О. В. Сурикова, З. Г. Алиев^а, А. Г. Михайловский

СИНТЕЗ 2-спиро-(1,2-ДИГИДРОПЕРИМИДИЛ-2)-5,5-ДИАЛКИЛ-2,3,5,6-ТЕТРАГИДРОПИРРОЛО[2,1-а]ИЗОХИНОЛИН-3-ОНОВ

2,3-Диоксопирроло[2,1-*a*]изохинолины реагируют с 1,8-нафтилендиамином в 2-пропаноле в присутствии *n*-толуолсульфокислоты с образованием 2-*спиро*-(1,2ди- гидро-2-перимидил)-5,5-диалкил-2,3,5,6-тетрагидропирроло[2,1-*a*]изохинолин-3онов, структура которых подтверждена данными РСА.

Ключевые слова: 5,5-диалкил-2,3-диоксопирроло[2,1-*а*]изохинолины, 1,8-нафтилендиамин, 2-*спиро*-(1,2-дигидро-2-перимидил)-5,5-диалкил-2,3,5,6-тетрагидропирроло[2,1-*а*]изохинолин-3-оны, кислотный катализ, РСА.

Ранее были исследованы реакции 2,3-диоксопирроло[2,1-*а*]изохинолинов с *о*-фенилендиамином. Показано, что в зависимости от условий реакции ее продукты могут иметь различное строение [1–3]. Реакции названных веществ с другими ароматическими диаминами до настоящего времени не изучены. Целью данной работы является исследование реакции производных 2,3-диоксопирроло[2,1-*а*]изохинолина с 1,8-нафтилендиамином.

Исследования показали, что при кипячении диоксопирролинов общей формулы **1а**-е с 1,8-нафтилендиамином в условиях кислотного катализа *n*-толуолсульфокислотой образуются спиропроизводные **2а**-е. Контроль за ходом реакции легко осуществляется по изменению окраски раствора исходного вещества, окрашенного в темно-красный цвет. В процессе образования нового соединения (контроль TCX) цвет раствора меняется на желтый. В условиях кипячения в ледяной уксусной кислоте возвра- щается непрореагировавшее исходное вещество.

Полученные спиросоединения представляют собой желтые кристаллические вещества (табл. 1).

1,2 a $R = R^2 = H$, $R^1 = Me$; **b** $R = R^2 = H$, $R^1 + R^1 = (CH_2)_4$; **c** R = MeO, $R^1 = Me$, $R^2 = H$; **d** R = H, $R^1 = Me$, $R^2 = C(O)N(CH_2)_5$; **e** R = H, $R^1 = Me$, $R^2 = C(O)N(CH_2)_2O$

Таблица 1

Соеди-	Брутто-	<u>Найдено, %</u> Вычислено, %			Т. пл., °С	Выход,
нение	формула	С	Н	Ν		/0
2a	$C_{24}H_{21}N_{3}O$	<u>74.8</u>	<u>6.4</u>	<u>8.8</u>	170 - 171	51
		74.9	6.3	8.7		
2b	$C_{21}H_{22}N_2O_2$	<u>75.2</u>	<u>6.5</u>	<u>8.4</u>	143 - 145	55
		75.4	6.6	8.4		
2c	$C_{28}H_{27}N_3O_2$	<u>69.8</u>	<u>6.7</u>	<u>8.5</u>	154 - 156	45
		70.0	6.8	8.6		
2d	$C_{20}H_{19}N_3O_4$	<u>65.6</u>	5.1	<u>11.6</u>	179 - 181	60
		65.7	5.2	11.5		
2e	$C_{20}H_{19}N_3O_4$	<u>65.5</u>	5.1	11.6	155 - 157	56
		65.7	5.2	11.5		

Характеристики синтезированных соединений

В спектрах ЯМР ¹Н (табл. 2) лактамов **2а–е**, в отличие от спектров исходных соединений, присутствуют синглеты групп NH (6.34–6.47 м. д.) и мультиплеты дополнительных 8 ароматических протонов 1,2-дигидро-перимидинового фрагмента.

Для ИК спектров лактамов **2а–е** характерно присутствие полос валентных колебаний лактамного карбонила (1730–1745) и групп NH (3170–3210 см⁻¹). Амидный карбонил (соединения **2d**,**e**) поглощает в области 1640–1650 см⁻¹.

