В. Н. Брицун, А. Н. Есипенко, А. Н. Чернега, Э. Б. Русанов, М. О. Лозинский

СИНТЕЗ И ПРЕВРАЩЕНИЯ 1-R-3-БЕНЗОИЛ-6-ОКСО-5-ЭТОКСИКАРБОНИЛ-1,2,3,6-ТЕТРАГИДРОПИРИДИН-2-ТИОНОВ

Циклоацилирование N-R-3-оксо-3-фенилпропантиоамидов диэтилэтоксиметиленмалонатом осуществляется избирательно и приводит к образованию 1-R-3-бензоил-6-оксо-5этоксикарбонил-1,2,3,6-тетрагидропиридин-2-тионов, которые являются удобными исходными для синтеза би- и трициклических гетеросистем, в том числе неизвестных ранее 9-R-5-фенил-7-этоксикарбонил-8,9-дигидропиридо[2,3-d][1,2,4]триазоло[1,5-a]пиримидин-8-онов.

Ключевые слова: 1-R-3-бензоил-6-оксо-5-этоксикарбонил-1,2,3,6-тетрагидропиридин-2-тионы, диэтилэтоксиметиленмалонат, 2-имино-8-метил-4-фенил-6-этоксикарбонил-1,2,7,8-тетрагидропиридо[2,3-*d*]пиримидин-7-он, 7-метил-3-фенил-5-этоксикарбонил-6,7дигидроизоксазоло[3,4-*b*]пиридин-6-он, N-R-3-оксо-3-фенилпропантиоамиды, 9-R-5-фенил-7-этоксикарбонил-8,9-дигидропиридо[2,3-*d*][1,2,4]триазоло[1,5-*a*]пиримидин-8-оны, РСА, циклоацилирование.

Циклоацилирование тиоамидов производными непредельных карбоновых кислот является удобным и доступным методом синтеза серусодержащих азолов и азинов [1–5].

Один из таких реагентов – диэтилэтоксиметиленмалонат, этоксильная группа которого обладает хорошими нуклеофугными свойствами. Тем не менее известны всего 2 работы, в которых рассмотрены циклоконденсации этого соединения с тиоамидами [6, 7]. Вероятно, незначительный интерес исследователей к данному кругу реакций объясняется тем, что такие взаимодействия осуществляются в жестких условиях [7] с образованием двух [7] или трех продуктов [6].

Целью данной работы являлось нахождение условий для циклоацилирования N-R-3-оксо-3-фенилпропантиоамидов **1**а,**b** диэтилэтоксиметиленмалонатом **2** и раскрытие синтетических возможностей полученных продуктов.

Установлено, что N-R-3-оксо-3-фенилпропантиоамиды **1**а,**b** конденсируются с диэтилэтоксиметиленмалонатом **2** в присутствии этилата натрия. Реакция осуществляется селективно, и ее продуктами являются 1-R-3-бензоил-6-оксо-5-этоксикарбонил-1,2,3,6-тетрагидропиридин-2-тионы **3**а,**b**.

По всей видимости, высокая избирательность процесса объясняется большей СН-кислотностью тиоамидов **1а,b** [8] по сравнению с таковой у N-арил-2-тиокарбамоилацетамидов. Последние реагируют с диэтилэток-симетиленмалонатом неселективно с образованием трех продуктов [6].

1, **3**, **4**, **6** a R = Me, b R = Et; **5**, **6** a Ar = Ph, b Ar = $4-ClC_6H_4$

Выходы синтезированных соединений, температуры плавления и данные элементного анализа приведены в табл. 1, ЯМР ¹Н и ИК спектры – в табл. 2, спектры ЯМР ¹³С – в табл. 3. Строение продуктов **3а,b** доказано превращениями их в S-метильные производные **4а,b** и в 2-ароил-3-фенил-5-этоксикарбонил-7-R-6,7-дигидротиено[2,3-*b*]пиридин-6-оны **6а,b** (при действии, соответственно, иодистого метила и арилбромметилкетонов **5а, b**).

Так как 1-R-1,2,3,6-тетрагидропиридин-2-тионы **За,b** по своей структуре близки к β -тиоксокетонам [9] и в результате образования внутримолекулярных водородных связей могут существовать в равновесной смеси кетонной **3**, енольной **3'** и ентиольной форм **3''**, то для выяснения строения доминирующего таутомера были также зарегистрированы спектры соединения **3b** в CDCl₃ (ЯМР ¹Н) и CCl₄ (ИК).

Анализ ИК спектров свидетельствует о том, что как в твердом состоянии, так и в растворе CCl₄ 1-R-1,2,3,6-тетрагидропиридин-2-тионы **За,b** находятся в виде енольной формы **3'**, стабилизированной водородной связью средней интенсивности (v_{OH} 3300 см⁻¹), тогда как полоса поглощения меркаптогруппы (v_{SH} 2500 см⁻¹) не наблюдается. Что касается идентификации кетонной формы по полосам поглощения карбонильных групп,

1661

то провести ее не представляется возможным из-за наличия в соединениях **За,b** трех карбонильных групп, из которых две не принимают участия в образовании внутримолекулярной водородной связи.

