В. Л. Гейн, А. В. Катаева, Л. Ф. Гейн

ВЗАИМОДЕЙСТВИЕ 1,5-ДИАРИЛ-3-ГИДРОКСИ-4-МЕТИЛСУЛЬФОНИЛ-3-ПИРРОЛИН-2-ОНОВ С МОЧЕВИНОЙ, ГИДРАЗИНОМ, ЭТИЛЕНДИАМИНОМ И *о*-ФЕНИЛЕНДИАМИНОМ

1,5-Диарил-3-гидрокси-4-метилсульфонил-3-пирролин-2-оны с мочевиной образуют 3-аминопроизводные пирролонов. В реакциях с гидразингидратом и этилендиамином образуются соответствующие соли. При 180–185 °C двойная соль 3-гидрокси-4-метилсульфонил-1,5-дифенил-3-пирролин-2-она образует с этилендиамиюм N,N'-ди(1,5-дифенил-4-метилсульфонил-3-пирролин-2-он-3-ил)этилендиамин. Реакцией с *о*-фенилендиамином получены 2,3-диарил-4-метилсульфонилпирроло[2,3-*b*]хиноксалины.

Ключевые слова: 3-амино-1,5-диарил-4-метилсульфонил-3-пирролин-2-оны, 2,3-диарил-4-метилсульфонилпирроло[2,3-*b*]хиноксалины, бинуклеофильные реагенты.

Ранее было установлено, что взаимодействие этилового эфира метилсульфонилпировиноградной кислоты или его натриевой соли со смесью ароматического альдегида и ариламина приводит к образованию 1,5-диарил-3-гидрокси-4-метилсульфонил-3-пирролин-2-онов [1], при сплавлении которых с *о*-фенилендиамином образуются 2,3-диарил-4-метилсульфонилпирроло[2,3-*b*]хиноксалины [2].

Продолжая исследование свойств 1,5-диарил-3-гидрокси-4-метилсульфонил-3-пирролин-2-онов по отношению к бинуклеофильным реагентам, мы изучили их взаимодействие с мочевиной, гидразингидратом, этилендиамином и *о*-фенилендиамином.

Было установлено, что взаимодействие 1,5-диарил-3-гидрокси-4-метилсульфонил-3-пирролин-2-онов с мочевиной при температуре 170–180 °С приводит к образованию 3-амино-1,5-диарил-4-метилсульфонил-3-пирролин-2-онов **1а–f**.

Полученные соединения **1а-f** (табл. 1) представляют собой розоватые кристаллические вещества, не растворимые в воде и растворимые в ДМСО и ДМФА.

Образование соединений **1а–f** объясняется, по-видимому, тем, что в условиях реакции мочевина разлагается до аммиака и выступает в качестве аминирующего реагента [3].

В ИК спектрах соединений **1а–f** (табл. 2), наряду с полосами поглощения сульфонильной и лактамной групп, наблюдаются полосы валентных колебаний аминогруппы при 3252–3490 см⁻¹.

В спектрах ЯМР ¹Н соединений **1а–f** (табл. 3) присутствуют сигнал двух протонов аминогруппы при 6.51–6.60 и характерный сигнал метинового протона в положении 5 гетероцикла при 5.85–6.09 м. д.

1a,b,d,f $Ar^1 = Ph$, **c** $Ar^1 = 4$ -MeOC₆H₄, **e** $Ar^1 = 4$ -BrC₆H₄; **1a,c, 2a,3a** $Ar^2 = Ph$; **1b**, **5b** $Ar^2 = 4$ -ClC₆H₄; **1d** $Ar^2 = 4$ -FC₆H₄; **1e** $Ar^2 = 4$ -BrC₆H₄; **1f**, **2b,3b**, **5a** $Ar^2 = 4$ -HOC₆H₄; **5c** $Ar^2 = 4$ -H₂NSO₂C₆H₄; **5d** $Ar^2 = CH_2Ph$

Таким образом, данные спектров свидетельствуют о существовании соединений **1а–f** в енаминной форме.

Основность аминогруппы в соединениях **1а–f** довольно сильно понижена, по-видимому, вследствие сопряжения электронной пары атома азота с двойной связью и сильного электронноакцепторного действия сульфонильного заместителя в положении 4 гетероцикла. Об этом свидетельствует тот факт, что при изучении взаимодействия 3-амино-1,5-дифенил-4-метилсульфонил-3-пирролин-2-она **1а** с бензальдегидом не удалось получить соответствующее основание Шиффа.

