Н. Н. Колос, Л. Ю. Коваленко, С. В. Шишкина^а, О. В. Шишкин^а, И. С. Коновалова^а

О ВЗАИМОДЕЙСТВИИ ЭФИРОВ β-АРОИЛАКРИЛОВЫХ КИСЛОТ С *о*-ФЕНИЛЕНДИАМИНАМИ И 1,2-ДИАМИНО-4-ФЕНИЛИМИДАЗОЛОМ

Реакцией этиловых эфиров β-ароилакриловых кислот с *о*-фенилендиаминами синтезированы 3-фенацилхиноксалин-2-оны, тогда как взаимодействием с 4-фенил-1,2-диаминоимидазолом получены этил-7-амино-3,4-дигидро-2-арил-5-фенилимидазо[1,5-*b*]пиридазин-4-карбоксилаты. Исследованы их химические свойства.

Ключевые слова: дигидроимидазо[1,5-*b*]пиридазин-4-карбоксилаты, *о*-фенилендиамины, 4-фенил-1,2-диаминоимидазол, этиловые эфиры β-ароилакриловых кислот, химические свойства, циклоконденсация.

β-Ароилакриловые кислоты являются удобными полиэлектрофильными реагентами в синтезе гетероциклов, для которых реакции присоединения N-, S-, P- либо C-нуклеофилов проходят исключительно по α-карбонильному электрофильному центру молекулы [1–3]. Продукты C-нуклеофильного присоединения удалось выделить при взаимодействии кислот с 4-фенил-1,2-диаминоимидазолом, однако циклизация интермедиатов сопровождается декарбоксилированием и ароматизацией, что позволяет получить только гетероароматические производные имидазопиридазина [4]. Это ограничение было снято при использовании в реакции с указанным диамином N-ариламидов ароилариловых кислот [5].

С целью расширения синтетического потенциала β -ароилакриловых кислот нами изучено поведение их этиловых эфиров **1а–f** в реакции с *о*-фенилендиаминами **2а,b** и 1,2-диамино-4-фенилимидазолом (**3**). В молекулах α,β -непредельных γ -кетоэфиров **1** присутствуют несколько электрофильных центров: атомы C(2) и C(4), а также атом углерода сложноэфирной группы, что позволяет надеяться на многообразие путей прохождения реакций с нуклеофильными реагентами.

Исходные γ -кетоэфиры **1а–f** были синтезированы по известным литературным методикам [6–8]. Их взаимодействие (на примере соединений **1а,b)** с диамином **2а** в метаноле приводит к 3-фенацилхиноксалин-2-онам **4а,b**, выделенным с высокими выходами. Последние были получены ранее реакцией соответствующих β -ароилакриловых кислот с *о*-ФДА [9].

С целью синтеза 3-(2-бензимидазолил)пропенонов (6) нами исследовано взаимодействие эфира 1а и диамина 2а при кипячении в 2-пропаноле в присутствии каталитических количеств HCl, при проведении реакции в толуоле, а также при сплавлении исходных реагентов [10]. Однако и в этих экспериментах был выделен исключительно хиноксалон 4а. Центром первоначальной нуклеофильной атаки во всех случаях выступает атом α -углерода молекулы. Об этом свидетельствует, в частности, образование

1 a R = H, b R = 4-Me, c R = 4-Cl, d R = 4-Br, e R = 4-OMe, f R = 2,4-Me₂; **2** a R¹ = Me, b R¹ = NO₂; **4** a R = R¹ = H, b R = 4-Me, R¹ = H; c R = 6-NO₂, R¹ = 4-Cl; **5** c R = 7-NO₂, R¹ = 4-Cl; **7** a R = H, b R = 4-Me, c R = 4-Br, e, f R = 4-OMe, g R = 2,4-Me₂

