В. В. Кузнецов, О. Ю. Валиахметова, С. А. Бочкор

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ КОНФОРМАЦИОННОГО РАВНОВЕСИЯ 2- И 2,5,5-ЗАМЕЩЕННЫХ 1,3,2-ДИОКСАБОРИНАНОВ

С помощью эмпирического, а также полуэмпирического и неэмпирических квантовохимических методов исследовано конформационное равновесие в ряду 2,5,5-замещенных 1,3,2-диоксаборинанов. Показано, что локальному и глобальному минимумам на поверхности потенциальной энергии соответствуют инвертомеры *софы*, положение равновесия между которыми определяется характером заместителей у атома $C_{(5)}$ гетероцикла.

Ключевые слова: 1,3,2-диоксаборинаны, циклические борные эфиры, конформеры, конформационное равновесие, поверхность потенциальной энергии, эмпирический, полуэмпирический и неэмпирические квантово-химические расчеты.

Интерес к циклическим эфирам борных кислот – 1,3-диокса-2-борациклоалканам – обусловлен все более возрастающим значением этих соединений в тонком органическом синтезе (получение энантиомерных спиртов и полиенов), комплексом практически полезных свойств (биологически активные вещества, ингибиторы коррозии, компоненты полимерных и горюче-смазочных материалов), а также особенностями строения (электронные и стерические внутримолекулярные взаимодействия) [1–14]. Последнее в немалой степени обусловлено присутствием электроно-дефицитного атома бора и электронодонорных атомов кислорода в одной молекуле [4, 10, 11, 13].

Известно, что молекулы 2-алкил-(либо 2-алкокси)-5,5-диметил-1,3,2диоксаборинанов при комнатной температуре пребывают в состоянии быстрой в шкале времени ЯМР инверсии кольца с относительно низким барьером [1, 4, 15–18]. Ранее методом ЯМР ¹Н было показано определяющее влияние заместителей у атома С-5 кольца на характер конформационного равновесия молекул 2,5,5-замещенных 1,3,2-диоксаборинанов [1, 4, 18].

С целью углубленного изучения влияния структурных факторов на этот процесс нами в рамках эмпирического (MM+), полуэмпирического (AM1) и неэмпирических [RHF//STO-3G, 3-21G, 6-31G, 6-31G(d), 6-31G(d,p)] расчетных методов при использовании компьютерного пакета программ HyperChem [19] исследованы поверхности потенциальной энергии (ППЭ) молекул незамещенного 1,3,2-диоксаборинана (1), а также 2- и 2,5,5-замещенных аналогов **2–28**.

ППЭ молекул эфира 1 и 2-замещенных 1,3,2-диоксаборинанов 2, 3 характеризуется одним минимумом, отвечающим конформеру $co\phi_{bi}$ (*C* и вырожденная по энергии форма C^*), а также одним максимумом, соот-

ветствующим форме 2,5-*твист* (2,5-*T*). Расчетные (MM+) значения ΔE^{\neq} этого процесса не зависят от характера и конформационного объема заместителя у атома бора (H, OMe, *i*-Pr, таблица). Аналогичные результаты ранее были получены для 2-фенил-1,3,2-диоксаборинана [20]. Из-за относительно низкой температуры коалесценции экспериментальная оценка значения ΔG^{\neq} эфира 3 с помощью низкотемпературной спектроскопии ЯМР ¹Н позволила установить только верхний его предел (<9.0 ккал/моль) [4].

Все исследованные 2,5,5-замещенные борные эфиры 4–28 по конформационному поведению, наглядно отражаемому характером сигнала ЯМР ¹Н метиленовых протонов кольца [4, 18], можно разделить на три группы. Первую составляют вещества с одинаковыми заместителями у атома С-5 (эфиры 4–17). Синглетный характер сигнала метиленовых протонов кольца в спектрах ЯМР ¹Н при комнатной температуре с полушириной (Δv), в большинстве случаев не превышающей 0.01–0.03 м. д. (таблица), свидетельствует о быстрой в шкале времени ЯМР инверсии цикла. При понижении температуры образца происходит уширение отмеченного сигнала, однако из-за низкой температуры коалесценции определить экспериментальное значение свободной энергии активации ранее удалось только для эфиров 4 и 5 [15], а также для соединения 10 [1, 18].

