относительно плоскости бицикла (торсионный угол $C_{(7)}-C_{(8)}-C_{(10)}-O_{(2)}$ –74.1(4)° в **А** и 69.0(4)° в **В**). *втор*-Бутильный заместитель находится в *ар*-конформации относительно связи $C_{(8)}-C_{(10)}$ (торсионный угол $C_{(11)}-N_{(2)}-C_{(10)}-C_{(8)}$ 167.8(3)° в **А** и –174.6(3)° в **В**) и развернут таким образом, что метильная группа находится в *-ac*-ориентации относительно связи $C_{(10)}-N_{(2)}$ (торсионный угол $C_{(10)}-N_{(2)}-C_{(11)}-C_{(12)}$ составляет –115.8(5)° в молекуле **А** и –119.0(4)° в молекуле **В**). Этильная группа находится в *ac*-конформации относительно связи $C_{(10)}-N_{(2)}$ и развернута по отношению к связи $N_{(2)}-C_{(11)}$ (торсионные углы $C_{(10)}-N_{(2)}-C_{(11)}-C_{(13)}$ 122.6(5)° в **А** и 118.2(5)° в **В**; $N_{(2)}-C_{(11)}-C_{(13)}-C_{(14)}$ –67.3(6)° в **А** и –52.6(7)° в **В**). Такая ориентация *втор*бутильного заместителя приводит к возникновению внутримолекулярных укороченных контактов: в молекуле **А** $H_{(11a)}...H_{(14c)}$ 2.30 (2.34) и $H_{(14b)}...N_{(2a)}$ 2.53 (2.67), а в молекуле **В** – $H_{(11b)}...O_{(2b)}$ 2.41 Å (2.46 Å).

2
а
Ħ
И
5
6
а
Ε

Спектры ЯМР¹Н соединений 4а-h

					Химически	е сдвиги, б, м. д	(. $(J, \Gamma \mathbf{I})$	
Соеди-	NIL	ALLIN		Хинолонс	овое ядро		ПОТ	
нение		UHD	H-5	Н-7	8-H	9-H	(3H c)	R
	(2,111)	(111)	(1Н, д. д)	(1Н, т. д)	(1Н, д. д)	(1Н, т. д)	(2,111,2)	
4a	11.97	8.19	7.76	7.51	7.29	7.19	2.33	2.72 (3H, π , $J = 4.7$, NCH ₃)
		(K, J = 4.7)	(J = 8.1)	(J = 7.6	(J = 8.2)	(J = 7.5		
			и 1.2)	и 1.3)	и 1.1)	и 1.2)		
4b	11.83	8.26	7.75	7.51	7.28	7.20	2.34	3.21 (2H, кв, <i>J</i> = 7.1, NCH ₂); 1.08 (3H, т, <i>J</i> = 7.2, CH ₃)
		(T, J = 5.5)	(J = 8.2)	(J = 7.6	(J = 8.2)	(J = 7.4		
			и 1.1)	и 1.2)	и 1.0)	и 1.2)		
4c	11.80	8.25	7.76	7.50	7.29	7.20	2.34	3.14 (2H, κ , $J = 6.1$, NCH ₂); 1.49 (2H, M , CH ₂ CH ₃);
		(T, J = 5.1)	(J = 8.2)	(J = 7.7)	(J = 8.2)	(J = 7.4		$0.90 (3H, T, J = 7.4, CH_3)$
			и 1.2)	и 1.3)	и 1.1)	и 1.3)		
4d	11.79	8.16	7.75	7.50	7.29	7.19	2.33	3.98 (1H, м, NCH); 1.11 (6H, д, J = 6.5, 2CH ₃)
		$({\rm A}, J = 7.6)$	(J = 8.1)	(J = 7.8)	(J = 8.2)	(J = 7.6		
			и 1.0)	и 1.2)	и 1.0)	и 1.2)		
4e	11.81	8.32	7.74	7.50	7.28	7.19	2.34	2.76 (1H, m, NCH); 0.67 (2H, m, CH ₂);
		$({\rm A}, J = 4.5)$	(J = 8.2)	(J = 7.6	(J = 8.3)	(J = 7.5		0.45 (2H, m, CH ₂)
			и 1.1)	и 1.3)	и 1.1)	и 1.3)		
4f	11.79	8.23	7.75	7.51	7.30	7.20	2.34	3.18 (2H, κ , $J = 6.2$, NCH ₂); 1.40 (4H, M , (CH ₂) ₂ CH ₃);
		(T, J = 5.6)	(J = 8.1)	(J = 7.7)	(J = 8.3)	(J = 7.4		$0.89 (3H, T, J = 7.0, CH_3)$
			и 1.1)	и 1.3)	и 1.0)	и 1.3)		
4g	11.80	8.28	7.75	7.51	7.29	7.20	2.35	3.02 (2H, T , $J = 6.4$, NCH ₂); 1.77 (1H, M, C <u>H</u> (CH ₃) ₂);
		(T, J = 5.7)	(J = 8.2)	(J = 7.7)	(J = 8.1)	(J = 7.5		$0.90 (6H, H, J = 6.7, 2CH_3)$
			и 1.1)	и 1.2)	и 1.1)	и 1.2)		
4h	11.76	8.07	7.75	7.49	7.29	7.19	2.34	3.82 (1H, m, NCH); 1.43 (2H, KB, $J = 7.1$, CH_2CH_3);
		$({\tt A},J{=}8.1)$	(J = 8.1)	(J = 7.7)	(J = 8.2)	(J = 7.6		1.08 (3H, μ , $J = 6.8$, CHC <u>H_3</u>); 0.89 (3H, τ , $J = 7.3$, CH ₂ C <u>H₃</u>)
-		_	и 1.2)	и 1.2)	и 1.0)	и 1.3)		