1647

Соеди- нение	Брутто- формула	<u>Найдено, %</u> Вычислено, % N	Т. пл., °С	ИК спектр, v, см ⁻¹ (в KBr)	Выход, %
7a	$C_{21}H_{20}N_4O_2\boldsymbol{\cdot}HCl$	<u>13.80</u> 14.12	224–225	1682, 1720, 3200, 3300	58
7b	$C_{22}H_{22}N_4O_2$	<u>14.90</u> 14.96	213–214	1652, 1725, 3292, 3396	61
7c	$C_{21}H_{19}CIN_4O_2$	<u>14.10</u> 14.19	218–219	1646, 1720, 3295, 3390	70
7d	$C_{21}H_{19}BrN_4O_2$	<u>12.65</u> 12.75	228–229	1648, 1719, 3303, 3400	62
7e	$C_{22}H_{22}N_4O_3$	<u>14.55</u> 14.35	196–197	1650, 1720, 3303, 3400	66
7f	$C_{22}H_{22}N_4O_3\boldsymbol{\cdot}HCl$	<u>13.50</u> 13.12	222–223	1682, 1722, 3245, 3353	60
7g	$C_{23}H_{24}N_4O_2\boldsymbol{\cdot}HCl$	<u>13.40</u> 13.19	164–165	1682, 1722, 3210, 3303	63
7i	$C_{21}H_{19}CIN_4O_2 \cdot HBr$	<u>12.00</u> 11.78	236–237	1686, 1723, 3273, 3375	65
8a	C ₂₃ H ₂₁ ClN ₄ O ₅	<u>13.00</u> 12.82	226–227	1645, 1665, 1722, 3390	60
8b	$C_{23}H_{21}BrN_4O_5$	<u>11.82</u> 11.64	231–232	1650, 1670, 1726, 3425	55
9a	$C_{21}H_{22}N_6O$	<u>22.10</u> 22.44	207–208	1660, 3396, 3260, 3198	88
9b	C ₁₉ H ₁₇ BrN ₆ O	<u>19.90</u> 19.76	255–256	1658, 3486, 3376, 3316	69

Характеристики синтезированных соединений 7-9

смеси 6/7-нитрохиноксалин-2-онов (4c + 5c) в реакции эфира 1c с диамином 2b (соотношение изомеров равно 4:1). Такое же соотношение изомеров получено и в реакции диамина 2a с *n*-хлорбензоилакриловой кислотой, где нуклеофильное присоединение более основной аминогруппы происходит по α -положению [9].

При непродолжительном кипячении в метаноле диаминоазола **3** с эфирами **1а–f** без катализатора либо в присутствии каталитических количеств HCl получены с удовлетворительными выходами (см. экспериментальную часть) соединения **7b–e** и **7a,f,g** соответственно. Их строение подтверждено ИК и ЯМР ¹H спектрами. В ИК спектрах (таблетки КВг) соединений **7b–e** проявляются полосы валентных колебаний карбонильной сложноэфирной группы в области 1720–1725, а также интенсивные полосы в области 1645–1650 см⁻¹, отнесенные к валентным колебаниям гидразонной группы. В области 3200–3400 см⁻¹ видны две полосы средней интенсивности, что свидетельствует о сохранении первичной аминогруппы. Для ИК спектров продуктов **7a,f,g** характерен тот же набор полос поглощения, но полосы валентных колебаний связи C=N смещены в область больших частот на 30 см⁻¹, что свидетельствует о наличии менее сопряженной системы.

В спектрах ЯМР ¹Н соединений **7а–***g* проявляются сигналы протонов ABX системы дигидропиридазинового цикла: дублет дублетов и дублет протонов метиленовой группы, дублет метинового протона, триплет и квартет этилкарбоксилатной группы, двухпротонный синглет аминогруппы имидазольного цикла (сигнал исчезает при дейтерообмене) в области 6.1–6.2 (соединения **7b–e**) и 8.1–8.3 м. д. (соединения **7a,f,g**), мультиплеты протонов двух ароматичних ядер. Геминальная константа ABX системы протонов дигидропиридазинового цикла равна 17.7 Гц. Одна из вицинальных констант достигает 6.5 Гц, тогда как вторая константа приближается к нулю, т. е. вицинальные протоны дигидропиридазинового цикла 90°.

