И. Стракова, А. Страков, М. Петрова^а, С. Беляков^а

5-ДИАЗО-6,6-ДИМЕТИЛ-4-ОКСО-4,5,6,7-ТЕТРАГИДРОИНДАЗОЛЫ В РЕАКЦИЯХ [3+2]-ЦИКЛОПРИСОЕДИНЕНИЯ

В реакциях [3+2]-циклоприсоединения ряда 1,3-замещенных 5-диазо-6,6-диметил-4оксо-4,5,6,7-тетрагидроиндазолов с малеиновым ангидридом и диметиловым эфиром ацетилендикарбоновой кислоты получены, соответственно, 3-спиро[4,6-диоксо-4,6,3a,6aтетрагидро-3H-фуро[3,4-с]пиразол]-5'-[6',6'-диметил-4'-оксо-1',3'-замещенные-4',5',6',7'-тетрагидроиндазолы] и 3-спиро[4,5-ди(метоксикарбонил)-3H-пиразол]-5'-[6',6'-диметил-4'-оксо-1',3'-замещенные-4',5',6',7'-тетрагидроиндазолы]. Первые при нагревании отщепляют азот и превращаются в 6-спиро[2,4-диоксо-3-оксабицикло[3,1,0]гексан]-5'-[6',6'-диметил-4'-оксо-1',3'-замещенные-4',5',6',7'-тетрагидроиндазолы].

Ключевые слова: диметиловый эфир ацетилендикарбоновой кислоты, 1,3- и 2,3-замещенные 5-диазо-6,6-диметил-4-оксо-4,5,6,7-тетрагидроиндазолы, малеиновый ангидрид, реакции [3+2]-циклоприсоединения.

За последние десять лет круг производных индазола с ценным биологическим действием существенно расширился. Среди них обнаружены агонисты рецепторов эстрогена [1] и допамин D3-рецепторов [2], ингибиторы HIV-протеазы [3], новые противовоспалительные вещества [4]. В связи с этим в развитие работ по синтезу 4,5-дифункциональных 6,7-дигидро- и 4,5,6,7-тетрагидроиндазолов [5–10] нами проведены реакции [3+2]-циклоприсоединения 5-диазо-6,6-диметил-4-оксо-4,5,6,7тетрагидроиндазолов **1а–d** с малеиновым ангидридом.

Диазоиндазолы **1a,b,d** получены разложением соответствующих тозилгидразонов **2a,b,d** в водно-этанольном растворе NaOH по методике [11, 12], нами ранее использованной для получения диазоиндазолов **1c** и **3**.

При взаимодействии диазоиндазолов **1а-d** с малеиновым ангидридом по классическим методикам [13, 14] образуются соответствующие 1',3'-замещенные 6',6'-диметил-4,6,4'-триоксо-4,6,3а,6а,4',5',6',7'-октагидро-3Hспиро- фуро[3,4-*c*]пиразол-3,5'-индазолы **4а-d**. Реакции проводят, выдерживая эквимолярные количества реагентов в метиленхлориде в течение 15 сут. Осадок спиросоединения **4** отфильтровывают и при минимальном кипячении перекристаллизовывают из этилацетата.

Нагревание пиразолинов **4b**,**c** в течение 1–2 мин при температуре плавления или кипячение в толуоле приводят к выделению азота и превращению в соответствующие 1',3'-замещенные 6',6'-диметил-2,4,4'-триоксо-4',5',6',7'тетрагидроспиро-3-оксабицикло[3,1,0]гексан-6,5'-индазолы **5b**,**c**.

1, 2, 4 a R = Ph, R¹ = H; **b** R = Ph, R¹ = Me; **c** R = Py-2, R¹ = Me; **d** R = C₆H₃(CF₃)₂-3,5, R¹ = Me; **3, 7 a** R = 2-пиридил, R¹ = Ph; **b** R = Ph, R¹ = C₆H₄OMe-4; **5 b** R = Ph, R¹ = Me; **c** R = Py-2, R¹ = Me; **6 c** R = Py-2, R¹ = Me; **d** R = C₆H₃(CF₃)₂-3,5, R¹ = Me; **8** R = Ph, R¹ = Me, R² = R³ = COOH; **9** R = 2-пиридил, R¹ = Me, R² = COOH, R³ = CONHCH₂Ph

Нагревание до кипения раствора ангидрида **5b** в 2% водном растворе NaOH и последующее подкисление приводят к дикарбоновой кислоте **8**. Бензиламид **9** образуется при нагревании до кипения бензольного раствора эквимолярных количеств ангидрида **5c** и бензиламина.

