Посвящается академику Б. А. Трофимову в связи с 70-летием

Л. Г. Воскресенский, Т. Н. Борисова, М. В. Овчаров, Л. Н. Куликова, Е. А. Сорокина, Р. С. Борисов, А. В. Варламов

ТРАНСФОРМАЦИИ ТЕТРАГИДРОПИРИДО[4,3-*d*]ПИРИМИДИНОВ [*b*]-КОНДЕНСИРОВАННЫХ С ИЗОКСАЗОЛЬНЫМ, ТИАЗОЛЬНЫМ, ТИАДИАЗОЛЬНЫМ И ТРИАЗОЛЬНЫМ ФРАГМЕНТАМИ ПОД ДЕЙСТВИЕМ АКТИВИРОВАННЫХ АЛКИНОВ

Установлено, что при взаимодействии тетрагидропиридо[3,4-*d*]пиримидинов, аннелированных с изоксазольным, тиазольным, тиадиазольным фрагментами, с терминальными алкинами, в результате расщепления тетрагидропиридинового кольца образуются *о*-винил(N-R,N-виниламинометил)изоксазоло(тиазоло-, тиадиазоло-)пиримидины. При действии диметилового эфира ацетилендикарбоновой кислоты (АДКЭ) получены *о*-метоксиметил[N-R,N-(диметоксикарбонилвинил)]аминоэтилизоксазоло- и тиазолопиримидины. Из тетрагидропиримидина и метилпропиолата впервые получен триазолопиримидоазоцин.

Ключевые слова: винилзамещенный изоксазолопиримидон, винилзамещенный тиадиазолопиримидон, винилзамещенный тиазолопиримидон, триазолопиримидон, мидоазоцин, расширение цикла.

Тетрагидропиридины, [*c*]-конденсированные с π -избыточным пиррольным, индольным, тиофеновым фрагментами или с бензольным кольцом, под действием активированных алкинов в метаноле или ацетонитриле превращаются либо в конденсированные азоцины [1] и азонины [2], либо образуют продукты расщепления тетрагидропиридинового кольца с участием молекулы метанола – соответствующие метоксизамещенные гетероциклы с α -виниламиноэтильной группой, которые могут циклизоваться под действием кислот Льюиса в конденсированные азоцины [3, 4].

Тетрагидропиридо[4,3-*d*]пиримидины под действием метил- и этилпропиолатов при 25 °C в результате расщепления пиперидинового фрагмента превращаются в N-метил- и N-бензилзамещенные пиримидо[4,3-*d*]азоцины [5, 6].

Учитывая, что полициклические соединения с фрагментом пиримидина интересны в плане изучения цитотоксической активности, мы осуществили синтез тетрагидропиридо[4,3-*d*]пиримидинов [7], конденсированных с изоксазольным, тиазольным, тиадиазольным и триазольным фрагментами и изучили их взаимодействие с метилпропиолатом, ацетилацетиленом и АДКЭ. При этом, кроме получения оригинальных конденсированных азоцинов, мы планировали изучить влияние типа конденсированного азольного кольца на направление трансформации тетрагидропиридинового фрагмента. Конденсированные тетрагидропиридопиримидины **6–9** получали с выходами 30–80% конденсацией 3-этоксикарбонилпиперидин-4-онов 1, соответственно, с 3-амино-5-метилизоксазолом (2), 2-амино-4-метилтиазолом (3), 2-амино-5-метилтиадизолом (4) и 3-амино-5-метилтиотриазолом-1,2,4 (5) в ПФК при 80 °С.

6–9 a R = Me; **6–8** b R = Bn; **6c**, **7c** R = *i*-Pr; **6d**, **7d**, **9b** R = CH₂CH₂Ph

Реакцию соединений **6–9** с АДКЭ, метилпропиолатом, ацетилацетиленом проводили в метаноле или этаноле при температурах от –20 до 78 °C. При взаимодействии изоксазолопиридопиримидинов с алкинами в метаноле при 20 °C происходит расщепление тетрагидропиридинового кольца, в результате чего образуются 5-винил-6-(N-винил-N-R-амино)этилизоксазоло[3,2-*b*]пиримидины **10а–ј** с выходом 50–85%.

Реакция начинается с присоединения азота тетрагидропиридинового фрагмента к тройной связи алкина, в результате образуется аммонийный цвиттер-ион **A**, который отщепляет протон от молекулы метанола и образует катион **B**. Гофмановское расщепление интермедиата **B** под действием метоксид-аниона приводит к винилзамещенным соединениям **10а–j**. Такое течение процесса обусловлено, вероятно, тем, что изоксазолопиримидиновый фрагмент нейтрализует дефицит электронной плотности на атоме C-8, возникающий в результате кватернизации, и нуклеофильная атака по этому атому становится невыгодной.

10a–c R = Me; d, e R = Bn; f–h R = *i*-Pr; i, j R = CH_2CH_2Ph ; a, b, d–g, i, j X = H; c, h X = CO_2Me ; a, c, d, f, h, i Y = CO_2Me ; b, e, g, j Y = COMe

Реакция соединения **6b** с АДКЭ в кипящем метаноле сопровождается N-дебензилированием промежуточного аммонийного катиона **B**. 7-Диметоксикарбонилвинилзамещенный изоксазолопиридопиримидин **11** получен с выходом 40%. При взаимодействии N-фенэтилзамещенного соединения **6d** с АДКЭ получено с выходом 30% соединение **12** – продукт расщепления тетрагидропиридинового кольца с участием молекулы метанола.

Аналогичное расщепление тетрагидропиридинового кольца происходит и при взаимодействии с алкинами тиазоло- и тиадиазолоконденсированных пиридопиримидинов **7а–d**, **8а,b** в метаноле при температуре от – 15 до –20 °C. 5-Винилзамещенные тиазолопиримидины **13а–i** получены с выходом 56–95%, а тиадиазолопиридопиримидины **15а–d** с выходом 20–60% (схема 3).

