В. И. Теренин, А. С. Иванов

ВЛИЯНИЕ ТРИФТОРАЦЕТИЛЬНОЙ ГРУППЫ НА НАПРАВЛЕНИЕ РЕЦИКЛИЗАЦИИ ПИРАЗИНОВОГО ЯДРА В СОЛЯХ 6-ТРИФТОРАЦЕТИЛПИРРОЛО[1,2-*a*]ПИРАЗИНОВ

Обнаружена и исследована циклотрансформация 6-трифторацетилпирроло[1,2-*a*]пиразиниевых солей с участием карбонильного атома углерода трифторацетильной группы.

Ключевые слова: пирроло[1,2-*а*]пиразин, пирроло[1,2-*а*]пиразинон-1, циклотрансформация.

Енаминовая перегруппировка пиразинового ядра была ранее продемонстрирована на примере бициклической ароматической системы пирроло[1,2-*a*]пиразина [1]. Установлено, что 1-алкил- и 1-аралкилпроизводные под действием спиртовых растворов алкиламинов рециклизуются в 8-алкиламиноиндолизины. Известно, что введение акцепторных заместителей в исходный азацикл повышает электрофильность последнего и, как следствие, облегчает его раскрытие под действием нуклеофила [2].

В этой работе мы показали, что под действием спиртовых растворов метиламина 6-трифторацетилпирроло[1,2-*a*]пиразиниевые соли **1а**–**c**, содержащие в первом положении метиленовую группу, превращаются в 3-трифторацетил-8-метиламиноиндолизины при более низкой температуре (70 °C), чем 1-алкил- или 1-аралкилзамещенные аналоги (140 °C). Помимо классических продуктов перегруппировки Коста–Сагитуллина **2а–с** в данной реакции образуются 6-ацилпирроло[1,2-*a*]пиразиноны-1 **3а,b,d–g**.

1, 3 a R = Et, **b** R = *n*-Pr, **d** R = *i*-Pr, **e** R = *cyclo*-C₅H₉, **f** R = Ph, **g** R = 2-тиенил; **1 c** R = PhCH₂; **2 a** R¹ = Me, **b** R¹ = Et, **c** R¹ = Ph

Соли **1а,b**, содержащие в положении 1 метиленовую группу, участвуют в двух параллельных циклотрансформациях, приводя к смеси 8-метиламиноиндолизинов **2а,b** и пирроло[1,2-*a*]пиразинонов-1 **3а,b**.

Изменение условий проведения реакции существенно влияет на соотношение продуктов рециклизации. При более высокой температуре (140 °C) в реакционных смесях преобладают индолизины **2a**,**b**, при низкой (30 °C) – 1,2-дигидропирроло[1,2-*a*]пиразиноны-1 **3a**,**b**, что, вероятно, 1714

определяется соотношением скоростей двух независимых процессов, приводящих к продуктам принципиально разных циклотрансформаций.

Раскрытие пиразинового цикла происходит под действием водных растворов самых разнообразных N-нуклеофилов (NH₂NH₂, NH₂OH, (CH₂NH₂)₂, EtNH₂) и завершается, следуя данным TCX, образованием 2-метилпроизводных 1,2-дигидропирроло[1,2-*a*]пиразинонов-1, что указывает на внутримолекулярный характер преобразования азацикла.

Если в качестве реагента в реакции с солями **1**а,**b**,**d**–**g** использовать водный раствор метиламина, то образуются только продукты рециклизации с участием карбонильного атома углерода трифторацетильной группы.

Перегруппировка солей **1d**–**g**, не содержащих в положении 1 метиленовой группы, под действием как водного так и спиртового растворов метиламина приводит только к пирроло[1,2-*a*]пиразинонам-1 **3d**–**g**.

При взаимодействии метилиодидов 1-изопропил-6-трифторацетилпирроло[1,2-*a*]пиразиния (1d) или 1-циклопентилпирроло[1,2-*a*]пиразиния (1e) с метиламином не наблюдалось образования продуктов рециклизации с участием метиновой группы [3]. Это, вероятно, определяется более высокой скоростью циклизации на трифторацетильную группу по сравнению с возможным конкурирующим процессом.

Взаимодействие метилиодида 1-бензил-6-трифторацетилпирроло[1,2-*a*]пиразиния (1c) со спиртовым раствором метиламина дает только 7-фенил-8-метиламино-6-трифторацетилиндолизин (2c), поскольку скорость образования последнего значительно выше конкурирующего процесса циклизации с участием карбонильного атома углерода трифторацетильной группы.