Реакции диазоиндазолов **1b,c** и **3a,b** [12] с диметиловым эфиром ацетилендикарбоновой кислоты проводят, выдерживая эквимолярные количества реагентов в метиленхлориде при 20 °C в течение 4–5 сут. Во всех случаях получены соответствующие 1',3'(или 2',3')-замещенные 6',6'-диметил-4,5-ди(метоксикарбонил)-4'-оксо-4',5',6',7'-тетрагидро-3H-спиро- пиразол-3,5'-индазолы **6c,d**, **7a,b**.

Строение синтезированных соединений подтверждают данные ИК и 1785

ЯМР ¹Н спектров (табл. 2), а в случае спиросоединения 4c - и рентгеноструктурные исследования (табл. 1).

В производных индазола 4 метильные группы при $C_{(6)}$, а также каждый из водородов $C_{(7)}$ -метиленовой группы проявляются отдельными сигналами. В соединениях 5 обнаруживаются шестипротонные синглетные сигналы двух $C_{(6)}$ -метильных групп, а также синглетные сигналы $C_{(7)}$ -метиленовых групп. Отнесение сигналов метильных групп в соединениях 5 проводилось по их сателлитным сигналам ¹³С в спектрах ЯМР ¹Н, позволившим зарегистрировать ³ $J_{\rm HH}$ между магнитно-эквивалентными протонами, равные 4–5 Гц.

Таблица 1

	1 1					
Соеди-	Брутто-формула	<u>Найдено, %</u>			T of	Выход,
Соеди- нение 1а 1b 1d 2a 2b 2d 4a 4b 4c 4d 5b 5c		C	н Н	N	1. III., ¹ C	%
1 a	$C_{15}H_{14}N_4O$	<u>67.51</u>	<u>5.35</u>	<u>20.88</u>	174–175	73
1b	$C_{16}H_{16}N_4O$	67.65 <u>68.37</u> 68.55	5.30 <u>5.55</u> 5.75	21.04 <u>20.08</u> 19.99	145–147	63
1d	$C_{18}H_{14}F_6N_4O$	<u>51.70</u> 51.93	<u>3.30</u> 3.39	<u>13.25</u> 13.46	185–187	69
2a	$C_{22}H_{22}N_4O_3S$	<u>62.63</u> 62.55	<u>5.11</u> 5.25	<u>13.12</u> 13.26	118–119	88
2b	$C_{23}H_{24}N_4O_3S$	<u>63.11</u> 63.28	<u>5.40</u> 5.54	<u>12.75</u> 12.84	149–151	70
2d	$C_{25}H_{22}F_6N_4O_3S$	<u>52.27</u> 52.44	<u>3.90</u> 3.87	<u>9.66</u> 9.79	160–162	41
4 a	$C_{19}H_{16}N_4O_4$	<u>62.45</u> 62.63	<u>4.30</u> 4.43	<u>15.31</u> 15.38	167–169 (разл.)	51
4b	$C_{20}H_{18}N_4O_4$	<u>63.26</u> 63.48	<u>4.59</u> 4.79	<u>14.70</u> 14.81	179–181 (разл.)	50
4c	$C_{19}H_{17}N_5O_4$	<u>60.01</u> 60.15	<u>4.58</u> 4.52	<u>18.35</u> 18.46	154–156 (разл.)	68
4d	$C_{22}H_{16}F_6N_4O_4$	<u>51.19</u> 51.37	<u>3.03</u> 3.14	<u>10.93</u> 10.89	162–164 (разл.)	40
5b	$C_{20}H_{18}N_2O_4$	<u>68.44</u> 68.56	<u>5.02</u> 5.18	<u>7.85</u> 7.99	202–204	43
5c	$C_{19}H_{17}N_3O_4$	<u>64.70</u> 64.95	$\frac{4.68}{4.88}$	<u>11.80</u> 11.96	257–258	56
6c	$C_{21}H_{21}N_5O_5$	<u>59.39</u> 59.56	<u>4.92</u> 5.00	<u>16.36</u> 16.54	159–160	95
6d	$C_{24}H_{20}F_6N_4O_5\\$	<u>51.49</u> 51.62	<u>3.50</u> 3.61	<u>9.88</u> 10.03	230–231	56
7a	$C_{26}H_{23}N_5O_5$	<u>64.11</u> 64.32	<u>4.60</u> 4.77	<u>14.21</u> 14.43	185–186	50
7b	$C_{28}H_{26}N_4O_6$	<u>65.27</u> 65.36	<u>5.11</u> 5.09	<u>11.03</u> 10.89	195–197	45
8	$C_{20}H_{20}N_2O_5$	<u>65.00</u> 65.21	<u>5.33</u> 5.47	<u>7.49</u> 7.60	252–253	94
9	$C_{26}H_{26}N_4O_4$	<u>67.93</u> 68.10	<u>5.55</u> 5.72	<u>12.30</u> 12.22	285–287	64