Спектральные данные, а также результаты элементного анализа свидетельствуют об образовании этил-7-амино-2-арил-5-фенил-3,4-дигидроимидазо[1,5-*b*]пиридазин-4-карбоксилатов **7b**–е либо их гидрохлоридов **7a,f,g**. Центром протонирования выступает гидразонная группа пиридазинового фрагмента, о чем свидетельствует повышение ее частоты в ИК спектрах до 1680 см⁻¹. Протонирование связи C=N пиридазинового, а не имидазольного, цикла подтверждается и спектрами ЯМР ¹H. Из табл. 2 следует, что *о*-протоны 2-арильного заместителя в солях **7a,f,g** испытывают слабопольный сдвиг, тогда как положение *о*-протонов фенильного радикала в положении 5 не меняется при переходе от основания к соли.

7i, 8a Ar = 4-ClC₆H₄; 8b, 9b Ar = 4-BrC₆H₄; 9a Ar = 2, 4-Me₂C₆H₃; 10a Ar = Ph

Таблица 2

				-		
	Химические сдвиги, б, м. д. (КССВ, Ј, Гц)					
Соеди- нение	$C_{(3)}H_2$ (1H _A , д. д; 1H _B , д, J_{AB} = 17.7, J_{BX} = 0)	$C_{(4)}$ H (1H, д, $J_{AX} = 6.5$)	N ₍₇₎ H ₂ (2H, c)	СН ₃ (3Н, т), СН ₂ (2Н, кв, <i>J</i> =7.6)	CH ₃ , OCH ₃	Н _{аром}
7a	3.10, 3.67	4.69	8.26	0.96, 4.00		8.11 (2H, д, <i>J</i> = 8.0, <i>o</i> -Ar); 7.73 (2H, д, <i>J</i> = 6.8, <i>o</i> -C ₆ H ₅); 7.61–7.45 (6H, м)
7b	2.82, 3.39	4.55	6.08	0.97, 3.97	2.35 (3)	7.90 (2H, д, <i>J</i> = 7.8, <i>o</i> -Ar); 7.76 (2H, д, <i>J</i> = 7.8, <i>o</i> -C ₆ H ₅); 7.39–7.20 (5H, м)
7c	2.84, 3.43	4.54	6.15	0.96, 3.95	-	8.00 (2H, μ , $J = 8.4$, <i>o</i> -Ar); 7.75 (2H, μ , $J = 7.2$, <i>o</i> -C ₆ H ₅); 7.62 (2H, μ , $J = 8.6$, <i>m</i> -Ar); 7.38–7.20 (3H, μ , <i>m</i> + <i>p</i> -C ₆ H ₅)