Установленные с помощью метода ММ+ расчетные значения ΔE^{\neq} процесса инверсии, идущего, как и в предыдущих случаях, через переходное состояние (ПС) 2,5-*T*, близки к экспериментальным ΔG^{\neq} , известным для отдельных соединений. Они возрастают с увеличением массы заместителей и уменьшаются для алкокси- и фенокси-, а также аллилзамещенных аналогов (эфиры 8 и 9, 11 и 12, 8 и 15).

Ко второй группе относятся эфиры 18–23 с различными заместителями у атома C-5; характер сигнала метиленовых протонов кольца при комнатной температуре указывает на инверсию между двумя невырожденными по энергии формами *софы*. В этом случае $\Delta v = 0.09-0.12$ м. д. (293 К) и, как и для соединений первой группы, заметно возрастает при понижении температуры образца.

Значения ΔE для двух конформеров, отвечающих минимумам энергии на ППЭ, укладываются в интервал 0.1–1.4 ккал/моль. Необходимо отметить, что для молекул 5-метил-5-метоксианалога **20** глобальному минимуму, согласно методу ММ+, отвечает конформер с аксиальной метоксигруппой; это хорошо согласуется с данными метода ЯМР ¹Н циклических борных эфиров, содержащих алкокси- либо арилоксизаместители у атома C-5 [1, 21, 22].

По данным расчетов, аксиальная этоксикарбонильная группа выгоднее, нежели ацетильная (эфир 18); во всех случаях более устойчивому конформеру отвечает экваториальная ориентация аллильного заместителя (эфиры 19, 22, 23). Значения расчетных активационных барьеров для молекул обсуждаемых соединений растут с увеличением массы заместителей. Нетрудно видеть, что степень смещения конформационного равновесия определяется в основном конформационным объемом и электронными свойствами радикалов \mathbb{R}^1 и \mathbb{R}^2 .

В случае эфиров 24–28 (соединения третьей группы) отмеченные различия становятся достаточными для преимущественного смещения равновесия в сторону одной из форм: сигналы метиленовых протонов кольца проявляются как для обычной АВ-системы [18]. Величина $\Delta v = 0.20-0.47$ м. д. и мало зависит от температуры. Для такого равновесия, как и в случае соединений второй группы, характерна относительная выгодность конформеров с аксиальной ориентацией электроно-акцепторных заместителей, в частности, алкокси- (20, 24, 27), фенокси- (26), фенил- (25), этокси-карбонил- (18) и нитрогрупп (AM1, STO-3G, 28) [23].

1	-2	8

Соеди- нение	R	R^1	R^2	Соеди- нение	R	R^1	R^2
1	Н	Н	Н	15	<i>i</i> -Pr	O-i-Pr	O-i-Pr
2	OMe	Н	Н	16	C_2H_5	COOMe	COOMe
3	<i>i</i> -Pr	Н	Н	17	i-C ₄ H ₉	COOMe	COOMe
4	OMe	Me	Me	18	<i>i</i> -Pr	CO ₂ Et	COMe
5	Et	Me	Me	19	<i>i</i> -Pr	C_3H_5	PhCH ₂
6	<i>i</i> -Pr	Me	Me	20	<i>i</i> -Pr	Me	OMe
7	OH	Me	Me	21	<i>i</i> -Pr	Me	<i>i</i> -Pr
8	<i>i</i> -Pr	C_2H_5	C_2H_5	22	<i>i</i> -Pr	Me	C_3H_5
9	<i>i</i> -Pr	C_3H_5	C_3H_5	23	<i>i</i> -Pr	<i>i</i> -Pr	C_3H_5
10	<i>i</i> -Pr	PhCH ₂	PhCH ₂	24	<i>i</i> -Pr	Me	CH ₂ OMe
11	<i>i</i> -Pr	Ph	Ph	25	<i>i</i> -Pr	Me	C_6H_5
12	<i>i</i> -Pr	OPh	OPh	26	<i>i</i> -Pr	Me	PhO
13	<i>i</i> -Pr	COOMe	COOMe	27	<i>i</i> -Pr	Et	CH ₂ OMe
14	<i>i</i> -Pr	CO ₂ Et	CO ₂ Et	28	<i>i</i> -Pr	NO_2	Br