В масс-спектре амида **2а** присутствует пик молекулярного иона 367 (42%), более интенсивные пики соответствут отрыву группы CO (*m/z* 339, $I_{\text{отн.}}$ 90%) с дальнейшей потерей метильной группы (*m/z* 324, $I_{\text{отн.}}$ 95%). Аналогичен спектр метоксипроизводного **2с**, *m/z* ($I_{\text{отн.}}$, %): 427 [M⁺] (5), 399 [M–CO]⁺ (15), 384 [399–Me]⁺ (35).

Таблица 2

	Химические сдвиги, б, м. д.						
Соеди- нение	5-CR ¹ R ¹	6-СН ₂ , с	1-HC=, c	Аромати- ческие протоны, м	2NH, 2 c	Другие протоны	
2a	1.39 (6H, c, 2CH ₃)	2.84	5.86	6.81–7.75 (10H)	6.34, 6.41	_	
2b	1.15–1.76 (8Н, м, (CH ₂) ₄)	2.88	5.78	6.46–7.16 (10H)	6.46, 6.48	_	
2c	1.40 (6H, c, 2CH ₃)	2.75	5.82	6.83–7.62 (8H)	6.34, 6.40	3.75 (3H, c, CH ₃ O), 3.78 (3H, c, CH ₃ O)	
2d	1.35 (6H, c, 2CH ₃)	2.78	_	7.10–8.13 (8H)	6.39, 6.45	1.03–1.39 (6Н, м, C(CH ₂) ₃ C; 3.27–3.36 (4Н, м, 2CH ₂ –N)	
2e	1.42 (6H, c, 2CH ₃)	2.80	_	7.10–8.50 (8H)	6.40, 6.47	2.90–3.70 (8Н, м, N(CH ₂) ₂ O	

Спектры ЯМР¹Н синтезированных соединений

Следует однако сказать, что представленные данные ЯМР ¹Н, ИК и 1850

масс-спектров не противоречат еще двум возможным структурам – формулам дибензазепинона **A** и производного перимидина **B**:

Таким образом, установить структуру в данном случае возможно лишь с помощью РСА. Подходящие монокристаллы были получены для соединения **2**с.

Молекула соединения **2с** кристаллизуется в эквимолярном отношении с молекулой ацетонитрила. Общий вид молекулы представлен на рисунке. Все длины связей и валентные углы (табл. 3, 4) хорошо согласуются с обычными для соответствующих атомов значениями. Пиразиновый цикл имеет конформацию *ванна* – перегиб по линии N(2)...N(3) составляет 39.6 °C, а отклонение атома C(1) от плоскости остальных пяти атомов цикла равно 0.55Å. Сильно искажено пиперидиновое кольцо изохинолинового цикла. Отклонения атомов N(1) и C(12) от плоскости четырех атомов составляют 0.38 и 0.75 Å, соответственно, в одну и ту же сторону. Метоксигруппы находятся в плоскости бензольного кольца. В кристалле отсутствуют водородные связи и укороченные межмолекулярные контакты.