В спектрах ЯМР ¹Н соединений **За,b**, записанных в ДМСО-d₆, вероятно вследствие дейтерообмена, отсутствуют сигналы протонов групп как OH, так и SH, тогда как в спектре ЯМР ¹Н продуктов **За,b** в растворе CDCl₃ проявляется сигнал протона при 14.14–14.60 м. д. Поскольку $\delta_{OH(xenar)} = 12-18$, а $\delta_{SH(xenar)} = 4.5-7.5$ [10], то диапазон химических сдвигов 14.14–14.60 м. д., по всей видимости, может быть отнесен как к сигналам енольной группы OH, так и к усредненным значениям сигналов протонов енольной (OH) и ентиольной (SH) форм с преобладанием енольной формы **3'**.

1-R-3-Бензоил-6-оксо-5-этоксикарбонил-1,2,3,6-тетрагидропиридин-2тионы **3а,b** и 1-R-5-бензоил-6-метилтио-3-этоксикарбонил-1,2-дигидропиридин-2-оны **4а,b** являются полифункциональными соединениями, что делает их ценными исходными для дальнейших превращений. Мы выяснили, что 1,2-дигидропиридин-2-оны **4а,b**, в отличие от 1,2,3,6-тетрагидропиридин-2-тионов **3а,b**, легко вступают в [3+2]- и [3+3]-циклоконденсации с азотсодержащими 1,2- и 1,3-динуклеофилами, продуктами которых являются би- и трициклические гетероциклы. Следует отметить, что эти реакции протекают избирательно, с участием метилтио- и фенилкарбонильной групп 1,2-дигидропиридин-2-онов **4а,b**, и сопровождаются выделением метилмеркаптана и воды. Выходы продуктов при этом – препаративные (60–87%).

В качестве 1,2-динуклеофилов нами использовались гидразин и гидроксиламин. С гидразином 1,2-дигидропиридин-2-он **4a** реагирует быстро и однозначно, образуя при этом 7-метил-3-фенил-5-этокси-карбонил-6,7-дигидро-1H-пиразоло[3,4-*b*]пиридин-6-он **7**. Его структура доказана ЯМР ¹Н и ИК спектрами, а состав – данными элементного анализа.

При взаимодействии 1,2-дигидропиридин-2-онов **4а,b** с гидроксиламином возможно получение двух продуктов – 6,7-дигидроизоксазоло[3,4-*b*]пиридин-6-онов и 6,7-дигидроизоксазоло[5,4-*b*]пиридин-6-онов. Для того чтобы выяснить, какой из реакционных центров 1,2-дигидропиридин-2онов **4а,b** – метилтио- или фенилкарбонильная группа – подвергается нуклеофильной атаке в первую очередь, нами изучалась реакция исходного соединения **4a** с ароматическими аминами. В качестве последних были взяты анилин и *n*-анизидин, так как значения их р*K*а (4.58 и 5.29 соответственно) близки к р*K*а гидроксиламина (5.97) [11]. Как и следовало ожидать, метилмеркаптан элиминируется легче, чем вода, что приводит к получению 6-ариламино-5-бензоил-1-метил-3-этоксикарбонил-1,2-дигидропиридин-2-онов **9а,b**.

Так как взаимодействие 1,2-дигидропиридин-2-онов **4a,b** с гидроксиламином осуществляется избирательно, то на основании результатов приведенных выше реакций можно констатировать, что продуктами этого процесса являются 7-R-3-фенил-5-этоксикарбонил-6,7-дигидроизоксазоло-[3,4-*b*]пиридин-6-оны **10a**,b.

Нами исследовались также циклоконденсации 1,2-дигидропиридин-2онов **4a,b** с такими азотсодержащими 1,3-динуклеофилами, как карбонат гуанидина, 5-R¹-3-амино-1,2,4-триазолы **12a,b** и 5-R²-2-аминопиридины **14a,b**.

8, **9** a Ar = Ph, b Ar = 4-MeOC₆H₄; **7**, **9**a, **b**, **10a**, **11**, **13a**, **b**, **15a** R = Me; **10b**, **15** b R = Et; **12**, **13** a R¹ = H, b R¹ = SMe; **14**, **15** a R² = H, b R² = Me

Следует отметить, что низкоосновные 1,3-динуклеофилы (2-аминопиримидин, 5-аминотетразол) не реагируют с 1,2-дигидропиридин-2-онами **4a**,**b**.

В реакции 1,2-дигидропиридин-2-она **4a** с гуанидином образуется только 2-имино-8-метил-4-фенил-6-этоксикарбонил-1,2,7,8-тетрагидропиридо[2,3-*d*]пиримидин-7-он **11** (выход 70%), тогда как при взаимодействии **4a,b** с 5-R²-2-аминопиридинами **14a,b** (5-R¹-3-амино-1,2,4-триазолами **12a,b**) возможно получение двух (четырех) изомерных гетероциклов. Однако эти реакции протекают избирательно. Строение продуктов конденсации соединения **4a** с 5-R¹-3-амино-1,2,4-триазолами **12a,b** невозможно определить спектральными исследованиями, поэтому их структура была изучена рентгеноструктурным методом. Данные рентгеноструктурного изучения соединения **13a** однозначно свидетельствуют, что оно является 9-метил-5-фенил-7-этоксикарбонил-8,9-дигидропиридо[2,3-*d*][1,2,4]триазоло[1,5-*a*]пиримидин-8-оном.

