И. В. Украинец, Н. Л. Березнякова, О. В. Горохова, А. В. Туров^а

4-ГИДРОКСИХИНОЛОНЫ-2

131.* БРОМИРОВАНИЕ 3-АЛЛИЛ-4-ГИДРОКСИ-2-ОКСО-1,2-ДИГИДРОХИНОЛИНА

Бромирование 3-аллил-4-гидрокси-2-оксо-1,2-дигидрохинолина молекулярным бромом сопровождается замыканием пятичленного фуранового кольца и приводит к образованию 2-бромметил-3,9-дигидро-2H-фуро[2,3-*b*]хинолин-4-она.

Ключевые слова: фуро[2,3-b]хинолины, бромирование, гетероциклизация, РСА.

Присоединение молекулярного брома к ненасыщенной связи аллильных фрагментов в 1-аллилзамещенных 4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновых кислотах и их этиловых эфирах проходит практически мгновенно в отсутствие каких-либо катализаторов и сопровождается замыканием оксазольного цикла [2]. Аналогично реагирует с бромом и 1-аллил-4-метил-2-оксо-1,2-дигидрохинолин-3-карбоновая кислота, с той лишь разницей, что из-за невозможности образования таутомерной 1,4-дигидроформы, конечным продуктом реакции оказывается бромид 2-бромметил-4-карбокси-5-метил-1,2-дигидрооксазоло[3,2-а]хинолиния [3]. Гидрирование бензольной части молекулы N-аллилхинолона никак не влияет на протекание этой интересной реакции [4]. А вот в случае незамещенных в положении 3 1-аллил-4-гидрокси-2-оксо-1,2-дигидрохинолинов и пиридинов удается выделить только 4-бром-2-бромметил-1,2-дигидрооксазоло-[3,2-а]хинолин- или пиридин-5-оны, поскольку первоначально образующиеся 4Н-2-бромметилоксазолы повторно бромируются не вступившим в реакцию бромом гораздо легче исходных N-аллильных производных [5].

На основании проведенных нами ранее опытов можно сделать вывод, что необходимым условием формирования аннелированного с азагетероциклом 2-бромметилоксазольного ядра является наличие в подвергающейся бромированию молекуле N-аллил-1,2-дигидропиридин-2-онового фрагмента. Не исключено, что аналогичное превращение будут претерпевать и другие азотистые гетероциклы, содержащие в *орто*-положении к циклическому аллилзамещенному атому азота карбонильную или, возможно, гидроксильную группу, однако пока такое предположение не подтверждено экспериментально.

^{*} Сообщение 130 см. [1].

В настоящем исследовании нами изучено бромирование 3-аллил-4-гид-

рокси-2-оксо-1,2-дигидрохинолина (1).

Принципиальное отличие этого соединения от изученных ранее состоит в том, что его аллильный остаток связан не с азотом, а с атомом углерода. Следовательно, реакция не обязательно должна сопровождаться гетероциклизацией и может представлять собой обычное присоединение брома к ненасыщенной связи аллила, приводящее к 2,3-дибромпропильному производному 2. Не исключено также и характерное для 3-алкил-4-гидрокси-2-оксо-1,2-дигидрохинолинов бромирование хинолонового ядра в положение 3 [6] с образованием 3-аллил-3-бром-2,4-диоксо-1,2,3,4тетрагидрохинолина (3). Однако, если циклизация все же будет происходить, то это приведет уже не к оксазоло-, а к фурохинолонам. А поскольку аллильный заместитель соседствует с двумя потенциальными реакционными центрами – 2-карбонильной и 4-гидроксильной группами, то теоретически возможно образование двух изомерных фурохинолин-4онов: линейного и ангулярного. Истинное направление реакции в случае циклизации, безусловно, будет зависеть от того, какая из таутомерных форм исходного аллильного производного - 1 или 1а (точнее соответствующих им высоко-нуклеофильных биполярных мезомерных форм 1b или 1c) – окажется преобладающей. Иногда такую полезную информацию удается получить методом РСА [7, 8].