7d	2.84, 3.42	4.54	6.18	0.97, 3.97	-	7.97 (2H, μ , $J = 8.0$, o -Ar); 7.76 (2H, μ , $J = 7.4$, o -C ₆ H ₅); 7.67 (2H, μ , $J = 8.0$, <i>m</i> -Ar); 7.39–7.25 (3H, μ , $m + p$ -C ₆ H ₅)
7e	2.80, 3.42	4.52	6.05	0.97, 4.00	3.80 (3)	7.96 (2H, μ , $J = 8.8$, o -Ar); 7.76 (2H, μ , $J = 7.6$, o -C ₆ H ₅); 7.01 (2H, μ , $J = 8.8$, <i>m</i> -Ar); 7.38–7.18 (3H, μ , $m + p$ -C ₆ H ₅)
7f	2.82, 3.46	4.67	8.15	0.97, 3.99	3.84 (3)	8.10 (2H, μ , $J = 9.0$, o -Ar); 7.71 (2H, μ , $J = 6.8$, o -C ₆ H ₅); 7.06 (2H, μ , $J = 9.0$, <i>m</i> -Ar); 7.52–7.40 (3H, μ , $m + p$ -C ₆ H ₅)
7g	2.87, 3.42	4.61	8.07	1.02, 4.05	2.31 (3), 2.42 (3)	7.71 (2H, д, <i>J</i> = 7.4, <i>o</i> -C ₆ H ₅); 7.55–7.34 (4H, м, <i>m</i> + <i>p</i> -C ₆ H ₅ + Ar); 7.15–7.12 (2H, м, Ar)
7i	2.97, 3.60	4.69	8.33	0.96, 3.95	_	8.19 (2H, μ , $J = 8.6$, o -Ar); 7.71 (2H, μ , $J = 7.2$, o -C ₆ H ₅); 7.61 (2H, μ , $J = 8.6$, m -Ar); 7.53–7.35 (3H, μ , $m + p$ -C ₆ H ₅)
8a	2.99, 3.49	4.69	10.2*	0.96, 3.97	2.10 (3)	7.97 (2H, μ , $J = 8.6$, o -Ar); 7.82 (2H, μ , $J = 7.6$, o -C ₆ H ₅); 7.58 (2H, μ , $J = 8.8$, m -Ar); 7.44–7.27 (3H, μ , m + p -C ₆ H ₅)
8b	2.98, 3.48	4.68	10.19*	0.96, 3.94	2.10 (3)	7.89 (2H, д, $J = 8.4$, <i>o</i> -Ar); 7.82 (2H, д, $J = 7.6$, <i>o</i> -C ₆ H ₅); 7.72 (2H, д, $J = 8.6$, <i>m</i> -Ar); 7.45–7.27 (3H, м, $m + p$ -C ₆ H ₅)
9a	2.71, 3.08	4.18	5.82, 4.24**, 9.33***	-	2.23 (3), 2.41 (3)	7.61 (2H, д, <i>J</i> = 7.9, <i>о</i> -С ₆ H ₅); 7.34–7.18 (4H, м, <i>m</i> + <i>p</i> -С ₆ H ₅ , Ar); 7.12–7.08 (2H, м, Ar)
9b	2.92, 3.12	4.27	6.08, 4.20**, 9.34***	-	_	7.92 (2H, д, <i>J</i> = 8.9, <i>o</i> -Ar); 7.64 (4H, д, <i>J</i> = 8.2, <i>m</i> -Ar + <i>o</i> -C ₆ H ₅); 7.36–7.12 (3H, м, <i>m</i> + <i>p</i> -C ₆ H ₅)