Общий вид молекулы соединения **13а**, а также основные длины связей и валентные углы приведены на рисунке. Центральная трициклическая система $N_{(1-5)}C_{(1-8)}$ практически плоская (отклонения от средне-квадратичной плоскости не превышают 0.07 Å); двугранные углы между гетероциклом $C_{(4)}C_{(3)}N_{(4)}C_{(2)}N_{(1)}C_{(5)}$ и системами $C_{(4)}C_{(8)}C_{(7)}C_{(6)}N_{(5)}C_{(3)}$ и $N_{(1)}C_{(2)}N_{(3)}C_{(1)}N_{(2)}$ составляют лишь 2.8 и 1.2°. Атомы $N_{(1)}$ и $N_{(5)}$ имеют плоскотригональную координацию – сумма валентных углов при этих

Общий вид молекулы 9-метил-5-фенил-7-этоксикарбонил-8,9-дигидропиридо[2,3-*d*][1,2,4]триазоло[1,5-*a*]пиримидин-8-она **13а**. Избранные длины связей и валентные углы: $C_{(3)}$ – $N_{(5)}$ 1.381(3), $C_{(3)}$ – $C_{(4)}$ 1.425(3), $C_{(4)}$ – $C_{(8)}$ 1.425(3), $C_{(4)}$ – $C_{(5)}$ 1.377(3), $C_{(5)}$ – $N_{(1)}$ 1.357(2), $N_{(1)}$ – $C_{(2)}$ 1.386(3), $C_{(2)}$ – $N_{(4)}$ 1.344(3), $N_{(4)}$ – $C_{(3)}$ 1.323(2), $C_{(2)}$ – $N_{(3)}$ 1.329(3), $N_{(3)}$ – $C_{(1)}$ 1.350(3), $C_{(1)}$ – $N_{(2)}$ 1.322(3), $N_{(2)}$ – $N_{(1)}$ 1.373(2) Å; $N_{(5)}C_{(3)}N_{(4)}$ 117.42(18), $N_{(5)}C_{(3)}C_{(4)}$ 118.25(17), $C_{(8)}C_{(4)}C_{(3)}$ 118.79(17), $C_{(8)}C_{(4)}C_{(5)}$ 121.75(17), $C_{(4)}C_{(5)}N_{(1)}$ 115.34(17), $C_{(3)}N_{(4)}C_{(2)}$ 115.49(17), $N_{(4)}C_{(2)}N_{(1)}$ 122.34(18), $N_{(4)}C_{(2)}N_{(3)}$ 128.4(2), $N_{(1)}C_{(2)}N_{(3)}$ 109.3(2), $N_{(1)}N_{(2)}C_{(1)}$ 100.2(2), $N_{(2)}C_{(1)}N_{(3)}$ 118.4(2), $C_{(1)}N_{(3)}C_{(2)}$ 102.0(2)°.

атомах составяет 360.0°. В силу стерических условий бензольное кольцо $C_{(10)}-C_{(15)}$ развернуто относительно центрального фрагмента на 61.0°. Следует отметить, что согласно Кембриджскому банку структурных данных [12], подобные трициклические системы ранее структурными методами исследованы не были.

В отличие от предыдущих реакций, циклоконденсация 1,2-дигидропиридин-2-онов **4a,b** с 5-R²-2-аминопиридинами **14a,b** не может сопровождаться выделением воды, вследствие чего ее продуктами могут быть соединения как ациклической, так и циклической структуры. Данных ЯМР ¹Н и ИК спектроскопии недостаточно для однозначной идентификации продуктов этого взаимодействия, поэтому определение их строения осуществлялось с помощью спектроскопии ЯМР ¹³С.

Известно, что в спектрах ЯМР ¹³С сигнал атома углерода фенилкарбонильной группы проявляется в области 192.6–198.1 м. д. (табл. 2, соединения **4b**, **9b**, а также спектральные данные работы [13]). В спектре ЯМР ¹³С соединения **15а** в этой области сигналы отсутствуют, но наблюдается сигнал sp^3 -гибридизованного углерода С–N [14] со значением химического сдвига 88.8 м. д., который можно отнести только к атому C₍₅₎ 1-R-5-гидрокси-5-фенил-3-этоксикарбонил-8-R²-1,5-дигидро-2Hдипиридо- [1,2-*a*:2,3-*d*]пиримидин-2-онов **15а**,**b**. Таким образом, циклоацилирование N-R-3-оксо-3-фенилпропантиоамидов диэтилэтоксиметиленмалонатом осуществляется избирательно и является препаративным методом получения 1-R-3-бензоил-6-оксо-5этоксикарбонил-1,2,3,6-тетрагидропиридин-2-тионов, которые являются ценными исходными соединениями для синтеза би- и трициклических гетеросистем, в том числе неизвестных ранее 9-R-5-фенил-7-этоксикарбонил-8,9-дигидропиридо[2,3-*d*][1,2,4]триазоло[1,5-*a*]пиримидин-8-онов.