Рис. 1. Строение молекулы 3-аллилзамещенного хинолона 1 с нумерацией атомов

Учитывая это, мы детально исследовали строение исходного 3-аллилхинолона 1. Полученные при этом данные свидетельствуют о том, что бициклический фрагмент (атомы O(1), O(2) и C(10)) планарен в пределах 0.02 Å (рис. 1). Фрагмент –СН=СН₂ аллильного заместителя расположен перпендикулярно плоскости бицикла (торсионный угол С₍₉₎-С₍₈₎-С₍₁₀₎-С₍₁₁₎ 90.0(2)°) и практически копланарен связи С(8)-С(10) (торсионный угол C₍₈₎-C₍₁₀₎-C₍₁₁₎-C₍₁₂₎ -2.9(3)°), несмотря на отталкивание между атомом водорода концевой группы CH₂ и атомом C₍₈₎ (внутримолекулярный укороченный контакт H_(12a)...C₍₈₎ 2.68 Å (сумма ван-дер-ваальсовых радиусов 2.87 Å [9])). Атом водорода гидроксигруппы развернут в сторону аллильного заместителя, что приводит к возникновению укороченных внутримолекулярных контактов H_(10a)...H₍₂₀₎ 2.08 (2.34) и H₍₅₎...O₍₂₎ 2.42 Å (2.46 Å). Отталкивание между пространственно сближенными заместителями обусловливает увеличение валентных углов О(2)-С(7)-С(8) до 125.1(1) и С₍₇₎-С₍₈₎-С₍₁₀₎ до 123.3(1)° по сравнению с углами О₍₂₎-С₍₇₎-С₍₆₎ 113.5(1) и С₍₉₎–С₍₈₎–С₍₁₀₎ 117.6(1)°.

В молекуле аллилхинолона 1 обнаружено удлинение связей $N_{(1)}-C_{(1)}$ 1.380(2) и $N_{(1)}-C_{(9)}$ 1.364(2) Å по сравнению с их средними значениями [10] 1.353 и 1.339 Å соответственно. Связи $C_{(8)}-C_{(7)}$ 1.369(2) и $O_{(1)}-C_{(9)}$ 1.265(1) Å также удлинены по сравнению с их средними значениями 1.326 и 1.210 Å, соответственно, а связь $C_{(8)}-C_{(9)}$ 1.441(2) Å укорочена (среднее значение 1.455 Å), что указывает на заметную делокализацию электрон-ной плотности в пиридиновом кольце. Этому способствует также образо-вание межмолекулярной водородной связи $O_{(2)}-H_{(20)}...O_{(1)}$ (-0.5 + x, 0.5 - y, 0.25 - z) H...O 1.84 Å, O–H...O 156°. Однако длина связи $O_{(2)}-C_{(7)}$ 1.345(2) Å оказалась сравнимой с ее средним значением 1.333 Å. В отличие от произ-водных 4гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот [7, 8], ука-занная особенность характерна именно для 3-алкилзамещенных производ- ных и неоднократно наблюдалась в ранее изученных соединениях [11, 12].

Поэтому, несмотря на некоторые структурные предпосылки, говорить о заметном вкладе в резонансный гибрид 3-аллилхинолона 1 биполярной 1679

1,4-дигидроформы **1b** не корректно. Следовательно, предсказать направление гетероциклизации на основании данных РСА исходного соединения не представляется возможным.

Подобно N-аллилзамещенным 1,2-дигидрохинолин-2-онам, $C_{(3)}$ -аллилпроизводное **1** в ледяной уксусной кислоте обесцвечивает эквимолярное количество брома сразу же после его прибавления. В результате был получен технический продукт, состоящий, судя по хромато-масс-спектру, из двух веществ **A** и **B** с молекулярной массой 280 а. е. м. каждый в соотношении 2:1 с характерными для монобромсоединений пиками молекулярных ионов в виде дублетов примерно одинаковой интенсивности. Данное обстоятельство, с одной стороны, позволяет исключить 2,3-дибромпропильное производное **2** из числа возможных продуктов изучаемой реакции, тем более, что для него маловероятна наблюдающаяся в спектрах ЯМР ¹Н диастереотопия группы CH₂Br, когда она имеет вид двух дублетов дублетов, с другой стороны, служит доказательством проходящей при бромировании гетероциклизации, поскольку спектры ЯМР обоих полученных веществ явно не соответствуют и $C_{(3)}$ -аллилхинолоновой структуре **3**.