Характеристики синтезированных соединений

Таблица 2

Спектры синтезированных соединений

	1	
Соели-	ИК спектр,	
нение	v, см ⁻¹ (C=O, NH, OH)	Спектр ЯМР 'Н, δ, м. д. (КССВ, <i>J</i> , Гц)*
1 a	1630, 2095	1.35 (6H, c, 2CH ₃); 2.96 (2H, c, CH ₂); 7.22–7.70 (5H, м, C ₆ H ₅); 8.06 (1H, c, H-3)
1b	1630, 2090	1.26 (6H, c, 2CH ₃); 2.56 (3H, c, CH ₃); 3.40 (2H, c, CH ₂); 7.50–7.80 (5H, м, C ₆ H ₅)
1c	1640, 2095	1.44 (6H, c, 2CH ₃); 2.53 (3H, c, CH ₃); 3.06 (2H, c, CH ₂); 7.42 (3H, уш. c, C ₆ H ₃)
2a	1642, 3230	1.21 (6H, c, 2CH ₃); 2.55 (3H, c, CH ₃); 3.35 (2H, c, CH ₂); 7.28–8.00 (10H, м, C ₆ H ₅ , C ₆ H ₅ , H-3); 12.50 (1H, уш. с, NH)
2b	1650, 3260	1.30 (6H, c, 2CH ₃); 2.42 (3H, c, CH ₃); 2.60 (3H, c, CH ₃); 3.45 (2H, c, CH ₂); 7.25–7.80 (9H, м, C ₆ H ₅ , C ₆ H ₄); 12.65 (1H, уш. c, NH)
2d	1645, 3250	1.40 (6H, c, 2CH ₃); 2.45 (3H, c, CH ₃); 2.60 (3H, c, CH ₃); 3.50 (2H, c, CH ₂); 7.30–7.95 (7H, м, C ₆ H ₄ , C ₆ H ₃); 12.65 (1H, уш. c, NH)
4 a	1864, 1782, 1684	0.98 (3H, c, CH ₃); 1.04 (3H, c, CH ₃); 3.18 и 3.28 (2H, два д, ² <i>J</i> = 12.4, H-7); (1H, д, <i>J</i> = 12.4, H-7); 3.74 (1H, д, <i>J</i> = 9.6, H-3a); 6.77 (1H, д, <i>J</i> = 9.6, H-6a); 7.53–7.78 (5H, м, Ar); 8.27 (1H, c, H-3a)
4b	1860, 1775, 1670	0.96 (3H, c, CH ₃); 1.27 (3H, c, CH ₃); 2.51 (3H, c, CH ₃); 2.95 (1H, д, ² <i>J</i> = 16.8, H-7); 3.28 (1H, д, <i>J</i> = 10.0, H-3a); 3.76 (1H, д, ² <i>J</i> = 16.8, H-3a); 6.29 (1H, д, <i>J</i> = 10.0, H-6a); 7.54 (5H, м, Ar)
4c	1867, 1779, 1671	1.03 (3H, c, CH ₃); 1.09 (3H, c, CH ₃); 2.39 (3H, c, CH ₃); 3.21 (3H, м, CH ₂ , CH); 6.75 (1H, д, <i>J</i> = 10.0, H-6a); 7.48 (1H, м, Ру); 7.95–8.13 (2H, м, Ру); 8.58 (1H, м, <i>J</i> = 5.0, Ру)
4d	1862, 1775, 1670	0.98 (3H, c, CH ₃); 1.04 (3H, c, CH ₃); 2.41 (3H, c, CH ₃); 3.28 (2H, уш. c, CH ₂); 3.74 (1H, д, <i>J</i> = 10.0, H-3a); 6.78 (1H, д, <i>J</i> = 10.0, H-6a); 8.29 (1H, уш. c, Ar); 8.42 (1H, уш. c, Ar)