Таблица 1

Соеди-	Брутто-формула	<u>Найдено, %</u> Вычислено, %			Т. пл., °С	Выход, %
нение		С	Н	Ν		
3a	$C_{16}H_{15}NO_4S$	<u>60.72</u> 60.56	$\frac{4.89}{4.76}$	<u>4.20</u> 4.41	185–187	63
3b	$\mathrm{C}_{17}\mathrm{H}_{17}\mathrm{NO}_4\mathrm{S}$	<u>61.85</u> 61.62	<u>4.88</u> 5.17	<u>3.94</u> 4.23	135–137	68
4a	$C_{17}H_{17}NO_4S$	<u>61.41</u> 61.62	<u>5.28</u> 5.17	<u>4.42</u> 4.23	130–132	72
4b	$C_{18}H_{19}NO_4S$	<u>62.42</u> 62.59	<u>5.73</u> 5.54	<u>3.85</u> 4.06	98–100	76
6a	$\mathrm{C}_{24}\mathrm{H}_{19}\mathrm{NO}_4\mathrm{S}$	<u>68.83</u> 69.05	<u>4.32</u> 4.59	<u>3.12</u> 3.36	186–188	85
6b	C ₂₅ H ₂₀ ClNO ₄ S	<u>64.55</u> 64.44	<u>4.60</u> 4.33	<u>2.88</u> 3.01	170–173	81
7	$C_{16}H_{15}N_3O_3$	<u>64.86</u> 64.64	<u>4.82</u> 5.09	<u>13.89</u> 14.13	240–242	86
9a	$C_{22}H_{20}N_2O_4$	<u>70.29</u> 70.20	<u>5.18</u> 5.36	<u>7.71</u> 7.44	159–161	79
9b	$C_{23}H_{22}N_2O_5$	<u>68.13</u> 67.97	<u>5.21</u> 5.46	<u>7.05</u> 6.89	185–187	82
10a	$C_{16}H_{14}N_2O_4$	<u>64.16</u> 64.42	<u>4.95</u> 4.73	<u>9.11</u> 9.39	128–130	75
10b	$C_{17}H_{16}N_2O_4$	<u>65.19</u> 65.38	<u>4.98</u> 5.16	<u>9.25</u> 8.97	85–87	87
11	$C_{17}H_{16}N_4O_3$	<u>63.12</u> 62.96	<u>5.22</u> 4.97	<u>17.52</u> 17.27	176–178	70
13a	$C_{18}H_{15}N_5O_3$	<u>62.05</u> 61.89	<u>4.48</u> 4.33	<u>19.82</u> 20.05	228–230	66
13b	$C_{19}H_{17}N_5O_3S$	<u>57.90</u> 57.71	<u>4.06</u> 4.33	<u>17.93</u> 17.71	260–262	69
15a	$C_{21}H_{19}N_3O_4$	<u>67.07</u> 66.83	<u>4.80</u> 5.07	<u>10.84</u> 11.13	248-250	60
15b	$C_{22}H_{21}N_3O_4$	<u>67.58</u> 67.51	<u>5.13</u> 5.41	<u>10.52</u> 10.74	213–215	64