Таблица 1

Соеди-	Брутто-	<u>Найдено, %</u> Вычислено %			Т. пл.,	[M+H]+	Выход, %
нение	формула	C H N		°C	[INI+II]		
1	2	3	4	5	6	7	8
6a	$C_{11}H_{13}N_3O_2$	$\frac{60.03}{60.27}$	<u>6.12</u> 5.94	<u>19.00</u> 19.18	188–189	220	80
6b	$C_{17}H_{17}N_3O_2$	<u>69.28</u> 69.15	<u>5.48</u> 5.76	<u>14.08</u> 14.24	172–173	296	50
6c	$C_{13}H_{17}N_3O_2$	<u>64.25</u> 63.16	<u>6.59</u> 6.88	<u>17.12</u> 17.00	146–148	248	45
6d	$C_{18}H_{19}N_3O_2$	<u>69.83</u> 69.90	<u>6.32</u> 6.15	<u>13.40</u> 13.59	163–165	310	70
7a	C ₁₁ H ₁₃ N ₃ OS	<u>56.29</u> 56.17	<u>5.34</u> 5.53	<u>17.95</u> 17.87	138–140	236	40
7b	$C_{17}H_{17}N_3OS$	<u>65.41</u> 65.39	<u>5.32</u> 5.47	<u>13.35</u> 13.30	172–173	312	60
7c	$C_{13}H_{17}N_3OS$	<u>59.45</u> 59.32	<u>6.29</u> 6.46	<u>16.10</u> 15.97	146–148	264	33
7d	$\mathrm{C}_{18}\mathrm{H}_{19}\mathrm{N}_{3}\mathrm{OS}$	<u>66.40</u> 66.46	<u>5.53</u> 5.85	<u>12.78</u> 12.92	115–117	326	68
8a	$C_{10}H_{12}N_4OS$	<u>50.97</u> 50.85	<u>4.91</u> 5.08	<u>23.84</u> 23.73	160–162	237	37
8b	$C_{16}H_{16}N_4OS$	<u>61.47</u> 61.54	<u>5.32</u> 5.13	<u>17.79</u> 17.95	168–169	313	62
9a	$C_{10}H_{13}N_3OS$	<u>47.69</u> 47.81	<u>4.97</u> 5.18	<u>27.95</u> 27.89	185–187	252	30
9b	$C_{17}H_{19}N_5OS$	<u>59.63</u> 59.82	<u>5.64</u> 5.57	<u>20.37</u> 20.33	194–196	342	47
10a	$C_{15}H_{17}N_3O_4$	<u>59.62</u> 59.41	<u>5.37</u> 5.61	<u>13.95</u> 13.86	175–176	304	85
10b	$C_{15}H_{17}N_3O_3$	<u>62.38</u> 62.72	<u>5.81</u> 5.92	<u>14.41</u> 14.63	210-211	288	85
10c	$C_{17}H_{19}N_3O_6$	<u>56.65</u> 56.51	<u>5.03</u> 5.26	<u>11.80</u> 11.63	159–161	362	59
10d	$C_{21}H_{21}N_3O_4$	<u>66.31</u> 66.49	<u>5.61</u> 5.54	<u>11.23</u> 11.08	135–137	380	50
10e	$C_{21}H_{21}N_3O_3$	<u>69.38</u> 69.42	<u>5.58</u> 5.79	<u>11.40</u> 11.57	133–135	364	81
10f	$C_{17}H_{21}N_3O_4$	<u>61.53</u> 61.63	<u>6.39</u> 6.34	<u>12.84</u> 12.69	147–148	332	73
10g	$C_{17}H_{21}N_3O_3$	<u>64.87</u> 64.76	<u>6.74</u> 6.67	<u>13.50</u> 13.33	141–142	316	81

Характеристики синтезированных соединений

Окончание таблицы 1

1	2	3	4	5	6	7	8
10h	C ₁₉ H ₂₃ N ₃ O ₆	<u>58.43</u> 58.61	<u>5.75</u> 5.91	<u>11.00</u> 10.80	161–163	390	59
10i	$C_{22}H_{23}N_3O_4$	<u>67.03</u> 67.18	<u>5.49</u> 5.85	<u>11.72</u> 10.69	180–182	394	77
10j	$C_{22}H_{23}N_3O_3$	<u>70.23</u> 70.01	<u>6.21</u> 6.10	<u>11.00</u> 11.14	199–200	378	83
11	$C_{16}H_{17}N_3O_6$	<u>53.21</u> 53.33	<u>5.05</u> 4.90	<u>12.23</u> 12.10	210–212	348	30
12	$C_{25}H_{29}N_3O_7$	<u>62.29</u> 62.10	<u>5.86</u> 6.00	<u>8.57</u> 8.70	186–188	484	74
13a	$C_{15}H_{17}N_3O_3S$	<u>56.58</u> 56.43	<u>5.26</u> 5.33	<u>13.03</u> 13.17	144–145	320	78
13b	$C_{21}H_{21}N_3O_3S$	<u>63.58</u> 63.80	<u>5.22</u> 5.32	<u>10.80</u> 10.63	150-152	396	76
13c	$C_{21}H_{21}N_3O_2S$	<u>66.31</u> 66.49	<u>5.73</u> 5.54	<u>11.19</u> 11.08	125–126	380	65
13d	$C_{23}H_{23}N_3O_5S$	<u>61.10</u> 60.93	<u>5.26</u> 5.08	<u>9.03</u> 9.27	156–153	454	59
13e	$C_{17}H_{21}N_3O_3S$	<u>58.53</u> 58.79	<u>6.21</u> 6.05	<u>11.97</u> 12.10	138–140	348	75
13f	$C_{17}H_{21}N_3O_2S$	<u>61.80</u> 61.63	<u>6.29</u> 6.34	<u>12.75</u> 12.69	125–126	332	69
13g	$C_{22}H_{23}N_3O_3S$	<u>64.59</u> 64.55	<u>5.80</u> 5.62	<u>10.30</u> 10.26	155–156	410	85
13h	$C_{22}H_{23}N_3O_2S$	<u>67.00</u> 67.18	<u>5.68</u> 5.85	<u>10.51</u> 10.69	121–123	394	95
13i	$C_{24}H_{25}N_3O_5S$	<u>61.53</u> 61.67	<u>5.43</u> 5.35	<u>9.10</u> 8.99	150-152	468	76
14	$C_{20}H_{27}N_3O_6S$	<u>53.78</u> 54.92	<u>6.31</u> 6.18	<u>9.92</u> 9.61	140–142	438	56
15a	$C_{14}H_{16}N_4O_3S$	<u>52.63</u> 52.50	<u>5.13</u> 5.00	<u>17.38</u> 17.50	131–133	321	60
15b	$C_{20}H_{20}N_4O_3S$	<u>60.38</u> 60.61	<u>4.95</u> 5.05	<u>14.30</u> 14.14	138–140	397	48
15c	$C_{20}H_{20}N_4O_2S$	<u>63.35</u> 63.16	<u>5.00</u> 5.26	<u>14.91</u> 14.74	134–136	381	52
15d	$C_{22}H_{22}N_4O_5S$	<u>58.02</u> 58.14	<u>4.93</u> 4.85	<u>12.19</u> 12.33	124–126	455	20
16	$C_{21}H_{23}N_5O_3S$	<u>59.42</u> 59.29	<u>5.28</u> 5.41	<u>16.53</u> 16.47	249–250	426	52