Структура молекулы соединения 2с по данным РСА

Таблица З

Угол	ф, град	Угол	ф, град
C(8)–O(2)–C(15)	117.7(3)	C(8)–C(9)–C(10)	120.7(4)
C(7)–O(3)–C(16)	116.7(3)	C(5)–C(10)–C(9)	119.4(4)
C(2)–N(1)–C(4)	109.4(3)	C(5)–C(10)–C(11)	119.5(4)
C(2)–N(1)–C(12)	127.0(3)	C(9)–C(10)–C(11)	120.8(4)
C(4)-N(1)-C(12)	123.1(3)	C(10)-C(11)-C(12)	112.7(4)
C(17)–N(2)–C(1)	119.2(3)	C(13)-C(12)-N(1)	109.1(4)
C(25)–N(3)–C(1)	119.0(3)	C(13)-C(12)-C(11)	112.0(4)
N(2)-C(1)-N(3)	107.6(3)	N(1)-C(12)-C(11)	108.8(3)
N(2)-C(1)-C(3)	114.4(3)	C(13)-C(12)-C(14)	109.8(5)
N(3)-C(1)-C(3)	111.1(3)	N(1)-C(12)-C(14)	110.7(4)
N(2)-C(1)-C(2)	112.5(3)	C(11)-C(12)-C(14)	106.5(4)
N(3)-C(1)-C(2)	109.8(3)	C(18)–C(17)–N(2)	122.7(4)
C(3)-C(1)-C(2)	101.3(3)	C(18)-C(17)-C(26)	119.6(4)
O(1)–C(2)–N(1)	126.6(3)	N(2)-C(17)-C(26)	117.6(3)
O(1)–C(2)–C(1)	125.7(3)	C(17)-C(18)-C(19)	119.1(4)
N(1)-C(2)-C(1)	107.7(3)	C(20)-C(19)-C(18)	122.2(4)
C(4)–C(3)–C(1)	110.8(3)	C(19)-C(20)-C(21)	122.2(4)
C(3)–C(4)–N(1)	110.4(3)	C(26)–C(21)–C(20)	118.9(4)
C(3)–C(4)–C(5)	131.2(3)	C(26)–C(21)–C(22)	118.3(4)
N(1)-C(4)-C(5)	118.4(3)	C(20)–C(21)–C(22)	122.8(4)
C(10)-C(5)-C(6)	119.5(3)	C(23)–C(22)–C(21)	120.4(4)
C(10)-C(5)-C(4)	119.5(3)	C(22)-C(23)-C(24)	121.4(4)
C(6)-C(5)-C(4)	120.9(3)	C(25)–C(24)–C(23)	119.9(4)
C(7)–C(6)–C(5)	120.8(3)	C(24)-C(25)-N(3)	122.0(4)
O(3)–C(7)–C(6)	125.9(3)	C(24)-C(25)-C(26)	119.8(4)
O(3)–C(7)–C(8)	114.3(3)	N(3)-C(25)-C(26)	118.1(3)
C(6)–C(7)–C(8)	119.8(3)	C(21)-C(26)-C(25)	120.2(4)
O(2)–C(8)–C(9)	124.7(4)	C(21)-C(26)-C(17)	119.9(4)
O(2)–C(8)–C(7)	115.6(3)	C(25)-C(26)-C(17)	119.7(3)
C(9)–C(8)–C(7)	119.6(3)	N(4)-C(27)-C(28)	178.0(7)

Основные валентные углы (ф) в молекуле соединения 2с

Таблица 4

Связь	<i>d</i> , Å	Связь	d, Å	Связь	<i>d</i> , Å
O(1)–C(2)	1.213(4)	C(1)–C(2)	1.556(5)	C(17)–C(18)	1.373(6)
O(2)–C(8)	1.360(4)	C(3)–C(4)	1.328(5)	C(17)–C(26)	1.429(5)
O(2)–C(15)	1.419(5)	C(4)–C(5)	1.454(5)	C(18)–C(19)	1.418(6)
O(3)–C(7)	1.365(4)	C(5)–C(10)	1.391(5)	C(19)–C(20)	1.346(7)
O(3)–C(16)	1.400(5)	C(5)–C(6)	1.396(5)	C(20)–C(21)	1.415(7)
N(1)–C(2)	1.358(5)	C(6)–C(7)	1.373(5)	C(21)–C(26)	1.408(5)
N(1)–C(4)	1.436(5)	C(7)–C(8)	1.406(5)	C(21)–C(22)	1.418(6)
N(1)-C(12)	1.485(5)	C(8)–C(9)	1.375(6)	C(22)–C(23)	1.361(7)
N(2)–C(17)	1.389(5)	C(9)–C(10)	1.402(6)	C(23)–C(24)	1.398(6)
N(2)–C(1)	1.451(5)	C(10)–C(11)	1.521(6)	C(24)–C(25)	1.374(6)
N(3)–C(25)	1.389(5)	C(11)–C(12)	1.529(6)	C(25)–C(26)	1.414(6)
N(3)–C(1)	1.460(5)	C(12)–C(13)	1.475(8)	N(4)–C(27)	1.101(6)
C(1)–C(3)	1.483(5)	C(12)–C(14)	1.540(6)	C(27)–C(28)	1.446(9)

Длины связей (d) в молекуле соединения 2c

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н зарегистрированы на приборе Bruker 300 (300 МГц) в ДМСО- d_6 (соединения **2a**, **c**–**e**) и CDCl₃ (соединение **2b**), внутренний стандарт ГМДС (δ 0.05 м. д.). ИК спектры получены на спектрометре Specord M-80 в вазелиновом масле. Масс-спектры записаны на приборе MAT-311 (70 эВ, ЭУ).