Характеристики синтезированных соединений

Данные ЯМР ¹Н и ИК спектроскопии синтезированных соединений

Соеди- нение	ИК спектр, v , см ^{-1}	Спектр ЯМР ¹ Н (ДМСО-d ₆), б, м. д. (<i>J</i> , Гц)
1	2	3
3a	3300, 3000, 1660, 1620, 1550, 1450, 1390, 1380, 1350, 1310	1.27 (3H, т, $J = 6.6$, С <u>H</u> ₃ CH ₂); 3.63 (3H, с, NCH ₃); 4.25 (2H, кв, $J = 6.6$, CH ₃ C <u>H₂</u>); 7.40 (2H, м, C ₆ H ₅); 7.49 (1H, м, C ₆ H ₅); 7.71 (2H, м, C ₆ H ₅); 7.74 (1H, с, H- 4) [1.41 (3H, т, $J = 5.7$, C <u>H</u> ₃ CH ₂); 3.96 (3H, с, NCH ₃); 4.44 (2H, кв, $J = 5.7$, CH ₃ C <u>H₂</u>); 7.48–7.61 (3H, м, C ₆ H ₅); 7.76 (1H, с, H-4); 7.90 (2H, м, C ₆ H ₅); 14.60 (1H, уш. с, OH)]*
3b**	3300, 3050, 3000, 2900, 1670, 1620, 1550, 1430, 1390, 1360, 1270, 1210, 1180	1.19 (3H, T, $J = 7.2$, CH ₃ CH ₂ N); 1.28 (3H, T, $J = 7.5$, CH ₃ CH ₂ O); 4.26 (2H, KB, $J = 7.5$, CH ₃ CH ₂ O); 4.38 (2H, KB, $J = 7.2$, CH ₃ CH ₂ N); 7.43 (2H, M, C ₆ H ₅); 7.56 (1H, M, C ₆ H ₅); 7.70 (2H, M, C ₆ H ₅); 7.73 (1H, c, H-4) [1.37 (6H, M, 2CH ₃ CH ₂); 4.39 (2H, KB, $J = 7.2$, CH ₃ CH ₂); 4.74 (2H, KB, $J = 6.9$, CH ₃ CH ₂); 7.46 (2H, M, C ₆ H ₅); 7.56 (1H, M, C ₆ H ₅); 7.74 (1H, c, H-4); 7.85 (2H, M, C ₆ H ₅); 14.14 (1H, yu. c, OH)]*
4a	3050, 3000, 1720, 1650, 1600, 1520, 1450, 1410, 1380, 1350, 1310	1.25 (3H, т, <i>J</i> = 6.9, <u>CH</u> ₃ CH ₂); 2.32 (3H, с, SCH ₃); 3.72 (3H, с, NCH ₃); 4.21 (2H, кв, <i>J</i> = 6.9, CH ₃ C <u>H₂</u>); 7.53 (2H, м, C ₆ H ₅); 7.67 (1H, м, C ₆ H ₅); 7.85 (2H, м, C ₆ H ₅); 7.89 (1H, с, H-4)
4b	3000, 2950, 1690, 1670, 1650, 1580, 1490, 1460, 1380, 1350, 1310	1.29 (6H, м, 2С <u>H</u> ₃ CH ₂); 2.35 (3H, с, SCH ₃); 4.19 (2H, кв, $J = 7.2$, CH ₃ C <u>H</u> ₂ O); 4.36 (2H, кв, $J = 6.6$, CH ₃ C <u>H</u> ₂ N); 7.55 (2H, м, C ₆ H ₅); 7.68 (1H, м, C ₆ H ₅); 7.84 (2H, м, C ₆ H ₅); 7.87 (1H, с, H-4)
6a	3100, 3000, 1730, 1660, 1620, 1590, 1520, 1490, 1440, 1380, 1340, 1300, 1260, 1200	1.24 (3H, т, J = 7.2, C <u>H</u> ₃ CH ₂); 3.70 (3H, с, NCH ₃); 4.20 (2H, кв, J = 7.2, CH ₃ C <u>H₂</u>); 7.16–7.25 (7H, м, C ₆ H ₅); 7.32 (1H, м, C ₆ H ₅); 7.43 (2H, м, C ₆ H ₅); 8.00 (1H, с, H-4)
6b	3100, 3000, 2900, 1700, 1675, 1630, 1590, 1520, 1480, 1450, 1390, 1310	1.24 (3H, T, $J = 7.2$, C \underline{H}_3 CH ₂ N); 1.38 (3H, T, $J = 6.9$, C \underline{H}_3 CH ₂ O); 4.21 (4H, M, 2CH ₃ C \underline{H}_2); 7.14–7.28 (7H, M, H _{Ar}); 7.41 (2H, $\underline{\pi}$, $J = 8.9$, 4-C ₆ H ₄); 8.00 (1H, c, H-4)
7	3200, 3000, 1710, 1690, 1610, 1530, 1490, 1410, 1370, 1360	1.30 (3H, т, <i>J</i> = 7.2, C <u>H</u> ₃ CH ₂); 3.53 (3H, с, NCH ₃); 4.24 (2H, кв, <i>J</i> = 7.2, CH ₃ C <u>H₂</u>); 7.55 (3H, м, C ₆ H ₅); 7.82 (2H, м, C ₆ H ₅); 8.46 (1H, с, H-4); 14.01 (1H, уш. с, NH)
9a	3100, 3000, 1700, 1680, 1600, 1550, 1490, 1450, 1400, 1360	1.22 (3H, r, $J = 6.6$, CH ₃ CH ₂); 3.26 (3H, c, NCH ₃); 4.20 (2H, kb, $J = 6.6$, CH ₃ CH ₂); 6.96 (2H, M, C ₆ H ₅); 7.08 (1H, c, C ₆ H ₅); 7.23 (2H, M, C ₆ H ₅); 7.45 (4H, M, C ₆ H ₅); 7.54 (1H, M, C ₆ H ₅); 8.20 (1H, c, H-4); 10.69 (1H, c, NH)
9b	3100, 3000, 1720, 1650, 1610, 1560, 1520, 1470, 1370, 1330	1.20 (3H, т, <i>J</i> = 7.2, С <u>H</u> ₃ CH ₂); 3.18 (3H, с, NCH ₃); 3.73 (3H, с, OCH ₃); 4.13 (2H, кв, <i>J</i> = 7.2, CH ₃ C <u>H₂</u>); 6.83 (2H, д, <i>J</i> = 8.1, 4-C ₆ H ₄); 7.01 (2H, д, <i>J</i> = 8.1, 4-C ₆ H ₄); 7.45–7.56 (5H, м, C ₆ H ₅); 8.20 (1H, с, H-4); 11.04 (1H, с, NH)
10a	3100, 3000, 1700, 1670, 1630, 1540, 1480, 1450,	1.31 (3H, т, <i>J</i> = 6.6, С <u>Н</u> ₃ CH ₂); 3.43 (3H, с, NCH ₃); 4.30 (2H, кв, <i>J</i> = 6.6, CH ₃ C <u>H₂</u>); 7.64 (3H, м, C ₆ H ₅);