Таким образом, аналитическая задача существенно упрощается и заключается лишь в определении, какому из образовавшихся фурохинолинов соответствует линейное, а какому ангулярное строение. Разделить реакционную смесь удалось кристаллизацией из этанола. При изучении спектров ЯМР ¹Н выделенных индивидуальных фурохинолинов, основного А и минорного В, оказалось, что в них присутствуют одинаковые спиновые системы с несколько различающимися значениями химических сдвигов протонов. Непосредственно после растворения образца В ряд сигналов в спектре оказывается уширенным, однако после его кратковременного нагревания и последующего охлаждения получаются узкие сигналы всех протонов. Уширенным остается только сигнал воды, что, вероятно, связано с протонным обменом. В протонном спектре вещества A все сигналы достаточно узкие. Сигналы протонов групп NH в обоих случаях отсутствуют, очевидно, вследствие быстрого дейтерообмена. В отличие от этого, при измерении углеродного спектра продукта В ряд сигналов остается уширенным настолько, что в спектре практически не проявляется. При этом углеродный спектр фурохинолина А не имеет никаких аномалий.

Для выяснения структуры полученных продуктов мы измеряли гетероядерные корреляционные двумерные спектры HMQC и HMBC. Применение первого метода позволило сделать отнесения сигналов протонированных атомов углерода, второго – дало возможность отнести сигналы четвертичных атомов углерода с помощью корреляции ¹H–¹³C через 2–3 химических связи. Ниже, на схеме приведены отнесения сигналов в спектре фурохинолина **A** и стрелками показаны корреляции HMBC, послужившие основанием для отнесений сигналов четвертичных атомов углерода. Все найденные гетероядерные корреляции для этого соединения приведены в табл. 1.

Таблица 1

Гетероядерные ¹Н-¹³С корреляции, найденные для основного продукта А (гидробромида фурохинолона 5)

δ, м. д.	HMQC	НМВС
8.11	124.0	164.6; 139.2; 132.6; 120.5
7.73	132.6	139.2; 124.0; 120.5
7.67	120.7	164.6; 125.4; 120.5
7.47	125.4	139.2; 132.6; 124.0; 120.5
5.49	85.1	165.3; 36.7
4.01	36.7	31.1; 85.1
3.93	36.7	31.1; 85.1
3.48	31.1	165.3; 36.7; 120.5; 102.4; 85.1
3.07	31.1	165.3; 36.7; 120.5; 102.4; 85.1

Ключом к установлению структуры данного соединения является корреляция сигнала метинового протона дигидрофуранового кольца, поглощающего при 5.49 м. д., со слабопольными сигналами углерода, поглощающими при 164.6 и 165.3 м. д. Первый из них, как это следует из его корреляций с сигналами ароматических протонов, отвечает атому С(4) пиридинового ядра, а второй – атому С_(9a), находящемуся в том же цикле. Для сигнала с химическим сдвигом 165.3 м. д. имеются многочисленные корреляции с сигналами алифатических протонов дигидрофуранового цикла. Если рассмотреть формулы изомерных продуктов ангулярного и линейного строения, можно видеть, что в ангулярном изомере сигнал фуранового протона СН должен был бы коррелировать с тем же слабопольным сигналом углерода (164.6 м. д.), что и сигналы ароматических протонов, поскольку в этом случае данные протоны отстоят от рассматриваемого атома углерода на 3 химические связи. Однако фактически такая корреляция не обнаружена. И наоборот, в альтернативном линейном изомере сигнал при 5.49 м. д. должен коррелировать с сигналом С_(9a) пиридинового цикла, с которым сигналы ароматических протонов не имеют корреляций. Именно такая ситуация и реализуется для основного фурохинолина А. Таким образом, можно сделать вывод, что он имеет линейное строение.

Как уже отмечалось выше, в углеродном спектре минорного фурохинолина **В** многие сигналы уширены, поэтому можно предполагать, что ряд гетероядерных корреляций для него будет потерянным. На схеме приведены отнесения сигналов в протонном и углеродном спектрах этого продукта и показаны обнаруженные корреляции в спектре HMBC. Как и в предыдущем примере, отнесения сигналов протонированных атомов углерода установлены на основании спектра HMQC. Полный список найденных корреляций приведен в табл. 2.