С водным раствором метиламина соединение 1с, вследствие повышенной СН кислотности метиленовой группы, образует устойчивое ангидрооснование 4, которое в условиях енаминовой перегруппировки солей пирроло[1,2-*a*]пиразиния не подвергается рециклизации даже при длительном нагревании (20 ч, 140 °C).

В литературе описан случай образования ангидрооснования из метилиодида 1,2-диметилбензо[*b*]тиено[2,3-*c*]пиридина под действием метанольного раствора метиламина, которое в результате длительного нагревания (10 ч, 100 °C) не подвергается перегруппировке Коста–Сагитуллина [4].

Механизм исследуемых реакций включает первичную атаку нуклеофила по первому или третьему положению пирроло[1,2-*a*]пиразинового ядра. Предпочтительность нуклеофильной атаки не очевидна, но при взаимодействии водного раствора метиламина с метилиодидом 6-трифторацетил-1-изопропилпирроло[1,2-*a*]пиразиния (1d) при комнатной температуре был выделен неустойчивый *σ*-аддукт **5**.

В спектре ЯМР ¹Н σ-аддукта **5** сигналы протонов пиразинового ядра наблюдаются в более сильном поле, чем те же сигналы протонов 6-трифторацетил-1-изопропилпирроло[1,2-*a*]пиразина, а КССВ становятся больше, что указывает на неароматический характер азацикла. В сильнопольной части спектра наблюдаются сигналы двух диастереотопных метильных заместителей, относящихся к изопропильной группе, которая находится рядом с асимметрическим центром.

Раскрытие пиразинового ядра при атаке нуклеофила как по первому, так и по третьему положению пиразинового цикла приводит к ациклическим интермедиатам **A** и **B**, которые участвуют в двух параллельно протекающих циклотрансфомациях. Результатом внутримолекулярной циклизации интермедиата **B** является промежуточное соединение **C**, последующее восстановление ароматичности которого приводит к продукту **2**.

1716

Второй путь реализуется в результате атаки енаминового азота интермедиата **A** на карбонильный атом углерода трифторацетильной группы с образованием интермедиата **D**, который вследствие необычного отщепления трифторметана дает продукт **3**.

Приведенная схема согласуется с влиянием реакционной среды на путь протекания перегруппировки. В водных растворах иминный компонент интермедиата **A** гидролизуется до соответствующего кетона, в этом случае образование **B** или его енольного аналога либо невозможно (при $CH_2R = Ph$ или 2-тиенил), либо идет гораздо медленнее атаки енаминового компонента на трифторацетильную группу, приводящей к соединению **3**.

Нуклеофильная рециклизация, протекающая как обмен экзоциклических углеродных фрагментов на циклические, ранее была реализована на примере этилового эфира никотиновой кислоты [5] и включала обмен одного атома C₍₁₎ на другой атом C₍₂₎.

Циклотрансформация пирроло[1,2-*a*]пиразиниевых солей **1a**,**b**,**d**–**g** в 6-ацил2-метилпирроло[1,2-*a*]пиразиноны-1 **3a**,**b**,**d**–**g** проходит как обмен двух атомов $C_{(1)}-C_{(2)}$, находящихся в цикле, на два экзоциклических атома $C_{(3)}-C_{(4)}$.

Таким образом, обнаруженная перегруппировка принадлежит к неизвестному ранее структурному типу и является новым способом получения ряда 6-ацилпирроло[1,2-*a*]пиразинонов-1.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н зарегистрированы на спектрометре Varian VXR-400 и Bruker Avance 400 (400 МГц) в CDCl₃ при температуре 28 °C, внутренний стандарт ТМС. Масс-спектры записаны на приборе Kratos MS-90, энергия ионизации ЭУ 70 эВ. ИК спектры получены на спектрометре UR-20, пленка в CCl₄. Контроль за прохождением реакций и чистотой продуктов осуществлялся при помощи TCX на пластинках Silufol в системах бензол, бензол–этилацетат, 1:1.

Получение 2-метилиодидов-6-трифторацетилпирроло[1,2-а]пиразиния 1а– (общая методика). Смесь 3 ммоль соответствующего 1-алкил-, 1-арил- или 1-аралкил-6-трифторацетилпирроло[1,2-*а*]пиразина и 5 мл иодистого метила нагревают 5–7 ч в запаянной ампуле при 70 °С до выпадения осадка. Осадок отфильтровывают, промывают несколько раз горячим гептаном. **Получение продуктов 2а-с и За,b,d-g** (общая методика). А. Смесь 1 ммоль четвертичной соли **1а-g** и 5 мл 40% раствора метиламина в абсолютном этаноле нагревают в запаянной стеклянной ампуле в течение 3–5 ч. Реакционную смесь упаривают, остаток делят при помощи колоночной хроматографии на силикагеле 35/70 в бензоле с увеличением полярности элюента до бензол-этилацетат, 1:2.