5b	1850, 1772, 1658	0.98 (6H, c, 2CH ₃); 2.37 (3H, c, CH ₃); 3.11 (2H, уш. c, H-7); 3.62 (2H, c, H-3a, H-6a); 7.48–7.62 (5H, м, Ar)
5c	1845, 1776, 1658	1.03 (6H, c, 2CH ₃); 2.38 (3H, c, CH ₃); 3.47 (2H, c, H-7); 3.67 (2H, c, H-3a, H-6a); 7.45 (1H, д. д, <i>J</i> = 5.0, <i>J</i> = 8.0, Ar); 7.92 (1H, д, <i>J</i> = 8.0, Ar); 8.05 (1H, д. т, <i>J</i> = 8.0, <i>J</i> = 2.0, Ar); 8.56 (1H, д, <i>J</i> = 5.0, Ar)
6c	1740, 1720, 1660	1.48 (6H, c, 2CH ₃); 2.66 (3H, c, CH ₃); 3.65 (2H, c, CH ₂); 3.92 (3H, c, OCH ₃); 3.94 (3H, c, OCH ₃); 7.33 (1H, м, Ar); 7.89–7.92 (2H, м, Ar); 8.47 (1H, м, Ar)
6d	1745, 1730, 1662	1.44 (6H, c, 2CH ₃); 2.65 (3H, c, CH ₃); 3.10 (2H, c, CH ₂); 3.92 (6H, c, 2OCH ₃); 7.91 (2H, yui. c, Ar); 7.99 (1H, c, Ar)
7a	1740, 1730, 1660	1.53 (6H, c, 2CH ₃); 3.26 (2H, c, CH ₂); 3.89 (3H, c, OCH ₃); 3.94 (3H, c, OCH ₃); 7.23–7.35 (7H, м, Ar); 7.67 (1H, д. т, <i>J</i> = 8.0, <i>J</i> = 2.5, Ar); 8.46 (1H, м, Ar)
7b	1732, 1726, 1701	1.51 (6H, c, 2CH ₃); 3.20 (2H, c, CH ₂); 3.80 (3H, c, OCH ₃); 3.89 (3H, c, OCH ₃); 3.93 (3H, c, OCH ₃); 6.82 (2H, M, Ar); 7.22–7.32 (7H, M, Ar)
8	1865, 1711, 1677; 2640–2580	0.92 (6H, c, 2CH ₃); 2.36 (5H, c, CH ₂ , CH ₃); 2.98 (2H, c, H-3a, H-6a); 7.38–7.62 (5H, м, Ar); 12.25 (1H, уш. с, COOH); 13.12 (1H, уш. с, COOH)
9	1760, 1715, 1661; 3180, 2660–2600	0.99 (3H, c, CH ₃); 1.06 (3H, c, CH ₃); 2.37 (3H, c, CH ₃); 2.47 (1H, π , $J = 9.0$, CH); 2.58 (1H, π , $J = 9.0$, CH); 3.43 (1H, π , $J = 18.0$, CH); 3.58 (1H, π , $J = 18.0$, CH); 4.12 (1H, π , π , $J = 15.0$, $J = 5.0$, CH); 4.37 (1H, π , π , $J = 15.0$, $J = 5.0$, CH); 7.01–7.21 (5H, π , Ar); 7.41 (1H, π , Ar); 8.02 (1H, π , $J = 8.0$, Ar); 8.04 (1H, π , τ , $J = 8.0$, $J = 2.0$, Ar); 8.51 (1H, π , Ar); 9.15 (1H, τ , $J = 5.0$, NH); 13.94 (1H, π , π , COOH).