Таблица 2

Гетероядерные ¹Н–¹³С корреляции, найденные для минорного продукта В (основания фурохинолона 6)

δ, м. д.	HMQC	HMBC
8.02	123.9	142.5; 130.7
7.54	130.7	142.5; 123.9
7.49	120.6	123.4
7.28	123.4	130.7; 122.6
5.20	81.5	37.4
3.91	37.4	31.1; 81.5
3.83	37.4	31.1; 81.5
3.32	31.1	37.4; 165.1; 100.1; 81.5
2.94	31.1	37.4; 165.1; 100.1; 81.5
	•	

В целом, полученный набор корреляций в спектре НМВС близок к полученному для предыдущего соединения, однако ряд самых важных корреляций отсутствует. Так, в частности, не найдена корреляция слабопольного сигнала углерода при 165.1 м. д., принадлежащего, к тому же, сразу двум атомам – $C_{(4)}$ и $C_{(9a)}$, с сигналом протона СН дигидрофуранового цикла с химическим сдвигом 5.20 м. д. Поэтому в данном случае ни подтвердить, ни опровергнуть ангулярное строение (впрочем как и линейное) соединения **В** не удается.

Рис. 2. Обзорные УФ спектры в этаноле: 1 – фурохинолона 6; 2 – его гидробромида 5

Учитывая однозначно установленную линейную структуру фурохинолона **A**, логично было бы методом исключения минорное вещество **B** охарактеризовать как ангулярный 2-бромметил-3,5-дигидро-2H-фуро-[3,2-c]хинолин-4-он (**4**). Но, поскольку такое заключение носит всего лишь предположительный характер, для получения более строгих доказательств нами привлечена УФ спектрофотометрия, позволяющая надежно различать линейные и ангулярные изомеры. При этом УФ спектры обоих соединений неожиданно оказались практически идентичными (рис. 2), что доказывает существование в их молекулах одной и той же системы сопряженных связей, т. е. линейного 2-бромметил-3,9-дигидро-2H-фуро-[3,2-*b*]хинолин-4-онового ядра.

На основании обобщающего анализа результатов всех проведенных исследований некоторые наблюдающиеся различия в характеристиках выделенных фурохинолинов А и В можно объяснить только солеобразованием. И действительно, водно-спиртовой раствор основного вещества А дает с нитратом серебра характерную реакцию на бромид-ионы, что позволяет окончательно идентифицировать его как гидробромид 2-бромметил-3,9-дигидро-2Н-фуро[3,2-b]хинолин-4-она (5). И, наоборот, минорное соединение В такой реакции не дает, так как является фурохинолономоснованием 6, образовавшимся в результате частичного гидролиза гидробромида 5. При необходимости обратное превращение легко осуществляется действием бромистоводородной кислоты. Следует отметить, что такие структуры не противоречат и данным масс-спектрометрии – очень похожие экспериментальные спектры фурохинолонов 5 и 6 только еще раз подтвердили хорошо известный, но, к сожалению, неучтенный нами вначале факт: масс-спектры солей аминов с неорганическими кислотами обычно идентичны спектрам исходных аминов [13].

Длины связей (*l*) в структуре 3-аллилзамещенного хинолона 1

Связь	l, Å	Связь	l, Å
N ₍₁₎ -C ₍₉₎	1.364(2)	N ₍₁₎ -C ₍₁₎	1.380(2)
O ₍₁₎ -C ₍₉₎	1.265(2)	O ₍₂₎ –C ₍₇₎	1.345(2)
C ₍₁₎ -C ₍₆₎	1.398(2)	C ₍₁₎ –C ₍₂₎	1.402(2)
C ₍₂₎ -C ₍₃₎	1.376(2)	C ₍₃₎ –C ₍₄₎	1.392(3)
C ₍₄₎ -C ₍₅₎	1.371(3)	C ₍₅₎ –C ₍₆₎	1.414(2)
C ₍₆₎ –C ₍₇₎	1.451(2)	C ₍₇₎ –C ₍₈₎	1.369(2)
C ₍₈₎ -C ₍₉₎	1.441(2)	C ₍₈₎ -C ₍₁₀₎	1.517(2)
$C_{(10)} - C_{(11)}$	1.484(3)	$C_{(11)} - C_{(12)}$	1.279(4)

Таким образом, бромирование 3-аллил-4-гидрокси-2-оксо-1,2-дигидрохинолина молекулярным бромом сопровождается гетероциклизацией и приводит к образованию трициклических 2-бромметил-3,9-дигидро-2Hфуро[2,3-*b*]хинолин-4-оновых молекулярных систем.