1865

13, 15 a R = Me; b-d R = Bn; 13 e, f R = *i*-Pr; g-i R = CH₂CH₂Ph; 13 a-c, e, f, g, h, 15 a-c X = H, 13 d, i, 15d X = CO₂Me; 13 a, b, d, e, g, i, 15 a, b, d Y = CO₂Me, 13c, f, h, 15 c Y = COMe

Из-за плохой растворимости триазолопиридопиримидина **9b** реакцю с метилпропиолатом проводили в кипящем метаноле. Уже через 15 мин после прибавления алкина выпадает белый осадок азоцина **16** – продукта тандемного расширения тетрагидропиридинового фрагмента молекулы.

Схема 4

Таблица 2

ИК и ЯМР ¹Н спектры полученных соединений

Co-	ИК спектр,	
еди-	V, CM^{T}	Спектр ЯМР 'Н, д, м. д. (<i>J</i> , Гц)*
1	2	3
6a	1661	2.56 (3H, c, 7-CH ₃); 2.75 (3H, c, 2-CH ₃); 2.77 (2H, T, $J = 6.2$, H-5); 2.84 (2H, T, $J = 6.2$, H, 6); 2.66 (2H, c, H, 8); 6.20 (1H, c, H, 2)
6h	1666	2.64 (2 Π , 1, $J = 0.2$, $\Pi = 0$), 5.00 (2 Π , c, $\Pi = 8$), 0.20 (1 Π , c, $\Pi = 5$) 2.51 (3 Π c, 2-C Π_2): 2.75 (2 Π T, $J = 6.4$ H=5): 2.8 (2 Π T, $J = 6.4$
00	1000	H-6); 3.66 (2H, c, H-8); 4.45 (2H, c, $C\underline{H}_2C_6H_5$); 6.22 (1H, c, H-3); 7.11–7.40 (5H, M, H apom.)
6c	1680	1.12 (6H, д, $J = 6.5$, 2CH ₃); 2.51 (3H, c, 2-CH ₃); 2.78 (2H, т, $J = 6.2$, H-5); 2.83 (2H, c, $J = 6.2$, H-6); 2.96 (1H, септ, $J = 6.5$, C <u>H</u> (CH ₃) ₂); 3.66 (2H, c, H-8); 6.2 (1H, c, H-3)
6d	1666	2.52 (3H, c, 2-CH ₃); 2.65–2.75 (4H, м, H-5,6); 2.79 (2H, м, CH ₂ CH ₂ C ₆ H ₅); 3.34 (2H, с, H-8); 3.43 (2H, м, C <u>H₂CH₂C₆H₅); 6.68 (1H, c, H-3); 7.15–7.35 (5H, м, H аром.)</u>
7a	1668	2.50 (3H, c, 7-CH ₃); 2.70 (2H, м, H-8); 2.80 (3H, c, 3-CH ₃); 2.81 (2H, м, H-9), 3.47 (2H, c, H-6), 6.35 (1H, c, H-2)
7b	1655	2.71 (2H, т, H-8); 2.81 (3H, с, 3-CH ₃); 2.83 (2H, м, H-9); 3.47 (2H, с, H-6); 4.39 (2H, с, CH ₂ C ₆ H ₅); 6.35 (1H, с, H-2); 7.30–7.65 (5H, м, H аром.)
7c	1660	1.13 (6H, д, <i>J</i> = 6.7, 2CH ₃ ,); 2.70 (2H, т, <i>J</i> = 6.2, H-8); 2.80 (3H, с, 3-CH ₃); 2.81 (2H, м, H-9); 2.95 (1H, септ, <i>J</i> = 6.7, C <u>H</u> (CH ₃) ₂); 3.54 (2H, с, H-6); 6.34 (1H, с, H-2)
7d	1661	2.73 (2H, т, <i>J</i> = 6.4, H-8); 2.85 (3H, с, 3-CH ₃); 2.87 (2H, м, H-9); 3.47 (2H, с, H-6); 4.49 (2H, м, CH ₂ C _H ₂ C ₆ H ₅); 4.39 (2H, м, C <u>H</u> ₂ CH ₂ C ₆ H ₅); 6.35 (1H, с, H-2); 7.30–7.65 (5H, м, H аром.)
8a	1678	2.50 (3H, c, 7-CH ₃); 2.71 (2H, м, H-9); 2.72 (3H, c, 2-CH ₃); 2.84 (2H, м, H-8); 3.53 (2H, c, H-6)
8b	1682	2.72 (3H, c, 2-CH ₃); 2.74 (2H, м, H-9); 2.80 (2H, м, H-8); 3.63 (2H, c, H-6); 3.74 (2H, c, C <u>H</u> ₂ C ₆ H ₅); 7.24–7.39 (5H, м, H аром.)
9a	1695	2.51 (3H, c, 2-CH ₃); 2.56 (3H, c, 7-CH ₃); 2.75 (2H, т, <i>J</i> = 7.0, H-9); 3.47 (2H, т, <i>J</i> = 7.0, H-8); 3.77 (2H, c, H-6)
9b	1698	2.56 (3H, c, 2-CH ₃); 2.75 (2H, T, $J = 7.0$, H-9); 3.26 (2H, M, CH ₂ CH ₂ C ₆ H ₅); 3.47 (2H, T, $J = 7.0$, H-8); 3.77 (2H, c, H-6); 3.85 (2H, M, CH ₂ CH ₂ C ₆ H ₅); 7.08–7.20 (5H, M, H apoM.)
10a	1667	2.55 (3H, c, 2-CH ₃); 2.73 (3H, c, NCH ₃); 3.63 (3H, c, OCH ₃); 4.45 (2H, c, CH ₂ N); 4.60 (1H, π , $J = 12.1$, CH=); 5.73 (1H, π , π , $J = 10.0$, $J = 2.0$, CH ₂ =); 6.31 (1H, c, H-3); 6.52 (1H, π , π , $J = 16.8$, $J = 2.0$, CH ₂ =); 6.84 (1H, π , π , $J = 16.8$, $J = 10.0$, $CH=$); 7.64 (1H, π , $J = 12.1$, CH=)
10b	1663	2.15 (3H, c, CH ₃ CO); 2.55 (3H, c, 2-CH ₃); 2.78 (3H, c, NCH ₃); 4.45 (2H, c, CH ₂ N); 5.13 (1H, π , $J = 12.1$, CH=); 5.75 (1H, π . π , $J = 10.0$, $J = 2.0$, CH ₂ =); 6.34 (1H, c, 3-H); 6.55 (1H, π . π , $J = 16.8$, $J = 2.0$, CH ₂ =); 6.88 (1H, π . π , $J = 16.8$, $J = 10.0$, CH=); 7.70 (1H, π , $J = 12.1$, CH=)
10c	1671	2.54 (3H, c, 2-CH ₃); 2.65 (3H, c, NCH ₃); 3.62 (3H, c, OCH ₃); 3.92 (3H, c, OCH ₃); 4.36 (2H, c, CH ₂ N); 4.74 (1H, c, CH=); 5.70 (1H, μ , μ , $J = 10.5$, $J = 2.0$, CH ₂ =); 6.31 (1H, c, H-3); 6.48 (1H, μ , μ , $J = 16.4$, $J = 2.0$, CH ₂ =); 6.85 (1H, μ , μ , $J = 16.4$, $J = 10.5$, CH=)
10d	1668	2.56 (3H, c, 2-CH ₃); 3.67 (3H, c, OCH ₃); 4.35 (2H, c, CH ₂ N); 4.55 (2H, c, CH ₂ C ₆ H ₅); 4.86 (1H, д, $J = 13.0$, CH=); 5.68 (1H, д. $д, J = 10.5$, $J = 2.0$, CH ₂ =); 6.31 (1H, c, H-3); 6.50 (1H, д. $d, J = 16.4, J = 2.0$, CH ₂ =); 6.67 (1H, $d, d, J = 16.4, J = 10.5$, CH=); 7.15–7.29 (5H, M, H apom.); 7.70 (1H, $d, J = 13.0$, CH=)
		продолжение гаолицы 2