^{*} Спектры ЯМР ¹Н снимали в CDCl₃ (соединения **1а–с**, **2а,b,d**, **4b**, **6с,d** и **7а,b**) и ДМСО-d₆ (соединения **4а,с,d**, **5b,c**, **8** и **9**).

Пространственная модель молекулы 4c с обозначениями атомов и эллипсоидами тепловых колебаний

Сигналы протонов фуропиразольных структурных фрагментов при атомах $C_{(3a)}$ и $C_{(6a)}$ соединений 4 обнаруживаются при δ 3.21–3.76 (3a) и 6.29–6.78 м. д. (6a), а в симметричных спирозамещающих группах соединений 5 – при δ 3.62–3.67 м. д.

С целью объективного установления строения вещества **4c** было проведено рентгеноструктурное исследование кристаллов этого соединения (рисунок, табл. 3–5).

Таблица З

Брутто-формула	$C_{19}H_{17}N_5O_4$
$M_{ m r}$	379.38
Кристаллическая сингония	Моноклинная
Пространственная группа	C 2/c
Параметры элементарной ячейки: <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å β, град. <i>V</i> , Å ³	23.1182(5) 9.8210(3) 19.2573(4) 114.909(2) 3965.4(2)
Число молекул в элементарной ячейке, Z	8
Плотность кристаллов, d , г/см ³	1.271
Коэффициент поглощения, µ, мм ⁻¹	0.092
Число независимых рефлексов рефлексов с <i>I</i> > 2σ (<i>I</i>) уточняемых параметров Окончательный фактор расходимости, <i>R</i> Используемые программы	5031 3411 265 0.0874 SIR97 [1], SHELXL97 [2]

Кристаллографические данные соединения 4с

Таблица 4

Основные длины	связей (<i>l</i>	() в	молекуле 4	4c
----------------	-------------------	------	------------	----

Связь	l, Å	Связь	l, Å
$N_{(1)} - N_{(2)}$	1.375(4)	$C_{(7)} - C_{(8)}$	1.489(4)
$N_{(1)} - C_{(8)}$	1.352(4)	$C_{(8)} - C_{(9)}$	1.379(5)
$N_{(1)} - C_{(10)}$	1.432(4)	N ₍₁₈₎ -N ₍₁₉₎	1.234(4)
$N_{(2)} - C_{(3)}$	1.320(4)	$N_{(19)}-C_{(20)}$	1.491(4)
C ₍₄₎ -C ₍₅₎	1.556(4)	$C_{(20)} - C_{(21)}$	1.502(5)
$C_{(4)} - C_{(9)}$	1.434(4)	$C_{(21)} - O_{(22)}$	1.196(4)
C ₍₄₎ –O ₍₁₇₎	1.217(4)	$C_{(20)} - C_{(26)}$	1.514(4)
$C_{(5)} - C_{(6)}$	1.539(4)	$C_{(21)} - O_{(23)}$	1.360(5)
$C_{(5)} - N_{(18)}$	1.515(4)	$O_{(23)} - C_{(24)}$	1.405(4)
$C_{(5)} - C_{(26)}$	1.555(4)	$C_{(24)} - O_{(25)}$	1.181(4)
C ₍₆₎ –C ₍₇₎	1.554(4)	$C_{(24)} - C_{(26)}$	1.508(5)

Таблица 5

Основные валентные (ω) и торсионные углы (τ) в молекуле 4с

Угол	ω, град.	Угол	τ, град.
$N_{(2)} - N_{(1)} - C_{(8)}$ $N_{(1)} - N_{(2)} - C_{(3)}$	111.6(3) 106.2(2)	$C_{(9)} - C_{(4)} - C_{(5)} - C_{(6)}$ $C_{(5)} - C_{(26)} - C_{(20)} - C_{(21)}$	32.3(3) 113.5(3)
$C_{(5)} - N_{(18)} - N_{(19)}$	113.8(2)	$N_{(19)} - C_{(20)} - C_{(26)} - C_{(24)}$	128.2(3)
$\begin{array}{c} N_{(18)} - N_{(19)} - C_{(20)} \\ C_{(21)} - O_{(23)} - C_{(24)} \end{array}$	111.7(3) 110.8(3)		

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры получены на приборе Specord IR-75 для суспензий веществ в вазелиновом масле (область 1800–1500 см⁻¹) и гексахлорбутадиене (область 3600–2000 см⁻¹). Частоты валентных колебаний связей С–Н в районе 3050–2800 см⁻¹ не приведены. Спектры ЯМР ¹Н зарегистрированы на спектрометре Varian-Mercury BB (200 МГц), внутренний стандарт ТМС.