Строение молекулы втор-бутиламида 4h с нумерацией атомов

В кристалле молекулы *втор*-бутиламида **4h** образуют димеры за счет межмолекулярных водородных связей $N_{(1a)}-H_{(1Na)}...O_{(1b)'}$ (1–*x*, 0.5+*y*, 0.5–*z*, H...O 1.95 Å, N–H...O 170°) и $N_{(1b)}-H_{(1Nb)}...O_{(1a)'}$ (1–*x*, -0.5+*y*, 0.5–*z*, H...O 2.05 Å, N–H...O 174°). В свою очередь, благодаря межмолекулярным водородным связям $N_{(2a)}-H_{(2Na)}...O_{(2b)}$ (H...O 2.09 Å, N–H...O 158°) и $N_{(2b)}-H_{(2Nb)}...O_{(2a)'}$ (1+*x*, *y*, *z*, H...O 2.11 Å, N–H...O 160°), эти димеры сгруппированы в бесконечные цепочки вдоль кристаллографического направления (1 0 0). Кроме того, образование межмолекулярных водородных связей, вероятно, способствует удлинению связей $O_{(1)}-C_{(9)}$ до 1.244(4) в молекуле **A** и до 1.268(4) Å в молекуле **B**, а также связей $O_{(2)}-C_{(10)}$ до 1.245(3) в **A** и до 1.227(3) Å в **B** по сравнению с их средним значением 1.210 Å [7].

Теоретической предпосылкой для изучения мочегонных свойств алкиламидов 4а-h послужила выраженная способность усиливать мочевыделительную функцию почек, обнаруженная нами ранее у некоторых близких по строению алкиламидов 1-гидрокси-3-оксо-5,6-дигидро-3Н-пирроло[3,2,1-іј]хинолин-2-карбоновой кислоты [8]. Биологические исслеования проведены на белых беспородных крысах-самцах весом 180-200 г по известной методике [9] в сравнении с гипотиазидом. Синтезированные соединения 4а-h вводили перорально в дозе 40 мг/кг (эффективная доза гипотиазида), после чего подопытных животных помещали в "обменные клетки". Объем выделенной мочи регистрировали через 4 ч, принимая контроль за 100%. Представленные в табл. 1 экспериментальные данные свидетельствуют о том, что исследуемые вещества демонстрируют примерно те же закономерности связи "структура – активность", что и соответствующие им алкиламиды 1-гидрокси-3-оксо-5,6-дигидро-3Н-пирроло-[3,2,1-*ij*]хинолин-2-карбоновой кислоты [8], и в зависимости от строения

амидного фрагмента способны как усиливать, так и угнетать диурез 1845 подопытных животных. Однако сила оказываемого ими эффекта оказалась незначительной, на основании чего поиск потенциальных диуретических лекарственных средств в ряду алкиламидов 4-метил-2-оксо-1,2дигидрохинолин-3-карбоновой кислоты следует признать малоперспективным.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н синтезированных соединений записаны на приборе Varian Mercury-VX-200 (200 МГц), растворитель ДМСО-d₆, внутренний стандарт ТМС. Имидазолид **2** получен по известной методике [4].