1	2	3
0e	1673	2.11 (3H, c, CH ₃ CO); 2.56 (3H, c, 2-CH ₃); 4.36 (2H, c, CH ₂ N); 4.49
		(2H, c, C <u>H</u> ₂ C ₆ H ₅); 5.27 (1H, π , J = 13.0, CH=); 5.69 (1H, π . π , J = 10.5, J = 2.0, CH ₂ =); 6.27 (1H, c, H-3); 6.49 (1H, π . π , J = 16.8, J = 2.0, CH ₂ =); 6.77 (1H, π . π , J = 16.8, J = 10.5, CH=); 7.15–7.29 (5H, M, H anom); 7.84 (1H, π . J = 13.0, CH=)
10f	1668	1.17 (6H, μ , $J = 6.6$, 2CH ₃); 2.56 (3H, c, 2-CH ₃); 3.67 (3H, c, OCH ₃); 4.14 (1H, centr, $J = 6.6$, CH(CH ₃) ₂); 4.35 (2H, c, CH ₂ N); 4.86 (1H, μ , $J = 13.0$, CH=); 5.68 (1H, μ , μ , $J = 10.5$, $J = 2.0$, CH ₂ =); 6.31 (1H, c, H-3); 6.50 (1H, μ , μ , $J = 16.4$, $J = 2.0$, CH ₂ =); 6.67 (1H, μ , μ , $J = 16.4$, $J = 10.5$, CH=); 7.62 (1H, μ , $J = 13.0$, CH=)
10g	1666	1.16 (6H, π , $J = 6.6$, 2CH ₃); 2.15 (3H, c, CH ₃ CO); 2.56 (3H, c, 2-CH ₃); 4.14 (1H, cent, $J = 6.6$, C <u>H</u> (CH ₃) ₂); 4.35 (2H, c, CH ₂ –N); 4.86 (1H, π , $J = 13.0$, CH=); 5.68 (1H, π . π , $J = 10.5$, $J = 2.0$, CH ₂ =); 6.31 (1H, c, H-3); 6.50 (1H, π . π , $J = 16.4$, $J = 2.0$, CH ₂ =); 6.67 (1H, π . π , $J = 16.4$, $J = 10.5$, CH=); 7.62 (1H, π , $J = 13.0$, CH=)
10h	1671	1.21 (6H, μ , $J = 6.6$, 2CH ₃); 2.55 (3H, c, 2-CH ₃); 3.50 (1H, M, C <u>H</u> (CH ₃) ₂); 3.61 (3H, c, OCH ₃); 3.90 (3H, c, OCH ₃); 4.39 (2H, c, CH ₂ N); 4.88 (1H, c, CH=); 5.70 (1H, μ . μ , $J = 10.5$, $J = 2.0$, CH ₂ =); 6.29 (1H, c, H-3); 6.45 (1H, μ . μ , $J = 16.4$, $J = 2.0$, CH ₂ =); 7.03 (1H, μ . μ , $J = 16.4$, $J = 16.4$, $J = 10.5$, CH ₂ =); 7.03 (1H, μ . μ , $J = 16.4$, $J = 10.5$, CH ₂ =); 7.03 (1H, μ . μ , $J = 16.4$, $J = 10.5$, CH ₂ =); 7.03 (1H, μ . μ , $J = 16.4$, $J = 10.5$, CH=)
10i	1669	2.56 (3H, c, 2-CH ₃); 2.75 (2H, M, CH ₂ CH ₂ C ₆ H ₅); 3.23 (2H, M, CH ₂ CH ₂ C ₆ H ₅); 3.53 (3H, c, OCH ₃); 4.46 (2H, c, CH ₂ N); 4.64 (1H, д, $J = 13.0$, CH=); 5.68 (1H, д. д, $J = 10.5$, $J = 2.0$, CH ₂ =); 6.31 (1H, c, H-3); 6.50 (1H, д. д, $J = 16.4$, $J = 2.0$, CH ₂ =); 6.67 (1H, д. д, $J = 16.4$, $J = 10.5$, CH=); 7.15–7.29 (5H, M, H apoM.); 7.80 (1H, д, $J = 13.0$, CH=)