6,6-Диметил-1-фенил- (1а), **3,6,6-триметил-1-фенил-** (1b) и **1-**[(**3,5-бистрифторметил**)**фенил**]-**3,6,6-триметил-5-диазо-4-оксо-4,5,6,7-тетрагидроиндазолы** (1d). Суспендируют 2 ммоль соответствующего тозилгидразона (2a,b,d) в 40 мл водного раствора 0.4 г NaOH, смесь нагревают до 80–90 °С при перемешивании в течение 1 ч, прибавляют 15 мл этанола. Осадок отфильтровывают и перекристаллизовывают 1a,b из бензола-гексана, а 1d – из этилацетата-гексана.

6,6-Диметил-1-фенил- (2а), **3,6,6-триметил-1-фенил-** (2b) и **1-**[(**3,5-бистрифтор-метил)фенил]-3,6,6-триметил-5-тозилгидразоно-4,5,6,7-тетрагидроиндазолы** (2d). Кипятят раствор 5 ммоль соответствующего 4,5-диоксопроизводного [10, 15] и 5 ммоль тозилгидразона в 30 мл этанола в течение 2 ч, охлаждают, в случае 2d разбавляют равным количеством воды, тозилгидразон отфильтровывают и перекристаллизовывают из этанола.

1',3'-Замещенные 6',6'-диметил-4,6,4'-триоксо-4,6,3а,6а,4',5',6',7'-октагидроспиро-[ЗН-фуро[3,4-с]пиразол-3,5'-индазолы] 4а-d. Раствор 3 ммоль соответствующего диазоиндазола (1а-d) и 3 ммоль малеинового ангидрида в 30 мл метиленхлорида оставляют на 15 сут при 20 °C. Образовавшийся осадок отфильтровывают, на фильтре промывают метиленхлоридом и перекристаллизовывают кратковременным доведением до кипения из этилацетата.

1',3'-Замещенные 6',6'-диметил-2,4,4'-триоксо-4',5',6',7'-тетрагидроспиро[3-оксабицикло[3,1,0]гексан-6,5'-индазолы] 5b,с. Пиразолины **4b,с** в широкой пробирке погружают на 2–3 мин в масляную баню, нагретую до 150 °С. Выделяются пузырьки азота. Остаток перекристаллизовывают из этанола.

Те же соединения **5b,c** получают кипячением 5 ммоль пиразолинов **4b,c** в 30 мл толуола в течение 2 ч. Охлаждают, отфильтровывают и перекристаллизовывают из этанола.

2,3-Дикарбокси-5',3',6',6'-триметил-4'-оксо-1'-фенил-4',5',6',7'-тетрагидроспиро[циклопропан-1,5'-индазол] (8). Нагревают до кипения 3 ммоль спиропроизводного индазола 5b в 3 мл 2% водного раствора NaOH, охлаждают и подкисляют соляной кислотой до pH 3–4. Осадок дикарбоновой кислоты отфильтровывают и перекристаллизовывают из раствора этанол-вода, 1:1.

3-Бензиламинокарбонил-2-карбокси-5',3',6',6'-триметил-4'-оксо-1'-(2-пиридил)-4',5',6',7'-тетрагидроспиро[циклопропан-1,5'-индазол] (9). К раствору 3 ммоль ангидрида **5с** в 30 мл сухого бензола прибавляют 3.5 ммоль бензиламина, кипятят 2–3 мин, охлаждают, через 24 ч осадок 9 отфильтровывают и перекристаллизовывают из уксусной кислоты.