1400, 1370

8.02 (2Н, м, С₆Н₅); 8.52 (1Н, с, Н-4) Окончание таблицы 2

1	2	3
10b	3100, 3000, 2950, 1730, 1640, 1540, 1480, 1460, 1390, 1340	1.32 (6H, M, $2C\underline{H}_{3}CH_{2}$); 4.03 (2H, KB, $J = 6.9$, CH ₃ C <u>H₂N</u>); 4.29 (2H, KB, $J = 6.9$, CH ₃ C <u>H₂O</u>); 7.65 (3H, M, C ₆ H ₅); 8.01 (2H, M, C ₆ H ₅); 8.51 (1H, c, H-4)
11	3400, 3280, 3000, 1690, 1660, 1600, 1550, 1470, 1420, 1380	1.23 (3H, т, <i>J</i> = 7.3, C <u>H</u> ₃ CH ₂); 3.56 (3H, с, NCH ₃); 4.17 (2H, кв, <i>J</i> = 7.3, CH ₃ C <u>H₂</u>); 6.92 (1H, с, NH); 7.59 (5H, м, C ₆ H ₅); 7.71 (1H, с, HN=); 8.19 (1H, с, H- 5)
13 a	3100, 3000, 1730, 1660, 1630, 1600, 1550, 1530, 1490, 1450, 1380	1.24 (3H, т, <i>J</i> = 6.6, С <u>H</u> ₃ CH ₂); 3.71 (3H, с, NCH ₃); 4.25 (2H, кв, <i>J</i> = 6.6, CH ₃ C <u>H₂</u>); 7.74 (5H, м, C ₆ H ₅); 8.03 (1H, с, H-6); 8.61 (1H, с, H-2)
13b	3100, 3000, 1740, 1670 1620, 1600, 1560, 1500, 1430, 1385, 1370, 1300	1.24 (3H, т, <i>J</i> = 7.2, C <u>H</u> ₃ CH ₂); 2.58 (3H, с, SCH ₃); 3.68 (3H, с, NCH ₃); 4.23 (2H, кв, <i>J</i> = 7.2, CH ₃ C <u>H₂</u>); 7.74 (5H, м, C ₆ H ₅); 7.99 (1H, с, H-6)
15a	3100, 3000, 1720, 1640, 1620, 1580, 1560, 1480, 1370, 1300	1.15 (3H, T, $J = 6.9$, CH ₃ CH ₂); 3.54 (3H, c, NCH ₃); 4.09 (2H, KB, $J = 6.9$, CH ₃ CH ₂); 6.74 (1H, M, H-8); 7.08 (1H, π , $J = 9.0$, H-10); 7.31–7.47 (5H, M, C ₆ H ₅); 7.58 (1H, c, OH); 7.62 (1H, M, H-9); 7.71 (1H, π , $J = 6$. 6, H-7); 8.59 (1H, c, H-4)
15b	3100, 3000, 1720, 1640, 1610, 1580, 1490, 1460, 1370, 1340	1.19 (6H, м, 2С <u>H</u> ₃ CH ₂); 2.05 (8-CH ₃); 4.08 (2H, кв, $J = 6.9$, CH ₃ C <u>H</u> ₂ O); 4.29 (2H, кв, $J = 7.2$, CH ₃ C <u>H</u> ₂ N); 7.00 (1H, д, $J = 9.6$, H-9); 7.33 (2H, м, Ar); 7.38–7.44 (3H, м, Ar); 7.49 (2H, м, Ar); 7.57 (1H, c, OH); 8.46 (1H, c, H-4)

* Спектр ЯМР ¹Н получен в CDCl₃.

** ИК спектр соединения 3b в CCl₄ (концентрация 0.1 М/л): 3300, 3100, 3000, 2950, 1660, 1620, 1560, 1430, 1380, 1360, 1270, 1215.

Таблица З

Соеди- нение	Химические сдвиги (ДМСО-d ₆), б, м. д.
4b	13.6 (NCH ₂ <u>C</u> H ₃), 14.0 (OCH ₂ <u>C</u> H ₃); 20.2 (SCH ₃); 41.8 (N <u>C</u> H ₂ CH ₃), 60.6 (O <u>C</u> H ₂ CH ₃); 118.6, 121.7, 128.7, 129.6, 133.6, 138.8, 141.1, 151.6 (Ar); 157.9 (O= <u>C</u> -N); 163.9 (O= <u>C</u> -OEt); 192.6 (C ₆ H ₅ - <u>C</u> =O)
9b	14.2 (OCH ₂ <u>C</u> H ₃); 33.1 (NCH ₃); 55.3 (OCH ₃); 59.7 (O <u>C</u> H ₂ CH ₃); 102.4, 105.7, 114.4, 124.4, 128.3, 128.4, 131.6, 132.0, 138.2, 147.6, 156.0, 156.8 (Ar); 158.8 (O= <u>C</u> -N); 164.2 (O= <u>C</u> -OEt); 193.0 (C ₆ H ₅ - <u>C</u> =O)
15a	14.18 (OCH ₂ <u>C</u> H ₃); 28.2 (NCH ₃); 59.2 (O <u>C</u> H ₂ CH ₃); 88.8 (C-5); 100.4, 107.8, 113.5, 123.3, 125.7, 128.5, 128.6, 135.6, 139.3, 141.9, 145.4, 149.9, 151.3 (Ar); 158.8 (O= <u>C</u> -N); 164.7 (O= <u>C</u> -OEt)

Спектры ЯМР ¹³С соединений 4b, 9b, 15a

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С записаны на приборе Varian 300 (300 и 75 МГц соответственно), внутренний стандарт ТМС. ИК спектры зарегистрированы на приборе UR-20 в таблетках KBr.