Спектры ЯМР ¹Н соединений 7–9

* δ NH.
** δ NH₂ гидразидного фрагмента.
*** δ NH гидразидного фрагмента.

Молекулярная структура соединения 7с

Структура дигидропиридазинов 7 подтверждена и РСА на примере соединения 7с (рисунок). Дигидропиридазиновый цикл находится в конформации искаженная софа (параметры складчатости [11]: S = 0.51°, θ = 44.5°, Ψ = 17.2°). Отклонения атомов C(1) и C(6) от среднеквадратичной плоскости остальных атомов цикла составляют 0.14 и 0.58 Å соответственно. Длины связей и конформация гетероцикла в молекуле 7с аналогичны для изученного ранее 7-амино-3,4-дигидро-2-(*n*-метоксифенил)-4-фенил-5-(*n*-метилфенил)имидазо[1,5-*b*]пиридазина [12].

Таблица З

Связь	l, Å	Связь	l, Å
N(1)-C(3)	1.322(2)	N(1)-C(2)	1.405(3)
O(1)–C(7)	1.195(2)	C(1)–C(2)	1.362(2)
Cl(1)–C(13)	1.743(2)	C(1)–N(2)	1.387(2)
C(1)–C(6)	1.497(3)	N(2)–C(3)	1.371(2)
N(2)–N(3)	1.387(2)	O(2)–C(7)	1.320(2)
O(2)–C(8)	1.450(3)	C(2)–C(16)	1.471(3)
N(3)–C(4)	1.281(2)	C(3)–N(4)	1.346(3)
C(4)–C(10)	1.478(3)	C(4)–C(5)	1.495(3)
C(5)–C(6)	1.527(2)	C(6)–C(7)	1.512(3)
C(8)–C(9)	1.514(3)	C(10)–C(11)	1.323(3)
C(10)–C(15)	1.338(3)	C(11)–C(12)	1.387(3)
C(12)–C(13)	1.321(3)	C(13)–C(14)	1.290(3)
C(14)–C(15)	1.385(3)	C(16)–C(21)	1.377(3)
C(16)–C(17)	1.393(3)	C(17)–C(18)	1.384(3)
C(18)–C(19)	1.362(4)	C(19)–C(20)	1.371(3)
C(20)–C(21)	1.383(3)		

Длины связей (*l*) в структуре соединения 7с

Таблица 4

Угол	ω, град.	Угол	ω, град.
C(3)-N(1)-C(2)	105.77(17)	C(3)-N(1)-C(2)	105.77(17)
C(2)–C(1)–N(2)	104.87(19)	C(2)–C(1)–C(6)	138.5(2)
N(2)–C(1)–C(6)	115.51(17)	N(2)–C(1)–C(6)	115.51(17)
C(3)–N(2)–N(3)	122.43(19)	C(1)–N(2)–N(3)	128.89(17)
C(7)–O(2)–C(8)	118.93(18)	C(1)-C(2)-N(1)	110.46(18)
C(1)-C(2)-C(16)	129.3(2)	N(1)-C(2)-C(16)	120.15(19)
C(4)-N(3)-N(2)	115.03(18)	N(1)-C(3)-N(4)	127.3(2)
N(1)-C(3)-N(2)	110.2(2)	N(4)–C(3)–N(2)	122.42(19)
N(3)-C(4)-C(10)	115.9(2)	N(3)–C(4)–C(5)	124.29(18)
C(10)-C(4)-C(5)	119.7(2)	C(4)–C(5)–C(6)	114.84(18)
C(1)-C(6)-C(7)	106.83(17)	C(1)-C(6)-C(5)	109.07(18)
C(7)–C(6)–C(5)	112.27(17)	O(1)–C(7)–O(2)	123.6(2)
O(1)–C(7)–C(6)	125.7(2)	O(2)–C(7)–C(6)	110.64(19)
O(2)–C(8)–C(9)	105.2(2)	C(11)-C(10)-C(15)	115.5(2)
C(11)-C(10)-C(4)	121.3(2)	C(15)–C(10)–C(4)	123.2(2)
C(10)-C(11)-C(12)	122.4(2)	C(13)–C(12)–C(11)	120.5(3)
C(14)-C(13)-C(12)	118.0(2)	C(14)–C(13)–Cl(1)	121.8(2)
C(12)–C(13)–Cl(1)	120.0(3)	C(13)-C(14)-C(15)	121.9(3)
C(10)-C(15)-C(14)	121.6(3)	C(21)-C(16)-C(17)	117.7(2)
C(21)-C(16)-C(2)	122.1(2)	C(17)–C(16)–C(2)	120.2(2)
C(18)–C(17)–C(16)	121.0(3)	C(19)-C(18)-C(17)	120.3(3)
C(18)-C(19)-C(20)	119.6(3)	C(19)–C(20)–C(21)	120.4(3)
C(16)-C(21)-C(20)	121.0(2)		

Валентные углы (ω) в структуре соединения 7с

Хлорфенильный заместитель развернут относительно эндоциклической двойной связи N(3)–C(4) бициклического фрагмента (торсионный угол N(3)–C(4)–C(10)–C(11) 23.4(3)°), вероятно, вследствие отталкивания между атомами ароматического и дигидропиридазинового цикла [(внутримолекулярные укороченные контакты H(15A)...H(5B) 2.07 Å (сумма ван-дер-ваальсовых радиусов [13] 2.34 Å), H(15A)...C(5) 2.70 (2.87), H(5B)...C(15) 2.63 Å (2.87 Å)]. Сложноэфирный заместитель находится в псевдоаксиальном положении (торсионный угол C(4)–C(5)–C(6)–C(7) 78.7(2)°).