Характеристики конформационного равновесия эфиров 1-28

нение	Метод	Поиск ПС*	<i>∆Е[≠] **</i> , ккал/моль	$\Delta E,$ ккал/моль	Конформер c min <i>E</i> ***	Δν, м. д. (Т, К)
1	MM+	2-3-4-5	7.3	0	-	—
		3-4-5-6	6.9			
	AM1	СЗ, РК	3.4			
	STO-3G	РК	6.7			
	3-21G	РК	8.1			
	6-31G	РК	7.8			
	6-31G(d)	РК	7.7			
	6-31G(d,p)	РК	7.6			
2	MM+	2-3-4-5	7.3	0	-	-
		3-4-5-6	6.9			
	AM1	СЗ, РК	2.8			
3	MM+	3-4-5-6	6.9 (<9.0)	0	-	0.01 (293)
4	MM+	3-4-5-6	7.7 (7.0)	0	-	-
5	MM+	3-4-5-6	7.7 (8.0)	0	-	0.01 (293)
	STO-3G	РК	7.4			
	3-21G	РК	9.1			
	6-31G	РК	8.3			
6	MM+	3-4-5-6	7.8	0	-	0.01 (293)
7	MM+	3-4-5-6	7.7	0	-	0.02 (293)
8	MM+	3-4-5-6	9.1	0	-	0.03 (293)
9	MM+	3-4-5-6	7.7	0	-	0.07 (293)
10	MM+	2-3-4-5	9.8 (9.7)	0	-	0.02 (293)
		3-4-5-6	9.5			0.14 (173)
11	MM+	3-4-5-6	9.3	0	-	0.01 (293)
12	MM+	3-4-5-6	8.8	0	-	0.01 (293)
13	MM+	3-4-5-6	9.5	0	-	0.03 (293), 0.14 (173)
14	MM+	3-4-5-6	10.0	0		0.01 (293)
15	MM+	3-4-5-6	8.2	0		0.01 (293)
16	MM+	3-4-5-6	8.3	0		0.02 (293)
17	MM+	3-4-5-6	9.8	0		0.02 (293)
18	MM+	3-4-5-6	10.4	0.5	COMe (e)	0.11 (293)
19	MM+	3-4-5-6	8.8	0.2	$C_{3}H_{5}(e)$	0.09 (293)
20	MM+	3-4-5-6	8.8	1.4	Me (e)	0.09 (293)
21	MM+	3-4-5-6	8.7	0.1	<i>i</i> -Pr (e)	0.12 (293)
22	MM+	3-4-5-6	7.7	0.3	$C_{3}H_{5}(e)$	0.09 (293)
23	MM+	3-4-5-6	9.7	0.4	$C_{3}H_{5}\left(e\right)$	0.10 (293), 0.13 (203)
24	MM+	3-4-5-6	7.9	0.1	Me (e)	0.20 (293)
25	MM+	3-4-5-6	9.0	1.4	Me (e)	0.21 (293)
26	MM+	3-4-5-6	9.0	1.9	Me (e)	0.25 (293)
27	MM+	3-4-5-6	7.9	0.3	Et (e)	0.20 (293)
28	MM+	3-4-5-6	9.0	2.2	$NO_2(e)$	0.22 (193)
	AM1	СЗ. РК	4.5	2.0	Br (e)	0.47 (293)
	STO-3G	PK	63	0.8	Br (e)	0.48 (213)

* СЗ – метод собственных значений, РК – метод реакционных карт.
** Значения эксп. ∆G[≠], ккал/моль, для соединений 3, 4 и 10 (по данным [18]) и для соединения 5 (по данным [15]) приведены в скобках.

*** Ориентация одного из заместителей в наиболее стабильном конформере.

В то же время аллильный заместитель (эфиры **19**, **22**, **23**) ориентирован преимущественно экваториально. При этом значения ΔE^{\neq} близки к рассчитанным для остальных 2,5,5-замещенных 1,3,2-диоксаборинанов.

Полученные результаты дают основание полагать, что ППЭ замещенных циклических борных эфиров в отличие от однотипно замещенных 1,3диоксанов – конформационно более жестких систем [24–26] – содер-жат только один максимум и отличаются более низкими значениями барьеров активации.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Маршруты инверсии и барьеры интерконверсии установлены с помощью процедуры сканирования отдельных торсионных углов (3-4-5-6 соответствует минимальному значению ΔE^{\neq} – либо 2-3-4-5, ММ+), а также в режиме transition state (AM1, *ab initio*) [4, 16, 17, 20] в рамках компьютерного пакета программ HyperChem [19]. Применимость расчетных методов к анализу структурных и энергетических характеристик циклических борных эфиров подробно обсуждалась в работах [27, 28]. Параметры спектров ЯМР ¹Н 2,5,5-за-мещенных 1,3,2-диоксаборинанов представлены в работе [18]. Исследованные соединения описаны в [29].