Рентгеноструктурное исследование монокристалла соединения 13а с линейными 1667 размерами 0.38×0.25×0.20 мм, полученного методом медленного охлаждения этанольного раствора, проведено при комнатной температуре на автоматическом ССД дифрактометре Bruker Apex II (Μο*K*α-излучение, $\lambda = 0.71069$ Å, $\theta_{max} = 26.62^{\circ}$, сегмент сферы $-9 \le h \le 12$, $-18 \le k \le 21, -24 \le l \le 15$). Всего было собрано 11 993 отражения (3247 независимых отражений, $R_{int} = 0.0305$). Кристаллы соединения **13а** орторомбические, a = 10.1548(7), b = 16.9036(11), c = 19.354(2) Å, V = 3322.2(5) Å³, $M = 349.35, Z = 8, d_{BbH} = 1.397$ r/cm³, μ = 0.099 см⁻¹, *F*(000) = 1456, пространственная группа *Pbca* (№ 61). Структура расшифрована прямым методом и уточнена МНК в полноматричном анизотропном приближении с использованием программ SHELXS97 [15] и SHELXL97 [16]. В уточнении использовано 3247 отражений (2115 отражений с $I > 2\sigma(I)$) (295 уточняемых параметров, число отражений на параметр 7.17). Все атомы водорода были выявлены из разностного синтеза электронной плотности и включены в уточнение с фиксированными позиционными и тепловыми параметрами. При уточнении была использована весовая схема w = = $1/[s^2(F_o^2) + (0.0754P)^2 + 0.5696P]$, где $P = (F_o^2 + 2F_c^2)/3$. Окончательные значения факторов расходимости $R_1(F) = 0.0481$ и $wR_2(F^2) = 0.1207$, GOF = 1.002. Остаточная электронная плотность из разностного ряда Фурье составляет -0.272 и 0.215 e/Å³. Полный набор рентгеноструктурных данных для соединения 13а депонирован в Кембриджском банке структурных данных (ССDС 653195).

1-R-3-Бензоил-6-оксо-5-этоксикарбонил-1,2,3,6-тетрагидропиридин-2-тионы 3а,b. Раствор 0.1 моль этилата натрия, 0.1 моль тиоамида **1а,b** и 21.60 г (0.1 моль) диэтилэтоксиметиленмалоната **2** в 100 мл безводного этанола кипятят с обратным холодильником 2 ч и охлаждают. Добавляют 100 мл 6% соляной кислоты, осадок отфильтровывают, высушивают и перекристаллизовывают из этанола (**3а**) или 2-пропанола (**3b**).

1-R-5-Бензоил-6-метилтио-3-этоксикарбонил-1,2-дигидропиридин-2-оны 4а,b. Раствор 1.120 г (0.02 моль) КОН, 0.02 моль тетрагидропиридин-2-тиона **3а,b** и 3.408 г (0.024 моль) иодистого метила в 50 мл 90% этанола кипятят с обратным холодильником 1 ч и охлаждают. Добавляют 80 мл воды, осадок **4а,b** отфильтровывают, высушивают и перекристаллизовывают из 2-пропанола.

2-Ароил-3-фенил-5-этоксикарбонил-7-R-6,7-дигидротиено[2,3-b]пиридин-6-оны ба, b. Раствор 0.560 г (0.01 моль) КОН, 0.01 моль тетрагидропиридин-2-тиона **3а,b** и 0.01 моль арилбромметилкетона **5а,b** в 15 мл 85% этанола кипятят с обратным холодильником 1 ч, охлаждают и к нему добавляют 30 мл воды. Осадок **6а,b** отфильтровывают, высушивают и перекристаллизовывают из AcOH.

7-Метил-3-фенил-5-этоксикарбонил-6,7-дигидро-1Н-пиразоло[3,4-b]пиридин-6-он (7). Раствор 1.655 г (0.005 моль) 1,2-дигидропиридин-2-она **4a** и 0.250 г (0.005 моль) гидразинмоногидрата в 8 мл 2-пропанола кипятят 30 мин с обратным холодильником. Охлаждают, продукт **7** отфильтровывают, высушивают и перекристаллизовывают из ДМСО.

6-Ариламино-5-бензоил-1-метил-3-этоксикарбонил-1,2-дигидропиридин-2-оны 9а, b. Смесь 1.655 г (0.005 моль) 1,2-дигидропиридин-2-она **4а** и 0.005 моль ариламина **8а,b** сплавляют 20 мин при 140 °С, охлаждают и продукт **9а,b** перекристаллизовывают из этанола.