10j	1685	2.11 (3H, c, CH ₃ CO); 2.56 (3H, c, 2-CH ₃); 2.76 (2H, M, C <u>H</u> ₂ CH ₂ C ₆ H ₅); 3.23 (2H, M, CH ₂ C <u>H</u> ₂ C ₆ H ₅); 4.37 (2H, c, CH ₂ N); 5.28 (1H, π , $J = 13.0$, CH=); 5.69 (1H, π . π , $J = 10.5$, $J = 1.8$, CH ₂ =); 6.27 (1H, c, H-3); 6.49 (1H, π . π , $J = 16.5$, $J = 1.8$, CH ₂ =); 6.78 (1H, π . π , $J = 16.5$, $J = 10.5$, CH=); 7.15–7.29 (5H, M, H apoM.); 7.83 (1H, π , $J = 13.0$, CH=)
11	1698	2.56 (3H, c, 2-CH ₃); 2.87 (2H, T, $J = 5.7$, H-5); 3.46 (2H, T, $J = 5.7$, H-6); 3.65 (3H, c, OCH ₃); 3.97 (3H, c, OCH ₃); 4.21 (2H, c, 8-CH ₂); 4.96 (1H, c, CH=); 6.28 (1H, c, H-3)
12	1698	2.56 (3H, c, 2-CH ₃); 2.87 (2H, м, CH ₂ CH ₂ C ₆ H ₅); 2.99 (2H, м, NCH ₂ CH ₂); 3.34 (2H, м, CH ₂ CH ₂ C ₆ H ₅); 3.40 (3H, c, CH ₂ OCH ₃); 3.45 (2H, м, NCH ₂ CH ₂); 3.66 (3H, c, OCH ₃); 3.95 (3H, c, OCH ₃); 4.46 (2H, c, CH ₂ OCH ₃); 4.86 (1H, c, CH=); 6.27 (1H, c, H-3); 7.15–7.29 (5H, м, H аром.)
13a	1678	2.75 (3H, c, 3-CH ₃); 2.79 (3H, c, CH ₃ N); 3.66 (3H, c, OCH ₃); 4.34 (2H, c, CH ₂ N); 4.60 (1H, π , $J = 12.1$, CH=); 5.74 (1H, π . π , $J = 10.1$, $J = 2.0$, CH ₂ =); 6.41 (1H, c, H-2); 6.55 (1H, π . π , $J = 16.7$, $J = 2.0$, CH ₂ =); 6.83 (1H, π . π , $J = 16.7$, $J = 10.1$, $CH=$); 7.63 (1H, π , $J = 12.1$, CH=)
13b	1673	2.65 (3H, c, 3-CH ₃); 3.66 (3H, c, OCH ₃); 4.33 (2H, c, CH ₂ N); 4.52 (2H, c, CH ₂ C ₆ H ₃); 4.85 (1H, д, <i>J</i> = 12.4, CH=); 5.70 (1H, д. д, <i>J</i> = 10.1, <i>J</i> = 2.0, CH ₂ =); 6.45 (1H, c, H-2); 6.55 (1H, д. д, <i>J</i> = 16.7, <i>J</i> = 2.0, CH ₂ =); 6.99 (1H, д. д, <i>J</i> = 16.7, <i>J</i> = 10.1, CH=); 7.04–7.28 (5H, м, H аром.); 7.71 (1H, д, <i>J</i> = 12.4, CH=)
13c	1666	2.11 (3H, c, CH ₃ CO); 2.79 (3H, c, 3-CH ₃); 4.33 (2H, c, CH ₂ N); 4.35 (2H, c, CH ₂ C ₆ H ₅); 4.85 (1H, д, $J = 12.3$, CH=); 5.70 (1H, д. д, $J = 10.1$, $J = 2.0$, CH ₂ =); 6.45 (1H, c, H-2); 6.55 (1H, д. д, $J = 16.7$, $J = 2.0$, CH ₂ =); 6.67 (1H, д. д, $J = 16.7$, $J = 10.1$, CH=); 7.04–7.28 (5H, м, H аром.); 7.63 (1H, д, $J = 12.3$, CH=)
13d	1669	2.69 (3H, c, 3-CH ₃); 3.65 (3H, c, OCH ₃); 3.93 (3H, c, OCH ₃); 4.33 (2H, c, CH ₂ N); 4.40 (2H, c, CH ₂ C ₆ H ₅); 4.86 (1H, c, CH=); 5.72 (1H, π , π , J = 10.5, J = 2.0, CH ₂ =); 6.34 (1H, c, H-2); 6.50 (1H, π , π , J = 16.4, J = 2.0, CH ₂ =);