Фенильный заместитель развернут относительно плоскости имидазольного фрагмента (торсионный угол C(1)–C(2)–C(16)–C(21) 25.9(3)°), что, вероятно, является следствием взаимодействия двух противоположных факторов: с одной стороны, отталкивания между атомами H(21) и H(6) (внутримолекулярный укороченный контакт H(21)...H(6) 2.20 (2.34), а с другой стороны, аттрактивного взаимодействия H(17)...N(1) 2.61 Å (2.67 Å).

В кристалле молекулы 7с образуют димеры за счет межмолекулярной водородной связи N(4)–H(4NB)...N(1)' (-x + 1/2, -y-1/2, -z + 2) H...N 2.15 Å, N–H...N 160°.

Таким образом, центром первоначальной нуклеофильной атаки в реакциях эфиров β-ароилакриловых кислот как с 1,4-, так и 1,3-азабинуклеофилами выступает атом C(2) молекулы. Дальнейший ход реакции определяется образованием термодинамически более стабильных шестичленных циклов: хиноксалинового либо пиридазинового соответственно. В последнем случае его формированию благоприятствует α-эффект гидразинной аминогруппы диаминоазола **3**.

Нами были изучены и некоторые химические свойства имидазопиридазинов 7. Так, при кипячении имидазопиридазинов 7c,d в уксусном ангидриде с удовлетворительными выходами образуются ацетильные производные 8a,b. Бромирование имидазопиридазина 7c бромом в уксусной кислоте не привело к ожидаемому 3-бромпроизводному, из реакционной смеси был выделен только гидробромид имидазопиридазина 7i. Основание 7c, а также солевые формы имидазопиридазинов 7a,i не удалось восстановить NaBH₄ в уксусной кислоте.

При действии на эфиры 7d,g гидразингидратом получены гидразиды 9a,b. Сплавлением эфира 7a с *n*-толуидином синтезирован амид 10a.

Таким образом, предложены удобные пути функционализации производных 7-амино-4-этилкарбокси-3,4-дигидроимидазо[1,5-*b*]пиридазина, не приводящие к ароматизации дигидропиридазинового фрагмента молекулы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР¹ Н измерены на приборе Varian Mercury VX-200 (200 МГц) в растворах ДМСО-d₆, внутренний стандарт ТМС. ИК спектры записаны на приборе IR-75 в таблетках КВг. Контроль за ходом реакции, а также индивидуальность полученных соединений контролировались с помощью ТСХ на пластинках Silufol UV-254 в системе толуол–этилацетат, 2:1.

Рентгеноструктурное исследование. Кристаллы 7с моноклинные, выращены из этанола, $C_{21}H_{19}ClN_4O_2$, при 20 ° C: a = 28.806(8), b = 8.835(3), c = 17.105(9) Å, $\beta = 102.06(3)^\circ$, V = 3928(2) Å³, $M_r = 394.85$, Z = 8, пространственная группа C2/c, $d_{выч} = 1.335$ г/см³, μ (Мо $K\alpha$) = 0.219 мм⁻¹, F(000) = 1648. Параметры элементарной ячейки и интенсивности 10301 отражения (3418 независимых, $R_{int} = 0.038$) измерены на дифрактометре Xcalibur-3 (Мо $K\alpha$ -излучение, ССD-детектор, графитовый монохроматор, ω -сканирование, $2\theta_{max} = 50$).