При взаимодействии 3-гидрокси-1,5-дифенил-4-метилсульфонил-3пирролин-2-она и 3-гидрокси-1-(4-гидроксифенил)-4-метилсульфонил-5фенил-3-пирролин-2-она с 50% гидразингидратом в диоксане с хорошим выходом образуются соли 1-арил-3-гидрокси-4-метилсульфонил-5-фенил-3-пирролин-2-онов с гидразином **2а,b**. Образование солей, по-видимому, объясняется кислыми свойствами енольного гидроксила в положении 3 гетероцикла.

Полученные соединения **2а,b** (табл. 1) представляют собой бесцветные кристаллические вещества, растворимые в ДМСО и ДМФА.

Таблица 1

Соеди- нение	Брутто-формула	Вь	Найдено, % ачислено, (Т. пл., °С*	Выход, %	
		С	Н	Ν		70
1a	$C_{17}H_{16}N_2O_3S$	<u>62.17</u> 62.29	<u>4.91</u> 4.85	<u>8.53</u> 8.65	157–158	48
1b	$C_{17}H_{15}ClN_2O_3S$	<u>56.27</u> 56.11	<u>4.17</u> 4.29	<u>7.72</u> 7.70	157–159	54
1c	$C_{18}H_{18}N_2O_4S$	<u>60.32</u> 60.39	<u>5.06</u> 5.19	<u>7.82</u> 7.69	179–180	50
1d	$C_{17}H_{15}FN_2O_3S$	<u>58.94</u> 58.80	<u>4.37</u> 4.19	<u>8.09</u> 8.01	174–175	40
1e	$C_{17}H_{14}Br_2N_2O_3S$	<u>41.99</u> 41.80	<u>2.90</u> 2.75	<u>5.76</u> 5.67	240–241	31
1f	$C_{17}H_{16}N_2O_4S$	<u>59.29</u> 59.09	<u>4.68</u> 4.79	<u>8.14</u> 8.25	260–261	33
2a	$C_{17}H_{19}N_3O_4S$	<u>56.30</u> 56.50	<u>5.48</u> 5.30	<u>11.85</u> 11.63	115–117	85
2b	$C_{17}H_{19}N_3O_5S$	<u>54.30</u> 54.10	<u>5.21</u> 5.07	<u>11.01</u> 11.13	163–164	81
3a	$C_{36}H_{38}N_4O_8S_2$	<u>60.34</u> 60.15	<u>5.21</u> 5.33	<u>7.58</u> 7.79	198–200	65
3b	$C_{36}H_{38}N_4O_{10}S_2$	<u>57.70</u> 57.95	<u>5.01</u> 5.10	<u>7.68</u> 7.46	134–141	74
5a	$C_{23}H_{17}N_3O_3S$	<u>66.59</u> 66.49	<u>4.01</u> 4.13	<u>10.29</u> 10.11	294–295	52
5b	C ₂₃ H ₁₆ ClN ₃ O ₂ S	<u>63.91</u> 63.66	<u>3.62</u> 3.72	<u>9.50</u> 9.68	232–233	53
5c	$C_{23}H_{18}N_4O_4S_2$	<u>57.60</u> 57.73	<u>3.60</u> 3.79	<u>11.93</u> 11.71	>300	42
5d	$C_{24}H_{19}N_3O_3S$	<u>69.79</u> 69.71	<u>4.81</u> 4.63	<u>10.03</u> 10.16	196–198	50

Характеристики синтезированных соединений

* Растворитель: этанол (соединения 1а-f, 2a,b, 3a,b), толуол (соединения 5а-d).

В ИК спектрах соединений **2а,b** (табл. 2) наблюдаются полосы валентных колебаний группы ОН при 3019–3160 и групп NH_2 при 3305–3547 см⁻¹.

В спектрах ЯМР ¹Н соединений **2а,b** (табл. 3) сигналы аминогруппы не видны, однако, в отличие от исходных соединений [1], наблюдается смещение всех сигналов в более сильное поле. Отсутствие сигналов аминогрупп объясняется, по-видимому, их уширением за счет обменных процессов.

Соединения **2а,b** дают вишневое окрашивание со спиртовым раствором FeCl₃, что наряду с данными спектров свидетельствует о существовании их в енольной форме.

Таблица 2

Соеди-	V, CM ⁻¹						
нение	SO_2	C=C	CON	NH ₂	Другие связи		
1a	1132, 1370	1666	1720	3328, 3362, 3424, 3490			
1b	1140, 1370	1664	1696	3342, 3442			
1c	1130, 1378	1664	1704	3338, 3298, 3252, 3190			
1d	1132, 1376	1664	1716	3348, 3452			
1e	1136, 1376	1664	1716	3454, 3336			
1f	1128, 1378	1664	1694	3328, 3434, 3116 (OH)			
2a	1152, 1347	1616			1680 (C=O), 3019 (OH), 3334, 3547 (NH ₂ NH ₂)		
2b	1149, 1347	1629			1686 (C=O), 3160 (OH), 3305 (NH ₂ NH ₂)		
5a	1130, 1340	1640			3324 (OH), 1595 (C=N)		
5b	1146, 1317	1548			1539 (C=N)		
5c	1139, 1316	1640			1589 (C=N), 3061; 3262, 3361; 3409 (SO ₂)		
5d	1139, 1307	1607			1529 (C=N)		