Таблица 4

Угол	ω, град.	Угол	ω, град.
$C_{(9)} - N_{(1)} - C_{(1)}$	124.3(1)	$N_{(1)} - C_{(1)} - C_{(6)}$	119.0(1)
$N_{(1)} - C_{(1)} - C_{(2)}$	120.2(1)	$C_{(6)} - C_{(1)} - C_{(2)}$	120.8(1)
$C_{(3)} - C_{(2)} - C_{(1)}$	119.3(2)	$C_{(2)} - C_{(3)} - C_{(4)}$	120.4(2)
$C_{(5)} - C_{(4)} - C_{(3)}$	121.2(2)	$C_{(4)} - C_{(5)} - C_{(6)}$	119.6(2)
$C_{(1)} - C_{(6)} - C_{(5)}$	118.7(1)	$C_{(1)} - C_{(6)} - C_{(7)}$	118.0(1)
$C_{(5)} - C_{(6)} - C_{(7)}$	123.3(1)	$O_{(2)} - C_{(7)} - C_{(8)}$	125.1(1)
$O_{(2)} - C_{(7)} - C_{(6)}$	113.5(1)	$C_{(8)} - C_{(7)} - C_{(6)}$	121.5(1)
$C_{(7)} - C_{(8)} - C_{(9)}$	119.1(1)	$C_{(7)} - C_{(8)} - C_{(10)}$	123.3(1)
$C_{(9)} - C_{(8)} - C_{(10)}$	117.6(1)	$O_{(1)} - C_{(9)} - N_{(1)}$	117.7(1)
$O_{(1)} - C_{(9)} - C_{(8)}$	124.2(1)	$N_{(1)} - C_{(9)} - C_{(8)}$	118.1(1)
$C_{(11)} - C_{(10)} - C_{(8)}$	114.8(2)	$C_{(12)} - C_{(11)} - C_{(10)}$	127.0(2)

Валентные углы (ω) в структуре 3-аллилзамещенного хинолона 1

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С фурохинолонов **5** и **6**, эксперименты по двумерной спектроскопии ЯМР ¹Н COSY, а также гетероядерные корреляционные спектры HMQC и HMBC регистрировали на спектрометре Varian Mercury-400 (400 и 100 МГц соответственно). Все двумерные эксперименты проводили с градиентной селекцией полезных сигналов. Время смешивания в импульсных последовательностях соответствовало ¹ $J_{CH} = 140$ и ²⁻³ $J_{CH} = 8$ Гц. Количество инкрементов в спектрах COSY и HMQC составило 128, а в спектрах HMBC – 400. Во всех случаях растворитель ДМСО-d₆, внутренний стандарт ТМС. Хромато-масс-спектры записывали на спектрометре Agilent 1100 LC/MSD, способ ионизации APCI (хими-ческая позитивная ионизация при атмосферном давлении). Параметры хроматогра-фической колонки: длина 50 мм, диаметр 4.6 мм, неподвижная фаза – ZORBAX Eclipse XDB-C18, растворитель – водный ацетонитрил, градиентное элюирование, скорость пода-чи растворителя 2.4 мл/мин. УФ спектры регистрировали на спектрометре Specord M-40 в растворе этанола.

3-Аллил-4-гидрокси-2-оксо-1,2-дигидрохинолин (1) получали по ранее описанной методике [14].