Проверка чистоты полученных веществ осуществлялась методом TCX на пластинах Silufol UV-254 в системе ацетон–этанол–хлороформ, 1:3:6, соединения окрашены.

Соединения **2a,b,d,e** перекристаллизованы из изопропилового спирта, соединение **2c** – из ацетонитрила.

Синтез исходных веществ описан в работах [1, 4].

Рентгеноструктурное исследование соединения 2c. Кристаллы $C_{26}H_{25}N_3O$ ·MeCN· принадлежат к моноклинной сингонии: a = 12.298(1), b =19.583(4), c = 10.310(1) Å, $\beta = 98.99(1)$, V = 2452.5(6) Å³, M 468.54, $d_{\text{Bby}} = 1.269$ r/cm^3 , Z = 4, пространственная группа $P2_1/c$. Набор экспериментальных отражений получен в автоматическом 4-кружном дифрактометре КМ-4 (KUMA DIFFRACTION) с χ -4, геометрией методом $\omega/2\theta$ сканирования на монохроматизированном МоКα-из- лучении (20 ≤ 50°). Всего измерено 3617 независимых отражений [R(int) = 0.0241]. Поправки на поглощение не вводили (µ $= 0.084 \text{ мм}^{-1}$). Структура определена прямым методом по программе SIR92 [5] с последующей серией расчетов карт электронной плотности. Все атомы водорода заданы геометрически. Полно- матричное анизотропное (неводородных атомов) уточнение МНК по программе SHELXL-97 [6] завершено при $R_1 = 0.0760$ по 2489 отражениям с $I \ge 2\sigma(I)$. GooF = 1.033.

1-R²-2-спиро-(1,2-Дигидро-2-перимидил)-5,5-(R¹)₂-6,7-(R)₂-2,3,5,6-тетрагидроизохинолиноны 2а-е (общая методика). К раствору 10 ммоль диоксопирролина 1а-е и 1.58 г (10 ммоль) 1,8-нафтилендиамина в 30 мл изопропилового спирта, добавляют ~10 мг (1–2 кристалла) *n*-тоуолсульфокислоты. При кипячении раствора в течение 30 мин окраска раствора меняется с красной на темно-желтую. Смесь охлаждают до 20 °C, выпавший осадок отфильтровывают, промывают на фильтре водой, сушат и перекристаллизоывают.

СПИСОК ЛИТЕРАТУРЫ

- 1. А. Г. Михайловский, В. С. Шкляев, Б. Б. Александров, *ХГС*, 808 (1990). [*Chem. Heterocycl. Comp.*, **26**, 674 (1990)].
- 2. А. Г. Михайловский, В. С. Шкляев, *ХГС*, 946 (1994). [*Chem. Heterocycl. Comp.*, **30**, 818 (1994)].
- 3. N. N. Polygalova, A. G. Mikhailovskii, M. I. Vakhrin, in: *Nitrogen-containing Heterocycles*, V. G. Kartsev (Ed.), ICSPF, Moscow, 2006, vol. 1, p. 402.
- 4. В. С. Шкляев, Б. Б. Александров, А. Г. Михайловский, М. И. Вахрин, *XГС*, 963 (1987). [*Chem. Heterocycl. Comp.*, **23**, 790 (1987)].
- 5. A. Altomare, G. Cascarano, C. Giacovazzo, A. Gualardi, J. Appl. Cryst., 26, 343 (1993).
- 6. G. M. Sheldrick, *Shelxl 97. Programs for Crystal Structure Analysis.* Univ. of Göttingen, Germany, 1997.

Пермская государственная фармацевтическая академия, Пермь 614990, Россия e-mail: perm@pfa.ru Поступило 01.10.2007

^аИнститут проблем химической физики РАН, Черноголовка 142432, Московская область e-mail: aliev@icp.ac.ru