Структура расшифрована прямым методом по комплексу программ SHELXTL [14]. Положения атомов водорода выявлены из разностного синтеза электронной плотности и уточнены по модели "наездника" с $U_{iso} = nU_{eq}$ неводородного атома, связанного с данным водородным (n = 1.5 для метильной группы и n = 1.2 для остальных атомов водорода). Структура уточнена по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов до $wR_2 = 0.074$ по 3374 отражениям ($R_1 = 0.035$ по 1320 отражениям с $F>4\sigma(F)$, S = 0.709). Координаты атомов, а также полные таблицы длин связей и валентных углов депонированы в Кембриджском банке структурных данных (ССDC 664799).

Хиноксалоны 4а,b, а также смесь хиноксалонов **4c** + **5c** получают по методике, описанной в работе [9]. Выходы составляют 62, 80 и 75% соответственно.

Соединение 4а выделяют при проведении реакции в *iso*-PrOH в присутствии каталитических количеств HCl с выходом 68%; при проведении реакции в толуоле выход составляет 72%, при сплавлении реагентов – 65%.

6-Нитрохинаксолон 4с. Спектр ЯМР ¹Н, δ , м. д. (*J*, Γ ц): 3.42 (1H, д. д, $J_{AB} = 17.2$, $J_{AX} = 6.4$, $H_A CH_2$), 3.58 (1H, д. д, $J_{AX} = 6.4$, $H_B CH_2$), 4.49 (1H, т, $J_{BX} = 4.0$, $H_X CH$), 6.65 (1H, yui. c, NH), 6.94–7.89 (7H, м, Ar), 10.95 (1H, c, NH).

7-Нитрохинаксолон 5с. Спектр ЯМР ¹Н, δ , м. д. (*J*, Γ ц): 3.42 (1H, д. д, $J_{AB} = 17.2$, $J_{AX} = 6.4$, $H_A CH_2$), 3.58 (1H, д. д, $J_{AX} = 6.4$, $H_B CH_2$), 4.54 (1H, т, $J_{BX} = 4.0$, $H_X CH$), 6.65 (1H, yui. c, NH), 6.94–7.89 (7H, м, Ar), 10.71 (1H, c, NH).

Этил-7-амино-2-(*п*-метилфенил)-5-фенил-3,4-дигидроимидазо[1,5-*b*]пиридазин-4карбоксилат (7b). Смесь 0.174 г (1 ммоль) диамина 3, 0.218 г (1 ммоль) эфира 1b в 10 мл ЕtOH кипятят с обратным холодильником 1 ч. Охлаждают, осадок кристаллизуют из этанола и получают 0.23 г соединения 7b.

Основания 7с-е получают аналогично. Основание 7с также получают с выходом 56% при кипячении соли 7i в метаноле в присутствии избытка Et₃N.

Гидрохлорид этил-7-амино-2,5-дифенил-3,4-дигидроимидазо[1,5-b]пиридазин-4-кар-

боксилата (7а). К смеси 0.174 г (1 ммоль) диамина **3**, 0.204 г (1 ммоль) эфира **1а** в 10 мл EtOH прибавляют 5 капель конц. HCl, кипятят с обратным холодильником 1 ч. Выпавший при охлаждении осадок промывают этанолом.

Соли 7f,g получают аналогично.

Гидробромид этил-7-амино-5-фенил-2-(*п*-хлорфенил)-3,4-дигидроимидазо[1,5-*b*]пиридазин-4-карбоксилата (7i). К раствору 0.394 г (1 ммоль) соединения 7с в 10 мл АсОН при перемешивании по каплям прибавляют 0.1 мл (1 ммоль) Br₂ в 5 мл АсОН. После окончания бромирования раствор перемешивают 0.5 ч, выливают на лед. Осадок отфильтровывают и кристаллизуют из этанола.

Этил-7-(N-ацетиламино)-5-фенил-2-(*n*-хлорфенил)-3,4-дигидроимидазо[1,5-*b*]пиридазин-4-карбоксилат (8а). Смесь 0.394 г (1 ммоль) имидазопиридазина 7с, 1 мл Ac₂O кипятят с обратным холодильником 10 мин. Реакционную смесь выливают в ледяную воду, осадок отфильтровывают и кристаллизуют из этанола.