7-Метил-3-фенил-5-этоксикарбонил-6,7-дигидроизоксазоло[3,4-b]пиридин-6-оны 10а,b. Раствор 0.348 г (0.005 моль) гидрохлорида гидроксиламина, 0.280 г (0.005 моль) КОН и 0.005 моль 1,2-дигидропиридин-2-она **4а,b** в 5 мл этанола кипятят с обратным холодильником 1 ч. Раствор отделяют от осадка КСІ, охлаждают и отфильтровывают продукт **10а,b**.

2-Имино-8-метил-4-фенил-6-этоксикарбонил-1,2,7,8-тетрагидропиридо[2,3-d]пиримидин-7-он (11). Смесь 1.655 г (0.005 моль) 1,2-дигидропиридин-2-она **4a** и 0.540 г (0.003 моль) карбоната гуанидина сплавляют 30 мин при 140 °C, охлаждают, реакционную массу растворяют в 6 мл 2-пропанола, отфильтровывают от непрореагировавшего карбоната гуанидина и охлаждают. Осадок **11** отделяют и перекристаллизовывают из 2-пропанола.

2-R¹-9-Метил-5-фенил-7-этоксикарбонил-8,9-дигидропиридо[2,3-*d*][1,2,4]триазоло-[1,5-*a*]пиримидин-8-оны 13а,b. Раствор 1.655 г (0.005 моль) 1,2-дигидропиридин-2-она 4а и 0.005 моль 3-амино-5-R-1,2,4-триазола 12а,b в 6 мл 2-пропанола кипятят 1 ч с обратным холодильником. Охлаждают, продукт 13а,b отфильтровывают, высушивают и перекристал- лизовывают из этанола (13а) или ДМСО (13b).

1-R-5-Гидрокси-5-фенил-3-этоксикарбонил-8-R²-1,5-дигидро-2H-дипиридо[1,2-*a* : 2,3*d*]- пиримидин-2-оны 15а,b. Раствор 0.005 моль 1,2-дигидропиридин-2-она 4а,b и 0.005 моль 2-амино-5-R²-пиридина 14а,b в 5 мл 2-пропанола кипятят 1 ч с обратным холодильником. Охлаждают, продукт 15а,b отфильтровывают, высушивают и перекристаллизовывают из ДМСО.

СПИСОК ЛИТЕРАТУРЫ

- 1. Н. А. Данилкина, Л. Е. Михайлов, Б. А. Ивин, *ЖОрХ*, **42**, 807 (2006).
- 2. А. Н. Борисевич, В. Н. Брицун, М. О. Лозинский, *Журн. органічної та фарм. хімії*, **4**, 3 (2006).
- В. Н. Брицун, А. Н. Борисевич, Л. С. Самойленко, М. О. Лозинский, *ЖОрХ*, 41, 292 (2005).
- 4. В. Н. Брицун, А. Н. Борисевич, А. Н. Есипенко, М. О. Лозинский, *XTC*, 623 (2006). [*Chem. Heterocycl. Comp.*, **42**, 546 (2006)].
- 5. А. Д. Дяченко, С. М. Десенко, В. Д. Дяченко, А. Н. Чернега, *XГС*, 1171 (2004). [*Chem. Heterocycl. Comp.*, **40**, 1009 (2004)].
- 6. Р. П. Ткачев, О. С. Битюкова, В. Д. Дяченко, В. П. Ткачева, А. Д. Дяченко, *ЖОХ*, 77, 125 (2007).
- 7. J. P. Clayton, P. J. O'Hanlon, T. J. King, J. Chem. Soc., Perkin Trans. 1, 1352 (1980).
- 8. В. Н. Брицун, В. О. Дорощук, Н. В. Богдан, В. М. Зайцев, М. О. Лозинский, Укр. хим. журн., **73**, № 5, 40 (2007).
- 9. F. Duus, J. Am. Chem. Soc., 108, 630 (1986).
- 10. U. Berg, J. Sandstrom, L. Carlsen, F. Duus, J. Chem. Soc., Perkin Trans. 2, 1321 (1983).
- А. Альберт, Е. Сержент, Константы ионизации кислот и оснований, Химия, Москва, Ленинград, 1964, с. 139.
- 12. Cambridge Crystallography Data Base, release 2007.
- В. Н. Брицун, А. Н. Борисевич, Л. С. Самойленко, А. Н. Чернега, М. О. Лозинский,
 - Изв. АН, Сер. хим., 757 (2005).
- E. Breitmaier, W. Voelter, ¹³C NMR Spectroscopy, 2nd ed., Weinheim, Verlag Chemie, 1978, p. 183.
- 15. G. M. Sheldrick, SHELXS97, Program for the Solution of Crystal Structure, Univ. of Göttingen, Göttingen, Germany, 1997.
- 16. G. M. Sheldrick, SHELXL97, Program for the Refinement of Crystal Structures, Univ. of Göttingen, Göttingen, Germany, 1997.

Институт органической химии НАН Украины, Киев 02660 e-mail: bvn1967@rambler.ru Поступило 10.07.2007