<u> </u>	2	3
13e	1677	1.20 (6H, π , $J = 6.2$, 2CH ₃); 2.80 (3H, c, 3-CH ₃); 3.44 (1H, cent,
		$J = 6.2, CH(CH_3)_2$; 3.66 (3H, c, OCH ₃); 4.30 (2H, c, CH ₂ N); 4.85 (1H,
		$A, J = 12.1, CH=$); 5.70 (1H, $A, A, J = 10.1, J = 2.0, CH_2=$); 6.41 (1H, c, H 2); (55 (1H L - 1(7 - L - 2)) (71 (1H L - 1(7 - L - 2))))
		H-2); 0.55 (IH, μ , μ , $J = 10.7$, $J = 2.0$, $CH_2=$); 0.71 (IH, μ , μ , $J = 10.7$, $J = 10.1$ CH=); 7.62 (IH, μ , $J = 12.1$ CH=)
126	1((7	$J = 10.1, CH = J = (C_2 CH); 2.11 (2H = CH CO); 2.70 (2H = 2.CH);$
151	1007	$1.22 (0H, J, J = 0.0, 2CH_3), 2.11 (5H, C, CH_3CO), 2.79 (5H, C, 5-CH_3), 3.40 (1H, CHT, L = 6.6, CH(CH_2)); 4.35 (2H, C, CH_3N); 4.85 (1H, T)$
		$J = 12.4$ CH=): 5.70 (1H π π $J = 10.1$ $J = 2.0$ CH ₂ =): 6.45 (1H c
		H-2): 6.55 (1H, π , π , $J = 16.7$, $J = 2.0$, CH ₂ =): 6.67 (1H, π , π , $J = 16.7$.
		$J = 10.1, CH=$; 7.63 (1H, π , $J = 12.4, CH=$)
13g	1677	2.67 (3Н. с. 3-СН ₂): 2.75 (2Н. м. СН ₂ СН ₂ С ₆ Н ₅): 3.23 (2Н. м.
8		С <u>H</u> ₂ CH ₂ C ₆ H ₅); 3.53 (3H, с, OCH ₃); 4.37 (2H, с, CH ₂ N); 4.63 (1H, д,
		J = 12.0, CH=); 5.72 (1H, д. д, J = 10.0, J = 2.0, CH ₂ =); 6.44 (1H, д. д,
		J = 15.5, J = 2.0, CH ₂ =); 6.99 (1H, д. д, J = 15.5, J = 10.0, CH=); 7.02
		(1H, c, H-2); 7.09–7.21 (5H, м, H аром.); 7.57 (1H, д, <i>J</i> = 12.0, CH=)
13h	1666	2.11 (3H, с, CH ₃ CO); 2.80 (3H, с, 3-CH ₃); 2.92 (2H, м, CH ₂ C _{H₂} C ₆ H ₅);
		3.19 (2H, м, CH ₂ CH ₂ CH ₂ C ₆ H ₅); 4.37 (2H, с, CH ₂ N); 4.63 (1H, д, $J = 12.2$, CH ₂ N); 5.72 (1H, $J = 12.2$, CH ₂ N); 6.44 (1H, $J = 12.5$)
		$(H=); 5./2 (IH, A, A, J = 10.0, J = 2.0, CH_2=); 6.44 (IH, A, A, J = 10.5, J = 2.0, CH =); 6.45 (IH, A, H 2); 6.00 (IH, H, H, H L = 16.5, J = 10.0)$
		$J = 2.0, CH_2 = 1, 0.45$ (III, c, H-2), 0.39 (III, d, J = 10.5, J = 10.0, CH=): 7.09-7.21 (5H M H anow): 7.57 (1H π $I = 12.2$ CH=)
13;	1686	2.71 (3H c 3-CH ₂): 2.79 (2H M CH ₂ CH ₂ CH ₂): 3.13 (2H M
151	1000	$CH_2C_4H_2$): 3 54 (3H c OCH ₂): 3 81 (3H c OCH ₂): 4 36 (2H c
		$CH_2CH_2CH_3$, $5.5 + (5H, c, CH_3)$, $5.61 + (5H, c$
		6.45 (1H, μ , μ , $J = 16.5$, $J = 2.0$, CH ₂ =); 6.83 (1H, μ , μ , $J = 16.5$,
		J = 10.5, CH=); 7.07 (1H, с, H-2); 7.12–7.28 (5H, м, Н аром.)
14	1680	1.22 (6Н, д, <i>J</i> = 6.6, 2СН ₃); 2.80 (3Н, с, 3-СН ₃); 2.94 (2Н, т, <i>J</i> = 5.3,
		NCH ₂ CH ₂); 3.40 (2H, T, $J = 5.3$, NCH ₂ CH ₂); 3.44 (3H, c, CH ₂ OCH ₃);
		3.58 (1H, м, С <u>H</u> (CH ₃) ₂); 3.64 (3H, с, OCH ₃); 3.95 (3H, с, OCH ₃); 4.42
	1.60 5	$(2H, c, CH_2OCH_3); 4.89 (1H, c, CH=); 6.41 (1H, c, H-2)$
15a	1695	2.55 (3H, c, CH ₃ N); 2.75 (3H, c, 2-CH ₃); 3.65 (3H, c, OCH ₃); 4.41 (2H, $_{2}$ CU N); 5.21 (1U, $_{2}$ $_{4}$ $_{4}$ $_{1}$ $_{2}$ $_{4}$ $_{2}$ $_{1}$ $_{2$
		C, CH_2N , 5.51 (III, $J, J = 12.4, CH_{-}$), 5.75 (III, $J, J = 10.0, J = 2.0, CH_{-}$); 6.55 (IH) π π $J = 16.5$
		$J = 10.5$, CH=); 7.75 (1H, π , $J = 12.4$, CH=)
15b	1680	2 70 (3H c 2-CH ₂): 3 65 (3H c OCH ₂): 4 35 (2H c CH ₂ N): 4 45 (2H
100	1000	c, CH ₂ C ₆ H ₅); 4.75 (1H, μ , $J = 13.0$, CH=); 5.75 (1H, μ , $J = 10.0$,
		$J = 2.0, CH_2 =$); 6.55 (1H, д. д, $J = 16.0, J = 2.0, CH_2 =$); 6.80 (1H, д. д,
		J = 16.0, J = 10.0, CH=); 7.11-7.30 (5H, м, Наром.); 7.75 (1H, д,
		J = 13.0, CH=)
15c	1677	2.15 (3H, c, CH ₃ CO); 2.75 (3H, c, 2-CH ₃); 4.40 (2H, c, CH ₂ –N); 4.55
		$(2H, c, CH_2C_6H_5)$; 5.30 (1H, π , $J = 13.0$, CH=); 5.75 (1H, π . π , $J = 10.5$,
		$J = 2.0, CH_2 = $; 6.55 (1H, \exists , \exists , $J = 16.5, J = 2.0, CH_2 = $); 6.80 (1H, \exists , \exists , $J = 16.5, J = 10.5, CH_2 = $); 7.15, 7.20 (5H, \exists , \exists , \exists , \exists , \exists , d
		J = 10.5, J = 10.5, CH=, $7.13-7.50$ (SH, M, H apom.), 7.75 (IH, J , $I = 13.0$ CH=)
15d	1698	2 75 (3H c 2-CH ₂): 3 65 (3H c OCH ₂): 3 97 (3H c OCH ₂): 4 40 (2H
150	1070	c. CH ₂ N): 4.55 (2H. c. CH ₂ C ₆ H ₅): 5.30 (1H. c. CH=): 5.75 (1H π π
		$J = 10.5, J = 2.0, CH_2=$; 6.55 (1H, μ , μ , $J = 16.5, J = 2.0, CH_2=$); 6.80
		(1H, д. д, J = 16.5, J = 10.5, CH=); 7.15–7.30 (5H, м, Н аром.)
16	1681	2.56 (3H, c, SCH ₃); 2.71 (2H, T, J = 7.4, CH ₂ C ₆ H ₅); 3.25 (2H, T, J =
		6.5, H-11); 3.40 (2H, T, $J = 7.4$, $CH_2CH_2C_6H_5$); 3.51 (3H, c, OCH ₃),;
		3.78 (2H, c, H-6); 3.84 (2H, т, J = 6.5, H-10); 7.07–7.17 (5H, м, H
		аром.); 7.28 (1Н, с, Н-8)