Гидробромид 2-бромметил-3,9-дигидро-2Н-фуро[3,2-b]хинолин-4-она (5). А. К раствору 2.01 г (0.01 моль) соединения 1 в 15 мл уксусной кислоты при перемешивании прибавляют 0.52 мл (0.01 моль) брома, который сразу же обесцвечивается и через несколько минут начинает выпадать белый осадок. Через 1 ч разбавляют реакционную смесь холодной водой. Выпавший осадок отфильтровывают, промывают холодной водой, сушат. Кристаллизуют из этанола. Выделившиеся бесцветные кристаллы отделяют и после повторной кристаллизации из водного ацетона получают 1.94 г (53%) гидробромида фурохинолона 5 (при осаждении соли 5 из реакционной смеси безводным эфиром выход составляет 96%). Т. пл. 228–230 °С. Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 8.11 (1Н, д, *J* = 7.9, Н-5); 7.73 (1Н, т, *J* = 7.4, Н-7); 7.67 (1Н, д, *J* = 8.1, Н-8); 7.47 (1Н, т, *J* = 7.4, Н-6); 5.49 (1Н, м, CHO); 4.01 (1H, д. д, J = 11.2 и J = 3.9, CHBr); 3.93 (1H, д. д, J = 11.2 и J = 5.4, CHBr); 3.48 (1Н, д. д, J = 15.7 и J = 10.3, Н-3); 3.07 (1Н, д. д, J = 15.7 и J = 6.1, Н-3). Спектр ЯМР ¹³С, б, м. д.: 165.3 (С_(9а)), 164.6 (С=О), 139.2 (С_(8а)), 132.6 (С₍₇₎), 125.4 (С₍₆₎), 124.0 (С₍₅₎), 120.7 (C₍₈₎), 120.5 (C_(4a)), 102.4 (C_(3a)), 85.1 (CHO), 36.7 (CH₂Br), 31.1 (C₍₃₎). Macc-cnektrp, *m/z** (*I*_{0тн}, %): 280 [M–HBr + H]⁺ (100), 200 [M–HBr–Br + H]⁺ (5). Найдено, %: С 40.03; Н 3.15; N 3.76. С₁₂Н₁₀ВгNO₂•НВг. Вычислено, %: С 39.92; Н 3.07; N 3.88.

Б. К раствору 2.80 г (0.01 моль) фурохинолона **6** в 20 мл этанола прибавляют смесь конц. НВг и этанола (1:10) до pH ~5, после чего охлаждают во льду. Выпавший осадок гидробромида **5** отфильтровывают, промывают ацетоном, сушат. Выход 3.28 г (91%). Смешанная проба с образцом гидробромида **5**, полученным по методу A, не дает депрессии температуры плавления. Спектры ЯМР ¹Н этих соединений идентичны.

2-Бромметил-3,9-дигидро-2Н-фуро[3,2-*b***]хинолин-4-он (6). Спиртовой фильтрат, полученный после отделения соли 5 (см. метод А из предыдущего примера) разбавляют 5-кратным количеством холодной воды и оставляют на несколько часов. Выпавший осадок отфильтровывают и после повторной кристаллизации из водного ацетона получают 0.62 г (22%) фурохинолона 6. Т. пл. 191–193 °C. Спектр ЯМР ¹Н, δ, м. д. (***J***, Гц): 8.02 (1Н, д, J = 7.9, H-5); 7.54 (1Н, т, J = 7.4, H-7); 7.49 (1Н, д, J = 8.1, H-8); 7.28 (1Н, т, J = 7.4, H-6); 5.20 (1H, м, CHO); 3.91 (1H, д. д, J = 11.2 и J = 4.3, CHBr); 3.83 (1H, д. д, J = 11.2 и J = 5.2, CHBr); 3.32 (1H, д. д, J = 15.7 и J = 9.5, H-3); 2.94 (1H, д. д, J = 15.7 и J = 6.2, H-3). Спектр ЯМР ¹³С, δ, м. д.: 165.1 (С_(9a) + C=O), 142.5 (С_(8a)), 130.7 (С₍₇₎), 123.9 (С₍₅₎), 123.4 (С₍₆₎), 122.6 (С_(4a)), 120.6 (С₍₈₎), 100.1 (С_{(3a})), 81.5 (CHO), 37.4 (CH₂Br), 31.1 (С₍₃₎). Масс-спектр,** *m/z* **(I_{orn}, %): 280 [M + H]⁺ (100), 200 [M–Br + H]⁺ (5). Найдено, %: C 51.53; H 3.69; N 5.06. C₁₂H₁₀BrNO₂. Вычислено, %: C 51.45; H 3.60; N 5.00.**

Рентгеноструктурное исследование. Кристаллы 3-аллилзамещенного хинолона 1 тетрагональные (этанол), при 20 °C: a = 10.551(1), c = 18.505(3) Å, V = 2059.9(4) Å³, $M_r = 201.22$, Z = 8, пространственная группа $P4_32_12$, $d_{выч} = 1.298$ г/см³, μ (Мо $K\alpha$) = 0.089 мм⁻¹, F(000) = 848. Параметры элементарной ячейки и интенсивности 18 451 отражения (3000 независимых, $R_{int} = 0.044$) измерены на автоматическом четырехкружном дифрактометре Xcalibur-3 (Мо $K\alpha$ излучение, ССD-детектор, графитовый монохроматор, ω -сканирование,

^{*} Для соединений 5 и 6 приведены значения *m/z* только для изотопа⁷⁹Br.