Получение продуктов За,b,d–g (общая методика). Б. Смесь 1 ммоль четвертичной соли **1а–g** и 5 мл 40% раствора водного метиламина нагревают в запаянной стеклянной ампуле на водяной бане в течение нескольких минут до полного растворения соли. Реакционную смесь оставляют на 1 сут при комнатной температуре до выпадения осадка. Осадок отфильтровывают, перекристаллизовывают из ацетона и сушат на стеклянном фильтре. В случае соли **1с** образующееся ангидрооснование **4** в виде темно-бордового осадка отфильтровывают и перекристаллизовывают из гептана.

7-Метил-8-метиламино-6-трифторацетилиндолизин (2а). Т. пл. 118–120 °С (из гексана). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 2.31 (3H, с, CH₃); 3.15 (3H, с, NHCH₃); 6.72 (1H, д, *J* = 5.5, H-1); 6.83 (1H, д, *J* = 6.9, H-6); 7.56 (1H, д. к, *J* = 5.5, *J* = 2.1, H-2); 9.45 (1H, д, *J* = 6.9, H-5). Масс-спектр, *m*/*z* (*I*_{0TH}, %): 256 [M]⁺ (100); 187 [M–CF₃]⁺ (57); 159 [M–COCF₃]⁺ (46). Найдено, %: С 56.35; H 4.21; N 10.85. С₁₂H₁₁F₃N₂O. Вычислено, %: С 56.25; H 4.29; N 10.93.

7-Этил-8-метиламино-6-трифторацетилиндолизин (2b). Т. пл. 112–114 °С (из гексана). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.27 (3H, т, *J* = 7.6, CH₂CH₃); 2.66 (2H, к, *J* = 7.6, CH₂CH₃); 3.12 (3H, с, NHCH₃); 6.73 (1H, д. д, *J* = 5.6, *J* = 0.5, H-1); 6.87 (1H, д, *J* = 6.9, H-6); 7.56 (1H, д. к, *J* = 5.6, *J* = 2.3, H-2); 9.50 (1H, д, *J* = 6.9, H-5). Масс-спектр, *m/z* ($I_{\text{отн}}$, %): 270 [M]⁺ (100); 201 [M–CF₃]⁺ (44); 158 [M–COCF₃]⁺ (98). Найдено, %: С 57.41; H 4.81; N 10.21. C₁₃H₁₃F₃N₂O. Вычислено, %: С 57.77; H 4.81; N 10.37.

7-Фенил-8-метиламино-6-трифторацетилиндолизин (**2**с). Т. пл. 68–70 °С (из пентана). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 2.99 (3H, с, NHCH₃); 4.1 (1H, уш. с, NH); 6.84 (1H, д, J = 5.2, H-1); 6.83 (1H, д, J = 6.9, H-6); 7.44–7.59 (5H, м, C₆H₅); 7.62 (1H, д. к, J = 5.2, J = 2.3, H-2); 9.50 (1H, д, J = 6.9, H-5). Спектр ЯМР ¹³С, δ, м. д. (*J*, Гц): 34.9 (NHCH₃); 104.6 (C₍₁₎); 117.9 (C₍₃₎); 118.0 (к, J = 289, CF₃); 118.6 и 121.2 (C₍₅₎ и C₍₆₎); 124.5 (к, $J_{C-F} = 3.8$, C₍₂₎); 124.9 (C_{(8a})); 128.2 (*p*-C₆H₅); 128.8 и 129.2 (*m*-, *o*-C₆H₅); 135.4 (*ipso*-C₆H₅); 137.3 (C₍₇₎); 137.8 (C₍₈)); 160.6 (к, $J_{C-F} = 36.0$, C=O) Масс-спектр, *m/z* ($I_{0тв}$, %): 318 [M]⁺ (100); 249 [M–CF₃]⁺ (41); 159 [M–COCF₃]⁺ (33). Найдено, %: С 64.52; Н 3.83; N 8.81. C₁₇H₁₃F₃N₂O. Вычислено, %: С 64.15; H 4.08; N 8.80.