3',6',6'-Триметил-4,5-диметоксикарбонил-4'-оксо-1'-(2-пиридил)- (6с) и 3',6',6'-триметил-4,5-диметоксикарбонил-4'-оксо-1'-[(3,5-бистрифторметил)фенил]- (6d), 6',6'-диметил-4,5-диметоксикарбонил-4'-оксо-2'-(2-пиридил)-3-фенил- (7а) и 6',6'-диметил-4,5диметоксикарбонил-4'-оксо-2'-(2-пиридил)-3-фенил- (7а) и 6',6'-диметил-4,5диметоксикарбонил-4'-оксо-2'-фенил-3'-(4-метоксифенил)-4',5',6',7'-тетрагидроспиро-[3H-пиразол-3,5'-индазол] (7b). Раствор 3 ммоль соответствующего диазоиндазола (1с,d, 3a,b) и 3 ммоль диметилового эфира ацетиленкарбоновой кислоты в 30 мл метиленхлорида оставляют на 4 сут при 20 °С. Прибавляют 60 мл гексана, выпавшие в осадок пиразолы 6с,d, 7а,b перекристаллизовывают из этанола.

Рентгеноструктурные исследования (табл. 3–5). Для РСА дифракционная картина монокристалла соединения **4c**, размером $0.05 \times 0.26 \times 0.33$ мм, снята на автоматическом дифрактометре Nonius KappaCCD до $2\theta_{max} = 57^{\circ}$ (λ Mo = 0.71073 Å).

СПИСОК ЛИТЕРАТУРЫ

- 1. G. A. Nishiguchi, A. L. Rodriguez, J. A. Katzenellenbogen, *Bioorg. Med. Chem. Lett.*, **12**, 947 (2002).
- 2. S. Lőber, H. Hűbner, P. Gmeiner, Bioorg. Med. Chem. Lett., 12, 2377 (2002).
- 3. R. F. Kaltenbach, R. M. Klabe, B. C. Cordova, S. P. Seitz, *Bioorg. Med. Chem. Lett.*, 9, 2259 (1999).
- 4. E.-S. A. M. Badawey, I. M. El-Ashmawey, Eur. J. Med. Chem., 33, 349 (1998).
- 5. И. А. Стракова, Л. Г. Делятицкая, М. В. Петрова, А. Я. Страков, *XГС*, 1209 (1998). [*Chem. Heterocycl. Comp.*, **34**, 1036 (1998)].
- 6. И. А. Стракова, А. Я. Страков, М. В. Петрова, *XIC*, 962 (2000). [*Chem. Heterocycl. Comp.*, **36**, 847 (2000)].
- 7. И. А. Стракова, А. Я. Страков, М. В. Петрова, Latvijas Ķīmijas Žurnāls, 65 (2003).
- И. Стракова, М. Петрова, А. Страков, *ХГС*, 1089 (2004). [*Chem. Heterocycl. Comp.*, 40, 938 (2004)].
- 9. И. Стракова, А. Страков, М. Петрова, *XTC*, 740 (2005). [*Chem. Heterocycl. Comp.*, **41**, 637 (2005)].
- 10. И. Стракова, А. Страков, М. Петрова, Latvijas Ķīmijas Žurnāls, 174 (2005).
- 11. И. А. Стракова, А. Я. Страков, М. В. Петрова, *XГС*, 351 (1995). [*Chem. Heterocycl. Comp.*, **31**, 303 (1995)].
- 12. И. А. Стракова, А. Я. Страков, М. В. Петрова, *XГС*, 1829 (2005). [*Chem. Heterocycl. Comp.*, **41**, 1507 (2005)].

- 13. R. Huisgen, Angew. Chem., 75, 604 (1963).
- 14. R. Huisgen, Helv. Chim. Acta, 50, 2421 (1967).
- 15. Э. Ю. Гудриниеце, А. Я. Страков, И. А. Стракова, Д. Р. Зицане, А. Ф. Иевиньш, ДАН, **216**, 1293 (1974).
- 16. A. Altomare, M. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. Moliterni, R. Spagna, *J. Appl. Crystallogr.*, **32**, 115 (1999).
- 17. G. M. Sheldrick (1997). SHELXL-97. Program for the Refinement of Crystal Structures, Univer. Göttingen, Göttingen, Germany, 1997.

Рижский технический университет, Рига LV-1048, Латвия e-mail: strakovs@latnet.lv Поступило 17.03.2006

^аЛатвийский институт органического синтеза, Рига LV-1006 e-mail: marina@osi.lv