СПИСОК ЛИТЕРАТУРЫ

- 1. А. И. Грень, В. В. Кузнецов, *Химия циклических эфиров борных кислот*, Наукова думка, Киев, 1988, 160 с.
- 2. D. S. Matteson, D. Majumdar, Organometallics, 2, 230 (1983).
- 3. P. G. M. Wuts, S. S. Bigelow, Synth. Commun., 12, 779 (1982).
- 4. В. В. Кузнецов, Дис. докт. хим. наук, Уфа, 2002.
- 5. D. S. Matteson, *Tetrahedron*, **45**, 1859 (1989).
- 6. D. S. Matteson, Synthesis, 973 (1986).
- 7. Y. Kobayashi, K. Watatani, J. Tokoro, Tetrahedron Lett., 39, 7533 (1998).
- 8. R. J. Mears, H. De Silva, A. Whiting, *Tetrahedron*, 53, 17395 (1997).
- 9. W. Kliegel, Pharmazie, 27, 1 (1972).
- 10. В. В. Кузнецов, ЖОХ, 70, 71 (2000).
- 11. В. В. Кузнецов, ЖОрХ, 36, 307 (2000).
- 12. В. В. Кузнецов, Изв. АН, Сер. хим., 1488 (2005).
- 13. В. В. Кузнецов, ЖОХ, 69, 417 (1999).
- 14. В. В. Кузнецов, XГС, 643 (2006). [Chem. Heterocycl. Comp., 42, 559 (2006)].
- 15. D. Carton, A. Pontier, M. Ponet, J. Soulie, P. Cadiot, Tetrahedron Lett., 2333 (1975).
- В. В. Кузнецов, А. Н. Новиков, ХГС, 295 (2003). [Chem. Heterocycl. Comp., 39, 263 (2003)].
- 17. О. Ю. Валиахметова, С. А. Бочкор, В. В. Кузнецов, Современные наукоемкие технологии, № 2, 72 (2006).
- А. И. Грень, В. В. Кузнецов, К. С. Захаров, XГС, 558 (1986). [Chem. Heterocycl. Comp., 22, 459 (1986)].
- 19. HyperChem 5.02. Trial version. www.hyper.com.
- 20. О. Ю. Валиахметова, С. А. Бочкор, В. В. Кузнецов, Башкир. хим. журн. 11, 79 (2004).
- 21. F. Nakatsubo, T. Higuchi, Holzforschung, 29, 193 (1975).
- 22. H. Matsubara, T. Tanaka, Y. Takai, M. Sawada, K. Seto, H. Imazaki, S. Takahashi, *Bull. Chem. Soc. Jpn*, **64**, 2103 (1991).
- 23. В. В. Кузнецов, С. А. Бочкор, *ХГС*, 1065 (1999). [*Chem. Heterocycl. Comp.*, **35**, 935 (1999)].

24. А. Е. Курамшина, А. А. Файзуллин, С. А. Бочкор, В. В. Кузнецов, *Башкир. хим. журн.*, 1864

11, 81 (2004).

- 25. Е. Г. Мазитова, А. Е. Курамшина, В. В. Кузнецов, *ЖОрХ*, **40**, 615 (2004).
- 26. А. Е. Курамшина, С. А. Бочкор, В. В. Кузнецов, *Фундаментальные исследования*, 87 (2006).
- 27. В. В. Кузнецов, Журн. структур. химии, 42, 591 (2001).
- 28. О. Ю. Валиахметова, С. А. Бочкор, В. В. Кузнецов, Современные наукоемкие технологии№ 2, 71 (2006).
- 29. В. В. Кузнецов, Физико-химический ин-т АН УССР, Одесса, 1983. Деп. в ВИНИТИ 14.10.83, № 5646-83.

Уфимский государственный нефтяной технический университет, Уфа 450062 e-mail: kuzmaggy@mail.ru Поступило 14.02.2007