6-Пропионил-2-метилпирроло[1,2-*а*]пиразинон (3a). Т. пл. 223–225 °С (из ацетона). ИК спектр, v, см⁻¹: 1640, 1660, 1680 (С=О, С=С). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.25 (3H, т, *J* = 7.3, C(O)CH₂CH₃); 2.94 (2H, к, C(O)CH₂CH₃); 3.51 (3H, с, NCH₃); 6.55 (1H, д, *J* = 6.0, H-3); 7.11 (1H, д, *J* = 4.3, H-8); 7.26 (1H, д, *J* = 4.3, H-7); 8.55 (1H, д, *J* = 6.0, H-4). Массспектр, *m/z* ($I_{\text{отн}}$, %): 204 [M]⁺ (64), 175 (100), 151 (57), 120 (80). Найдено, %: C 63.78; H 5.20; N 12.67. C₁₁H₁₂N₂O₂. Вычислено, %: C 63.70; H 5.92; N 12.63.

6-Бутирил-2-метилпирроло[1,2-*а***]пиразинон (3b).** Т. пл. 198–200 °С (из ацетона). ИК спектр, v, см⁻¹: 1640, 1680 (С=О, С=С). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 1.03 (3H, т, *J* = 7.6, C(O)CH₂CH₂CH₃); 1.77 (по 2H, м, C(O)CH₂CH₂CH₃); 2.86 (2H, т, *J* = 7.6, C₍₆₎C(O)C<u>H</u>₂CH₂CH₃); 3.51 (3H, с, NCH₃); 6.54 (1H, д, *J* = 5.9, H-3); 7.10 (1H, д, *J* = 4.1, H-8); 7.24 (1H, д, *J* = 4.1, H-7); 8.57 (1H, д, *J* = 5.9, H-4). Масс-спектр, *m/z* ($I_{\text{отн}}$, %): 218 [M]⁺ (77), 190 (37), 175 (100), 147 (40). Найдено, %: С 66.04; Н 6.74; N 12.84. C₁₂H₁₄N₂O₂. Вычислено, %: С 66.04; Н 6.47; N 12.83.

6-Изобутирил-2-метилпирроло[1,2-а]пиразинон (3d). Т. пл. 150–153 °С (из ацетона). ИК спектр, v, см⁻¹: 1640, 1670 (С=О, С=С). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.23 (6Н, д, *J* = 6.9, С(О)СН(С<u>Н</u>₃)₂); 3.38 (1Н, м, С(О)С<u>Н</u>(СН₃)₂); 3.55 (3H, с, NCH₃); 6.53 (1Н, д, *J* = 6.4, H-3); 7.23 (1Н, д, *J* = 4.0, H-8); 7.24 (1Н, д, *J* = 4.0, H-7); 8.58 (1Н, д, *J* = 6.4, H-4). Массспектр, *m/z* (*I*_{0тн}, %): 218 [М]⁺ (100), 175 (92), 147 (35). Найдено, %: С 66.25; Н 6.41; N 13.09. С₁₂Н₁₄N₂O₂. Вычислено, %: С 66.04; Н 6.47; N 12.83.

6-Циклопентилкарбонил-2-метилпирроло[1,2-*а*]пиразинон (3e). Т. пл. 93–94 °С (из ацетона). ИК спектр, v, см⁻¹: 1630, 1670 (С=О, С=С). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.10–1.25 (8H, м, C(O)CH(C<u>H</u>₂)₄); 3.41 (1H, м, C(O)C<u>H</u>(CH₂)₄); 3.53 (3H, с, NCH₃); 6.52 (1H, д, *J* = 6.2, H-3); 7.22 (1H, д, *J* = 4.0, H-8); 7.23 (1H, д, *J* = 4.0, H-7); 8.56 (1H, д, *J* = 6.2, H-4). Масс-спектр, *m*/*z* (I_{0TH} , %): 244 [M]⁺ (29), 175 (100), 147 (22), 124 (38). Найдено, %: C 63.40; H 6.60; N 10.95. С₁₄H₁₆N₂O₂. Вычислено, %: C 63.83; H 6.60; N 11.46.