^{*} Спектры ЯМР ¹Н записаны в CDCl₃ (соединения **6а–d**, **7а–d**, **8а,b**, **9а,b**, **10а–h**, **j**, **11**, **13а–f**, **h**, **14**; **15а–d**) и в ДМСО-d₆ (соединения **10i**, **12**, **13g,i**, **16**).

По-видимому триазолопиримидиновый фрагмент, в отличие от изокса-

золо-, тиазоло-, тиадиазолопиримидиновых фрагментов, способен стабилизировать переходное состояние типа $S_N 2$, ведущее к расширению тетрагидропиридинового кольца.

Строение соединений 10–16 подтверждено комплексом спектральных данных. В масс-спектрах всех соединений наблюдаются пики ионов $[M+1]^+$, соответствующие брутто-формулам. Спектры ЯМР ¹Н винилзамещенных 10, 13, 15 характеризуются наличием трех групп сигналов протонов винильной группы при 5.68–5.78, 6.44–6.55 и 6.67–7.03 м. д., представляющих дублеты дублетов с характерными вицинальными (3J = 10.0–10.5 и 16.0–16.9) и геминальной (2J = 2.0 Гц) КССВ. Протоны енаминного фрагмента молекулы представляют собой либо дублеты при 4.60–5.30 и 7.61–7.85 м. д. с характерной ${}^3J_{mpanc}$ = 11.0–13.0 Гц, либо синглеты в области 4.74–5.30 м. д. В хромато-масс-спектре азоцина 16 имеется интенсивный пик иона [M+1]⁺. В спектре ЯМР ¹Н наблюдаются 4 сигнала протонов групп CH₂ при 2.71, 3.25, 3.40 и 3.84 м. д., представляющие собой триплеты и синглетный сигнал протонов группы 6-CH₂ при 3.78 м. д. Наличие синглетного сигнала протона H-8 енаминного фрагмента при 7.28 м. д. однозначно подтверждает азоциновую структуру соединения 16.

Таблица З

Соеди- нение	Химические сдвиги, б, м. д.*
6c	12.6, 18.5 (2C), 32.8, 44.9, 45.2, 53.6, 99.3, 112.6, 131.8, 152.0, 159.7, 166.9
6d	12.6, 32.1, 33.7, 49.5, 49.6, 59.4, 99.3, 112.0, 126.2, 128.6 (2C), 129.1 (2C), 140.7, 151.9, 152.0, 159.6, 168.8
7d	18.3, 31.6, 33.4, 49.5, 59.5, 106.8, 112.0, 126.2, 128.6 (2C), 129.1 (2C), 135.4, 140.7, 158.0, 159.8, 161.8
10i	12.7, 39.1, 40.7 (2C), 50.3, 83.8, 100.0, 111.2, 124.7, 126.6, 128.8 (2C), 129.0 (2C), 132.0, 139.0, 152.1, 153.1, 154.1, 157.6, 168.4, 169.1
12	12.7, 39.1, 40.7 (2C), 50.7, 53.0, 57.8, 64.5, 83.6, 99.8, 113.3. 126.8, 128.9 (2C), 129.1 (2C), 138.6, 153.4, 154.1, 164.5, 165.6, 167.4, 168.4
13b	18.1, 18.2, 50.2, 50.3, 84.5 (2C), 107.6, 110.9, 124.9, 127.0, 128.6 (2C), 131.4 (2C), 135.7, 137.7, 153.0, 155.3, 162.0, 163.4, 169.1
13g	18.3, 40.2, 50.1, 50.2, 83.6, 107.8, 110.6, 125.0, 126.5, 128.7, 129.1 (2C), 131.5 (2C), 135.7, 139.1, 152.3, 155.2, 162.0, 163.5, 169.2
13i	18.3, 18.4, 43.1, 50.5, 50.8, 53.1, 85.5, 108.1, 109.4, 125.3, 126.7, 128.8 (2C), 128.9 (2C), 131.4, 135.8, 138.7, 154.5, 156.1, 162.2, 163.7, 165.7, 167.5
14	18.3, 20.7, 32.1, 40.2, 42.6, 50.6, 52.7, 53.0, 57.9, 64.7, 83.2, 107.8, 113.1, 135.9, 154.2, 161.3, 162.5, 164.0, 165.7, 167.5

Спектры ЯМР ¹³С синтезированных соединений

* Спектры ЯМР ¹³С снимали в CDCl₃ (соединения 6с, 7d) и ДМСО-d₆ (соединения 6d, 10i, 12, 13b,g,i и 14).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры синтезированных соединений записаны на Фурье-спектрометре

1870

ИНФРАЛЮМ ФТ-801 в таблетках КВг. Спектры ЯМР ¹Н и ¹³С зарегистрированы на спектрометре Brucker WH-400 (400 и 100 МГц соответственно), внутренний стандарт ТМС. Хромато-масс-спектры получены на масс-спектрометре Adilent 1100 series LC/MSD Trap System VL в условиях ионизации электронным облаком. ТСХ проводилась на пластинах Silufol в системе хлороформ-метанол, 9:1 (проявление парами иода, либо раствором KMnO₄ 3 г/л в 0.08 моль/л растворе H₂SO₄).

7-R-2-Метил-5,6,7,8-тетрагидро-9Н-изоксазоло[2,3-а]пиридо[4,3-d]пиримидин-9-оны 6а-d, 7-R-3-метил-6,7,8,9-тетрагидро-5Н-пиридо[4,3-d]тиазоло[3,2-а]пиримидин-5-оны 7а-d, 7-R-2-метил-6,7,8,9-тетрагидро-5Н-пиридо[4,3-d]тиадиазоло[3,2-а]пиримидин-5-оны 8а,b, 7-R-2-метилтио-5,6,7,8-тетрагидро-3Н-пиридо-[1,2,4]триазоло[1,5-а]пиримидин-9-оны 9а,b (общая методика). Раствор 0.02 моль гидрохлорида 1-алкил-3-этоксикарбонилпиперидин-4-она и 0.02 моль 3-амино-5-метилизоксазола, 2-амино-5-метилтиазола, 2-амино-5-метил-1,3,4-тиадиазола или 3-амино-5-метилтио-1,2,4-триазола, соответственно, в 20 мл ПФК нагревают при перемешивании 4-40 ч (контроль ТСХ). Охлаждают, прибавляют 100 мл воды и нейтрализуют 15% раствором NaOH. Экстрагируют хлористым метиленом (5 ×75 мл). Экстракт сушат сульфатом магния. Остаток после отгонки растворителя перекристаллизовывают из этилацетата.