Метиламид 4-метил-2-оксо-1,2-дигидрохинолин-3-карбоновой кислоты (4а). В охлажденную до –20 °C суспензию 2.53 г (0.01 моль) мелкоизмельченного имидазолида 2 в 70 мл безводного CCl₄ в течение 15 мин пропускают сухой газообразный HCl и плотно укупорив, оставляют при температуре ~5 °C на 3 сут. Основное количество избыточного HCl удаляют из реакционной смеси, барботируя

Таблица З

Связь	l, Å	Связь	l, Å
O _(1A) -C _(9A)	1.244(4)	O(2A)-C(10A)	1.245(3)
N _(1A) -C _(9A)	1.346(4)	N(1A)-C(1A)	1.362(4)
N _(2A) -C _(10A)	1.334(4)	N _(2A) -C _(11A)	1.463(4)
C _(1A) -C _(2A)	1.396(5)	C(1A)-C(6A)	1.413(5)
C _(2A) -C _(3A)	1.353(5)	C _(3A) -C _(4A)	1.384(6)
C _(4A) -C _(5A)	1.362(5)	C _(5A) -C _(6A)	1.398(5)
C(6A)-C(7A)	1.449(4)	C _(7A) -C _(8A)	1.359(4)
C _(7A) -C _(15A)	1.517(5)	C _(8A) -C _(9A)	1.455(4)
C _(8A) -C _(10A)	1.487(4)	C _(11A) -C _(13A)	1.493(4)
C _(11A) -C _(12A)	1.563(4)	C _(13A) -C _(14A)	1.488(5)
O _(1B) -C _(9B)	1.268(4)	O _(2B) -C _(10B)	1.227(3)
N _(1B) -C _(9B)	1.348(4)	N _(1B) -C _(1B)	1.396(4)
N _(2B) -C _(10B)	1.325(4)	N _(2B) -C _(11B)	1.443(4)
C _(1B) -C _(2B)	1.390(5)	C(1B)-C(6B)	1.428(5)
C _(2B) -C _(3B)	1.406(6)	C _(3B) -C _(4B)	1.401(6)
C _(4B) -C _(5B)	1.354(5)	C _(5B) -C _(6B)	1.425(5)
C _(6B) -C _(7B)	1.453(5)	C _(7B) -C _(8B)	1.380(5)
C _(7B) -C _(15B)	1.535(5)	C _(8B) -C _(9B)	1.479(5)
C _(8B) -C _(10B)	1.503(4)	C _(11B) -C _(13B)	1.504(4)
C _(11B) -C _(12B)	1.532(4)	C _(13B) -C _(14B)	1.498(4)
	1	I	