 $^{2\}theta_{max} = 60^\circ$). Структура расшифрована прямым методом по комплексу программ SHELXTL

[15]. Положения атомов водорода выявлены из разностного синтеза электронной плотности и уточнены изотропно. Структура уточнена по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов до $wR_2 = 0.088$ по 2978 отражениям ($R_1 = 0.039$ по 1750 отражениям с $F > 4\sigma(F)$, S = 0.859). Полная кристаллографическая информация депонирована в Кембриджском банке структурных данных – депонент № ССDС 619708. Межатомные расстояния и валентные углы представлены в табл. 3 и 4.

СПИСОК ЛИТЕРАТУРЫ

- 1. И. В. Украинец, Л. В. Сидоренко, Е. Н. Свечникова, О. В. Шишкин, ХГС, 1503 (2007).
- И. В.Украинец, Л. В. Сидоренко, О. В. Горохова, С. В. Шишкина, А. В. Туров, XГС, 736 (2007). [Chem. Heterocycl. Comp., 43, 617 (2007)].
- 3. И. В. Украинец, Н. Л. Березнякова, В. А. Паршиков, А. В. Туров, ХГС, 1496 (2007).
- 4. И. В. Украинец, Н. Л. Березнякова, О. В. Горохова, А. В. Туров, С. В. Шишкина, *XГС*, 1180 (2007). [*Chem. Heterocycl. Comp.*, **43**, 1001 (2007)].
- 5. И. В. Украинец, Н. Л. Березнякова, А. В. Туров, С. В. Слободзян, *ХГС*, 1365 (2007). [*Chem. Heterocycl. Comp.*, **43**, 1159 (2007)].
- И. В. Украинец, С. Г. Таран, О. А. Евтифеева, О. В. Горохова, Н. И. Филимонова, A. В. Туров, XTC, 204 (1995). [Chem. Heterocycl. Comp., 31, 176 (1995)].
- 7. И. В. Украинец, Л. В. Сидоренко, О. В. Горохова, Е. В. Моспанова, О. В. Шишкин, *ХГС*, 718 (2006). [*Chem. Heterocycl. Comp.*, **42**, 631 (2006)].
- И. В. Украинец, А. А. Ткач, Л. В. Сидоренко, О. В. Горохова. XГС, 1508 (2006). [Chem. Heterocycl. Comp., 42, 1301 (2006)].
- 9. Ю. В. Зефиров, Кристаллография, 42, 936 (1997).
- 10. H.-B. Burgi, J. D. Dunitz, Structure Correlation, VCH, Weinheim, 1994, vol. 2, p. 741.
- 11. L. Jurd, M. Benson, R. Y. Wong, Aust. J. Chem., 36, 759 (1983).
- И. В. Украинец, С. Г. Таран, О. Л. Каменецкая, О. В. Горохова, Л. В. Сидоренко, A. В. Туров, XTC, 1532 (2000). [Chem. Heterocycl. Comp., 36, 1319 (2000)].
- П. Б. Терентьев, А. П. Станкявичус, Масс-спектрометрический анализ биологически активных азотистых оснований, Мокслас, Вильнюс, 1987, с. 255.
- И. В. Украинец, С. Г. Таран, О. А. Евтифеева, О. В. Горохова, П. А. Безуглый, А. В. Туров, Л. Н. Воронина, Н. И. Филимонова, *XTC*, 673 (1994). [*Chem. Heterocycl. Comp.*, **30**, 591 (1994)].
- 15. G. M. Sheldrick, SHELXTL PLUS. PC Version. A System of Computer Programs for the Determination of Crystal Structure from X-ray Diffraction Data. Rev. 5.1 (1998).

Национальный фармацевтический университет, Харьков 61002, Украина e-mail: uiv@kharkov.ua Поступило 25.06.2006

^аКиевский национальный университет им. Тараса Шевченко, Киев 01033, Украина e-mail: nmrlab@univ.kiev.ua