Метиловые эфиры (*E*)-3-[N-R-(2-метил-7-оксо-5-винил-7Н-изоксазоло[2,3-*a*]пиримидин-6-ил)]метиламиноакриловых кислот 10a,d,f,i, 2-метил-6-[N-R-(3-оксобутен-1-ил)аминометил]-5-винил-7Н-изоксазоло[2,3-*a*]пиримидин-6оны 10b,e,g,j, диметил-2-[N-R-(2-метил-7-оксо-5-винил-7Н-изоксазоло[2,3*a*]пири-мидин-6-ил)]метиламиномалеаты 10с,h (общая методика). Раствор 0.9 ммоль изоксазолопиридопиримидинов 6а-d в 10 мл метанола охлаждают до температуры от -15 до -20 °С, прибавляют 1.1 ммоль соответствующего алкина и выдерживают при низкой температуре 24–72 ч (контроль TCX). Метанол отгоняют в вакууме. Остаток кристаллизуют из эфира. Получают соединения 10a-g,j.

Диметиловый эфир 2-[2-метил-5,6,7,8-тетрагидро-5-оксо(изоксазоло[2,3-а]пиридо[4,3-d]пиримидин-7-ил)]малеиновой кислоты (11). К нагретому до 70 °С раствору 0.9 ммоль N-бензилзамещенного изоксазолапиридопиримидина 6b в 10 мл этанола прибавляют 1.2 ммоль ацетилендикарбонового эфира. Кипятят 10 ч (контроль TCX). Выпавший по охлаждении осадок отфильтровывают. Поучают малеат 11.

Метиловые эфиры (E)-3-{N-R-[(3-метил-5-оксо-7-винил-5Н-тиазоло[3,2-а]пиримидин-6-ил)метил]}аминоакриловых кислот 13a,b,e,g, (E)-6-{[N-R-(3оксобут-1-енил)амино]метил}-3-метил-7-винил-5Н-тиазоло[3,2-а]пиримидин-5-оны 13с,f,h, диметиловые эфиры (E)-2-{N-R-[(3-метил-5-оксо-7-винил-5Нтиазоло[3,2-а]пиримидин-6-ил)метил]}аминомалеиновых кислот 13d,i, диметиловый эфир (Е)-2-{3-изопропил]2-(3-метил-6-метоксиметил-5-оксо-5Нтиазоло[3,2-а]пиримидин-7-ил)этил]}аминомалеиновой кислоты (14), метиловый эфир (E)-3-{N-R-[(2-метил-5-оксо-7-винил-5H-[1,3,4]тиадиазоло[3,2-а]пиримидин-6-ил)метил] аминоакриловых кислот 15а,b, (Е)-6-{3-бензил-[(3-оксобут-1-енил)амино]метил}-2-метил-7-винил-5Н-[1,3,4]тиадиазоло[3,2-а]пиримидин-5-он (15с), диметиловый эфир (Е)-2-{N-бензил[(2-метил-5-оксо-7-винил-3Н-[1,3,4]тиадиазоло[3,2-а]пиримидин-6-ил]метил}аминомалеиновой кислоты (15d) (общая методика). К раствору 0.9 ммоль тиазолопиридопиримидина 7a-d или тиазолопиридопиримидинов 8a,b в 10 мл метанола прибавляют при температуре от -15 до -20 °C 1.1 ммоль соответствующего алкина, выдерживают при низкой температуре до окончания реакции (контроль TCX). Метанол отгоняют в вакууме. Остаток растирают с эфиром, отфильтровывают и перекристаллизовывают из смеси гексан-этилацетат.

Метиловый эфир 2-метилтио-3,5,6,9,10,11-гексагидро-5-оксо-9-(2-фенэтил)-[1,2,4]триазоло[1',2':1,2]пиримидо[4,5-*d*]азоцин-7-карбоновой кислоты (16). 1871 Раствор 0.2 г (0.6 ммоль) триазолопиридопиримидина **9b** и 0.06 г (0.74 ммоль) метилпропиолата в 7 мл метанола кипятят 30 мин (контроль TCX). Охлаждают. Выпавший осадок отфильтровывают, промывают метанолом и сушат. Получают 0.13 г соединения **16**.

Работа выполнена при финансовой поддержке РФФИ (грант 07-03-1209-офи).

СПИСОК ЛИТЕРАТУРЫ

- A. V. Varlamov, T. N. Borisova, L. G. Voskressensky, T. A. Soklakova, L. N. Kulikova, A. I. Chernychev, G. G. Alexandrov, *Tetrahedron Lett.*, 43, 6768 (2002).
- 2. L. G. Voskressensky, S. V. Akbulatov, T. N. Borisova, A. V. Varlamov, *Tetrahedron*, **62**, 12392 (2006).
- 3. T. N. Borisova, L. G. Voskressensky, T. A. Soklakova, L. N. Kulikova, A. V. Varlamov, *Molecular Diversity*, **6**, 202 (2003).
- L. G. Voskressensky, T. N. Borisova, T. A. Soklakova, L. N. Kulikova, R. S. Borisov, A. V. Varlamov, *Lett. Org. Chem.*, 2, 18 (2005).
- 5. L. G. Voskressensky, T. N. Borisova, I. S. Kostenev, L. N. Kulikova, A. V. Varlamov, *Tetrahedron Lett.*, **47**, 999 (2006).
- 6. L. G. Voskressensky, T. N. Borisova, I. S. Kostenev, I. V. Vorobiev, A. V. Varlamov, *Tetrahedron Lett.*, **46**, 1975 (2005).
- 7. A. H. Cook, K. Y. Reed, J. Chem. Soc., 399 (1945).

Российский университет дружбы народов, Москва 117198 e-mail: maxovcharov@rambler.ru Поступило 15.05.2008