ИК спектры соединений 1а-f, 2a,b, 5а-d

Нами была предпринята попытка получения 3-гидразонов 1,5-диарил-3гидрокси-4-метилсульфонил-3-пирролин-2-онов в более жестких условиях. Реакцию проводили с 98% гидразингидратом в ледяной уксусной кислоте при кипячении. В результате реакции была выделена смесь веществ, разделить которую на индивидуальные соединения не удалось, что объясняется, по-видимому, присутствием в реакционной смеси наряду с 3-аминоимино-3-пирролин-2-оном ацилированной формы 3-гидразона, о чем свидетельствуют пики фрагментных ионов в масс-спектре полученной смеси.

Изучая взаимодействие 1,5-диарил-3-гидрокси-4-метилсульфонил-3пирролин-2-онов с этилендиамином, мы установили, что реакция протекает при комнатной температуре в соотношении реагентов 1:1 или 2:1 с образованием двойной соли этилендиамина и 1,5-диарил-3-гидрокси-4метилсульфонил-3-пирролин-2-онов **За,b**. При проведении реакции в более жестких условиях, а именно, при кипячении реагентов в течение 1 ч в диоксане, выходы соединений понижаются.

Образование в качестве единственного продукта реакции аддукта двух молекул пирролона и одной молекулы этилендиамина, очевидно, связано с высокой основностью аминогрупп в этилендиамине. Соединения **За,b** (табл. 1) – бесцветные кристаллические вещества, ограниченно растворимые в органических растворителях.

В спектрах ЯМР ¹Н соединений **За,b** (табл. 3) присутствует сигнал протонов групп (CH₂)₂ при 2.87–3.38 м. д.

Таблица З

Соеди- нение	Химические сдвиги, б, м. д.								
	Аr–Н, м	H-5, c	MeSO ₂ ,c	NH ₂ , c	Другие протоны				
1a	7.05–7.60 (10H)	6.04	2.32	6.60					
1b	7.20–7.67 (9H)	6.05	2.34	6.57					
1c	6.80–7.57 (9H)	5.95	2.35	6.51	3.71 (3H. c. H ₃ CO)				
1d	7.04–7.58 (9H)	6.02	2.34	6.57	(-) -)				
1e	7.20–7.53 (8H)	6.09	2.48	6.53					
1f	6.62–7.34 (9H)	5.85	2.30	5.52	9.21 (1H, c, HO)				
2a	6.58–7.17 (10H)	5.79, 5.68	2.47						
2b	6.98–7.57 (9H)	5.79	2.49		9.20 (1H, c, HO)				
3a	5.79 (10H)	5.61	2.41		3.28 (4Н, м, СН ₂) ₂)				
3b	5.61 (9H)		2.47		2.87 (4Н, м, CH ₂) ₂)				
5a	7.15 (13H)		3.51		9.58 (1H, c, OH)				
5b	7.61 (13H)		3.52						
5c	8.34 (13H)		3.46						
5d	6.72 (14H)		3.39		5.40 (2H, c, CH ₂)				

ЯМР ¹Н спектры соединений 1а-f, 2a,b, 3a,b, 5а-d

Соединения **За,b** дают вишневое окрашивание со спиртовым раствором FeCl₃, что наряду с данными спектров свидетельствует о существовании их в енольной форме.

При выдерживании соединения **3a** при 180–185 °C до прекращения выделения газов образуется N,N'-ди(4-метилсульфонил-1,5-дифенил-3пиролин-2-он-3-ил)этилендиамин (**4**) – белое кристаллическое вещество, растворимое в ДМСО и ДМФА, которое не дает вишневого окрашивания со спиртовым раствором FeCl₃. Константы и спектральные данные этого соединения представлены в экспериментальной части.

При дальнейшем изучении реакции 1,5-диарил-3-гидрокси-4-метилсульфонил-3-пирролин-2-онов с *о*-фенилендиамином нами были получены не описанные ранее [2] 2,3-диарил-4-метилсульфонилпирроло[2,3-*b*]хиноксалины **5а–d** (табл. 1) – зеленовато-желтые кристаллические вещества, хорошо растворимые в ДМСО и ДМФА.

В ИК спектрах соединений **5а–d** (табл. 2) присутствуют полосы валентных колебаний связей C=N (1529–1595) и C=C (1584–1640 см⁻¹).