Длины связей (*l*) в структуре *втор*-бутиламида 4h

Валентный угол	ω, град.	Валентный угол	ω, град.
C _(9A) -N _(1A) -C _(1A)	124.2(3)	C _(10A) -N _(2A) -C _(11A)	125.1(3)
N _(1A) -C _(1A) -C _(2A)	119.2(3)	N _(1A) -C _(1A) -C _(6A)	119.2(3)
C _(2A) -C _(1A) -C _(6A)	121.6(3)	$C_{(3A)} - C_{(2A)} - C_{(1A)}$	118.2(4)
C _(2A) -C _(3A) -C _(4A)	121.2(4)	$C_{(5A)} - C_{(4A)} - C_{(3A)}$	121.5(4)
$C_{(4A)} - C_{(5A)} - C_{(6A)}$	119.7(4)	$C_{(5A)} - C_{(6A)} - C_{(1A)}$	117.7(3)
C _(5A) -C _(6A) -C _(7A)	123.2(3)	C _(1A) -C _(6A) -C _(7A)	119.0(3)
C _(8A) -C _(7A) -C _(6A)	118.8(3)	C _(8A) -C _(7A) -C _(15A)	121.8(3)
C _(6A) -C _(7A) -C _(15A)	119.4(3)	$C_{(7A)} - C_{(8A)} - C_{(9A)}$	121.2(3)
$C_{(7A)} - C_{(8A)} - C_{(10A)}$	121.1(3)	$C_{(9A)} - C_{(8A)} - C_{(10A)}$	117.7(3)
$O_{(1A)} - C_{(9A)} - N_{(1A)}$	120.0(3)	$O_{(1A)} - C_{(9A)} - C_{(8A)}$	122.5(3)
N _(1A) -C _(9A) -C _(8A)	117.5(3)	$O_{(2A)} - C_{(10A)} - N_{(2A)}$	124.4(3)
$O_{(2A)} - C_{(10A)} - C_{(8A)}$	121.3(3)	$N_{(2A)} - C_{(10A)} - C_{(8A)}$	114.3(3)
$N_{(2A)} - C_{(11A)} - C_{(13A)}$	110.6(4)	$N_{(2A)} - C_{(11A)} - C_{(12A)}$	108.6(3)
$C_{(13A)} - C_{(11A)} - C_{(12A)}$	110.6(5)	$C_{(14A)} - C_{(13A)} - C_{(11A)}$	106.6(5)
C _(9B) -N _(1B) -C _(1B)	123.4(3)	C _(10B) -N _(2B) -C _(11B)	124.2(3)
C _(2B) -C _(1B) -N _(1B)	119.0(3)	$C_{(2B)} - C_{(1B)} - C_{(6B)}$	120.6(4)
N _(1B) -C _(1B) -C _(6B)	120.4(3)	$C_{(1B)} - C_{(2B)} - C_{(3B)}$	118.7(4)
$C_{(4B)}$ - $C_{(3B)}$ - $C_{(2B)}$	120.9(4)	$C_{(5B)}$ - $C_{(4B)}$ - $C_{(3B)}$	120.8(4)
C _(4B) -C _(5B) -C _(6B)	120.3(4)	$C_{(5B)}$ - $C_{(6B)}$ - $C_{(1B)}$	118.7(3)
C _(5B) -C _(6B) -C _(7B)	122.7(3)	$C_{(1B)}$ - $C_{(6B)}$ - $C_{(7B)}$	118.7(3)
C _(8B) -C _(7B) -C _(6B)	118.0(3)	$C_{(8B)}$ - $C_{(7B)}$ - $C_{(15B)}$	122.6(3)
C _(6B) -C _(7B) -C _(15B)	119.4(3)	C _(7B) -C _(8B) -C _(9B)	122.6(3)
C _(7B) -C _(8B) -C _(10B)	121.9(3)	$C_{(9B)}$ - $C_{(8B)}$ - $C_{(10B)}$	115.4(3)
O _(1B) -C _(9B) -N _(1B)	119.6(3)	O _(1B) -C _(9B) -C _(8B)	123.6(3)
N _(1B) -C _(9B) -C _(8B)	116.8(3)	O(2B)-C(10B)-N(2B)	123.2(3)
$O_{(2B)} - C_{(10B)} - C_{(8B)}$	120.0(3)	N _(2B) -C _(10B) -C _(8B)	116.7(3)
N _(2B) -C _(11B) -C _(13B)	111.5(3)	N _(2B) -C _(11B) -C _(12B)	110.2(3)
$C_{(13B)} - C_{(11B)} - C_{(12B)}$	110.3(4)	$C_{(14B)} - C_{(13B)} - C_{(11B)}$	120.4(5)

Валентные углы (ф) в структуре втор-бутиламида 4h

в нее сухой аргон, после чего реактор с полученным хлорангидридом **3** помещают в баню со льдом и насыщают газообразным метиламином. Через 3–4 ч растворитель отгоняют досуха в вакууме. К остатку прибавляют холодную воду и подкисляют разбавленной (1:1) HCl до pH 5. Выделившийся осадок метиламида **4a** отфильтро-вывают, промывают холодной водой, сушат. Кристаллизуют из этанола.