Соединение 8b получают аналогично.

7-Амино-2-(*п*-бромфенил)-**5-фенил-3,4-дигидроимидазо**[1,**5-***b*]пиридазина-4-карбогидразид (**9b**). Раствор 0.475 г (1 ммоль) пиридазина **7d** в 2.5 мл (50 ммоль) 95% гидразингидрата нагревают на водяной бане 5 ч. Выпавший при охлаждении осадок желтого цвета промывают водой и кристаллизуют из этанола. Выход 0.32 г.

Гидразид 9а получают аналогично.

4-(N-(*n***-Метилфенил)карбоксамидо)-7-амино-2,5-дифенил-3,4-дигидроимидазо[1,5-***b***]пиридазин (10а). Смесь 0.397 г (1 ммоль) соли 7а, 0.160 г (1.5 ммоль)** *n***-толуидина выдерживают при температуре 170 °С в течение 1 ч, а затем 0.5 ч при температуре 200 °С. Смесь охлаждают, добавляют 10 мл бензола. Выпавший осадок перекристаллизовывают из этанола. Выход 0.25 г (65%) с т. пл. 219–220 °С (т. пл. 219 °С [5]).**

СПИСОК ЛИТЕРАТУРЫ

- 1. M. Umpreti, S. Pant, A. Dandia, Phosphorus, Sulfur, Silicon, 113, 165 (1996).
- 2. А. Н. Несмеянов, М. И. Рыбинская, А. И. Рыбин, *Успехи химии*, 36, 1089 (1967).
- Р. Дж. Хачикян, Н. В. Карамян, Г. А. Паносян, М. Г. Инджикян, Изв. АН, Сер. хим., 1923 (2005).
- 4. N. N. Kolos, T. V. Beryozkina, V. D. Orlov, Mendeleev Commun., 91 (2002).
- 5. Н. Н. Колос, Т. В. Березкина, XTC, 1698 (2005). [Chem. Heterocycl. Comp., 41, 1432 (2005)].
- 6. K. Onoue, T. Shintou, Ch. Sh. Zhang, I. Itoh, Chem. Lett., 35, 22 (2006).
- 7. K. Bowden, M. P. Henry, J. Chem. Soc., 156 (1971).
- 8. K. Bowden, D. C. Perkin, Can. J. Chem., 46, 3909 (1968).
- Н. Н. Колос, А. А. Тищенко, В. Д. Орлов, Т. В. Березкина, С. В. Шишкина, О. В. Шишкин, XTC, 1407 (2001). [Chem. Heterocycl. Comp., 37, 1352 (2001)].
- 10. M. R. Grimmett, Imidazole and Benzimidazole Synthesis, Best Synthetic Methods; Acad. Press Ltd., 1997, p. 106.
- 11. N. S. Zefirov, V. A. Palyulin, E. E. Dashevskaya, J. Phys. Org. Chem., 3, 147 (1990).
- 12. Н. Н. Колос, В. Д. Орлов, Б. В. Папонов, О. В. Шишкин, *XTC*, 1388 (1999). [*Chem. Heterocycl. Comp.*, **35**, 1207 (1999)].
- 13. Ю. В. Зефиров, Кристаллография, 42, 936 (1997).
- 14. G. M. Sheldrick, SHELXTL PLUS. PC Version. A System of Computer Programs for the Determination of Crystal Structure from X-ray Diffraction Data. Rev.5.1. (1998).

Химический факультет Харьковского национального университета им. В. Н. Каразина, Украина e-mail: kolos@univer.kharkov.ua Поступило 24.04.2007

^вНаучно-технический комплекс, Институт монокристаллов НАН Украины, Харьков 61001

e-mail: s.v.shishkina@isc.kharkov.com