В спектрах ЯМР ¹Н соединений **5а-d** (табл. 3) наблюдаются группа сигналов ароматических протонов в области 6.72–8.34 и синглет трех протонов метилсульфонильной группы при 3.39–3.52 м. д.

В масс-спектре соединения **5b** присутствует пик молекулярного иона с m/z 433 [M]⁺ интенсивностью 99.9%, а также пики фрагментных ионов с m/z 354 [M–CH₃SO₂]⁺ (30.6%), 319 [M–Cl]⁺ (39.39%), что подтверждает данную структуру.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н получены на спектрометре Bruker АМ-300 (300 МГц) в ДМСО-d₆, внутренний стандарт ТМС. ИК спектры записаны на спектрометре Specord-85 в вазелиновом масле. Масс-спектры получены на спектрометре МАТ-311А (40 эВ).

3-Амино-1,5-дифенил-4-метилсульфонил-3-пирролин-2-он (1а). Смесь 1.64 г (5 ммоль) 3-гидрокси-4-метилсульфонил-1,5-дифенил-3-пирролин-2-она и 0.60 г (10 ммоль) мочевины выдерживают 1 ч при 170–180 °С до прекращения выделения газов. Реакционную смесь обрабатывают этанолом. Выпавший осадок отфильтровывают. Выход 48%. Т. пл. 157–158 °С (из этанола).

Соединения 1b-f получают аналогично.

Соль 1,5-дифенил-3-гидрокси-4-метилсульфонил-3-пирролин-2-она и гидразина (2а). Смесь 1.64 г (5 ммоль) 3-гидрокси-4-метилсульфонил-1,5-дифенил-3-пирролин-2-она и 0.16 г (5 ммоль) 50% гидразингидрата кипятят 1 ч в 20 мл диоксана. Растворитель упаривают. Выход 85%. Т. пл. 115–117 °С (из этанола).

Соединение 2b получают аналогично.

Двойная соль 1,5-дифенил-3-гидрокси-4-метилсульфонил-3-пирролин-2-она и этилендиамина (3а). Раствор 1.64 г (5 ммоль) 3-гидрокси-4-метилсульфонил-1,5-дифенил-3пирролин-2-она и 0.30 г (5 ммоль) 50% этилендиамина в 10 мл диоксана выдерживают при комнатной температуре 1 ч, растворитель упаривают и остаток обрабатывают этанолом. Выход 65%. Т. пл. 198–200 °С (из этанола).

Соединение 3b получают аналогично.

N,N'-Ди(1,5-дифенил-4-метилсульфонил-3-пирролин-2-он-3-ил)этилендиамин (4). Выдерживают 2.16 г (3 ммоль) соединения **За** в течение 30 мин при 180–185 °C. Добавляют 20 мл этанола и выпавшие кристаллы отфильтровывают. Выход 50%. Т. пл. 151–153 °C (из этанола). Спектр ЯМР ¹Н, δ, м. д.: 2.85 (6H, с, (CH₃SO₂)₂); 5.93 (1H, с, H-5); 6.00 (1H, с, H-5); 7.00–7.50 (20H, м, 4C₆H₅); 3.90–4.20 (4H, м, (CH₂)₂). Найдено, %: N 7.96. С₃₆H₃₄N₄O₆S₂. Вычислено, %: N 7.84.

2-(4-Гидроксифенил)-3-фенил-4-метилсульфонилпирроло[2,3-*b***]хиноксалин (5а). Смесь 1.64 г (5 ммоль) 1-(4-гидроксифенил)-3-гидрокси-4-метилсульфонил-5-фенил-3-пирролин-2-она и 0.54 г (5 ммоль)** *о***-фенилендиамина выдерживают 30 мин при 190–200 °С. Добавляют 20 мл этанола, выпавшие кристаллы отфильтровывают. Выход 52%. Т. пл. 294– 295 °С (из толуола).**

Соединения 5b-d получают аналогично.

Работа выполнена при финансовой поддержке РФФИ (проект № 04-03-96042).

СПИСОК ЛИТЕРАТУРЫ

- 1. З. Г. Алиев, Л. О. Атовмян, В. Л. Гейн, Л. Ф. Гейн, А. В. Катаева, Изв. АН, Сер. хим., 1343 (2003).
- В. Л. Гейн, Л. Ф. Гейн, А. В. Катаева, XГС, 1692 (1999). [Chem. Heterocycl. Comp., 35, 1487 (1999)].
- 3. Л. Физер, М. Физер, Реагенты для органического синтеза, Мир, Москва, 1970, с. 321.

Пермская государственная фармацевтическая академия, Пермь 614990, Россия e-mail: perm@pfa.ru e-mail: gein@permonline.ru Поступило 09.10.2006