Этиламид 4b получают аналогично.

В синтезе амидов **4с-h** возможны два варианта амидирования хлорангидрида **3**, полученного по приведенной в предыдущем примере методике: дешевые и доступные алкиламины при охлаждении и перемешивании прибавляют к хлорангидриду в 3-кратном молярном избытке, а в случае дорогостоящих аминов используют смеси с триэтиламином в соотношении 1:2. Дальнейшее выделение продуктов реакций во всех случаях проводят одинаково (см. пример синтеза метиламида **4a**). Рентгеноструктурное исследование. Кристаллы *втор*-бутиламида 4h моноклинные (этанол), при 20 °C: a = 9.477(2), b = 14.898(2), c = 20.949(6) Å, $\beta = 101.98(2)^\circ$, V = 2893(1) Å³, $M_r = 258.31$, Z = 8, пространственная группа $P2_1/c$, $d_{выч} = 1.186$ г/см³, μ (Мо $K\alpha$) = 0.080 мм⁻¹, F(000) = 1104. Параметры элементарной ячейки и интенсивности 17467 отражений (5017 независимых, $R_{int} = 0.067$) измерены на дифрактометре Xcalibur-3 (Мо $K\alpha$ излучение, CCD-детектор, графитовый монохроматор, ω -сканирование, $2\theta_{max} = 50^\circ$).

Структура расшифрована прямым методом по комплексу программ SHELXTL [10]. При уточнении структуры налагались ограничения на длины связей во *втор*бутильном фрагменте $C_{(sp3)}-C_{(sp3)}$ 1.53 Å. Положения атомов водорода выявлены из разностного синтеза электронной плотности и уточнены по модели "наездника" с $U_{iso} = nU_{eq}$ неводородного атома, связанного с данным водородным (n = 1.5 для метильных групп и n = 1.2 для остальных атомов водорода). Структура уточнена по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов до $wR_2 = 0.179$ по 4881 отражению ($R_1 = 0.069$ по 2174 отражениям с $F > 4\sigma$ (F), S = 0.845). Полная кристаллографическая информация депонирована в Кембриджском банке структурных данных – депонент ССDC 672204. Межатомные расстояния и валентные углы представлены в табл. 3 и 4.

СПИСОК ЛИТЕРАТУРЫ

- 1. И. В. Украинец, А. А. Ткач, Лю Ян Ян, *ХГС*, 1655 (2008).
- 2. И. В. Украинец, О. В. Горохова, Л. В. Сидоренко, *XTC*, 1195 (2005). [*Chem. Heterocycl. Comp.*, **41**, 1019 (2005)].
- 3. И. В. Украинец, Н. Л. Березнякова, В. А. Паршиков, В. Н. Кравченко, *XГС*, 78 (2008). [*Chem. Heterocycl. Comp.*, **44**, 64 (2008)].
- И. В. Украинец, Н. Л. Березнякова, В. А. Паршиков, О. И. Набока, XTC, 239 (2008). [Chem. Heterocycl. Comp., 44, 178 (2008)].
- 5. Л. Физер, М. Физер, Реагенты для органического синтеза, Мир, Москва, 1970, т. 2, с. 120.
- 6. Ю. В. Зефиров, *Кристаллография*, **42**, 936 (1997).
- H.-B. Burgi, J. D. Dunitz, *Structure Correlation*, VCH, Weinheim, 1994, vol. 2, p. 741.
- 8. И. В. Украинец, Н. Л. Березнякова, Е. В. Моспанова, *XГС*, 1015 (2007). [*Chem. Heterocycl. Comp.*, **43**, 856 (2007)].
- 9. Л. Н. Сернов, В. В. Гацура, Элементы экспериментальной фармакологии, Москва, 2000, с. 103.
- 10. G. M. Sheldrick, SHELXTL PLUS. PC Version. A System of Computer Programs for the Determination of Crystal Structure from X-ray Diffraction Data. Rev. 5.1 (1998).

Национальный фармацевтический университет, Харьков 61002, Украина e-mail: uiv@kharkov.ua Поступило 28.09.2007