Выходы продуктов рециклизации

Исходная соль	Продукт	Выход, %				
		(с, MeNH ₂ спирт.) при Т, °С			(с, MeNH ₂ водн.) при Т, °С	
		30	70	140	30	70
1 a	2a	10	49	45	_	_
	3a	39	11	6	35	49
1b	2b	15	40	44		
	3b	50	25	10	28	56
1c	2c	60	69	70	_	-
1d	3d	45	43	40	40	52
1e	3e	50	47	45	43	55
1f	3f	47	36	27	78	81
1g	3g	44	39	25	55	60

6-Безоил-2-метилпирроло[1,2-*а***]пиразинон (3f)**. Т. пл. 211–212 °С (из ацетона). ИК спектр, v, см⁻¹: 1630, 1680 (С=О, С=С). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 3.55 (3H, с, NCH₃); 6.60 (1H, д, J = 6.1, H-3); 7.09 (1H, д, J = 3.9, H-8); 7.13 (1H, д, J = 3.9, H-7); 7.50 (2H, т, J = 7.4, H (*m*-C₆H₅)); 7.60 (1H, т. т, J = 7.4, J = 1.2, H (*n*-C₆H₅)); 7.82 (2H, м, H (*o*-C₆H₅)). Масс-спектр, *m*/*z* (*I*_{отн}, %): 252 [M]⁺ (100), 175 (57), 105 (50). Найдено, %: С 71.21; H 4.74; N 10.90. C₁₅H₁₂N₂O₂. Вычислено, %: С 71.42; H 4.79; N 11.11.

6-Теноил-2-метилпирроло[1,2-*а***]пиразинон (3g)**. Т. пл. 205–206 °С (из ацетона). ИК спектр, v, см⁻¹: 1630, 1680 (С=О, С=С). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 3.54 (3H, с, NCH₃); 6.58 (1H, д, J = 6.0, H-3); 7.17 (1H, д, J = 4.2, H-8); 7.17 (1H, д, J = 4.2, H-7); 7.20 (1H, д. J = 4.0, J = 2.7, H (β'-Th)); 7.39 (1H, д, J = 4.2, H-7); 7.71 (1H, д, J = 4.0, H (α-Th)); 7.84 (1H, д, J = 2.7, H (β-Th)); 8.42 (1H, д, J = 6.0, H-4). Масс-спектр, m/z (I_{0TH} , %): 260 [M+2]⁺ (6), 258 [M]⁺ (100), 175 (43), 120 (44), 111 (85). Найдено, %: С 60.38; H 3.86; N 9.25. С₁₃H₁₀N₂O₂S. Вычислено, %: С 60.46; H 3.87; N 9.30.

1-Бензилиден-6-трифторацетил-1,2-дигидропирроло[1,2-*а***]пиразин (4). Т. пл. 145–146 °С (из гексана). ИК спектр, v, см⁻¹: 1650 (С=О). Спектр ЯМР ¹Н, \delta, м. д. (***J***, Гц): 3.18 (3H, с, NCH₃); 5.50 (1H, с, С₍₁₎= CH); 5.71 (1H, д,** *J* **= 4.7, H-8); 6.20 (1H, д,** *J* **= 6.0, H-3); 7.00 (1H, д. к,** *J* **= 4.7,** *J***_{H-F} = 2.2, H-7); 7.20–7.40 (5H, м, H (C₆H₅)); 7.70 (1H, д,** *J* **= 6.0, H-4). Масс-спектр,** *m/z* **(***I***_{отн}, %): 318 [M]⁺ (36), 205 (15), 91 (100). Найдено, %: С 64.12; H 4.01; N 8.75. С₁₇H₁₃F₃N₂O. Вычислено, %: С 64.15; Н 4.08; N 8.80. Выход 71% (при проведении реакции при 30 °С).**

1-Метиламино-1-изопропил-2-метил-1,2-дигидротрифторацетилпирроло[1,2-*а***]пиразин (5). Спектр ЯМР ¹Н, \delta, м. д. (J, Гц): 0.87 и 0.98 (по 3Н, оба д, J = 6.9, CH(CH₃)₂); 2.15 (1H, м, C<u>H</u>(CH₃)₂); 2.20 (3H, с, NHCH₃); 2.83 (3H, с, NCH₃); 6.04 (1H, д, J = 6.0, H-3); 6.17 (1H, д, J = 4.4, H-8); 7.12 (1H, д, J = 6.0, H-4); 7.16 (1H, м, H-7). Выход 67%.**

СПИСОК ЛИТЕРАТУРЫ

- 1. В. И. Теренин, Е. В. Кабанова, Е. С. Феоктистова, Ю. Г. Бундель, *XTC*, 921 (1992). [*Chem. Heterocycl. Comp.*, **28**, 766 (1992)].
- 2. Р. С. Сагитулин, С. П. Громов, А. Н. Кост, ДАН, 236, 634 (1977).
- 3. В. И. Теренин, А. С. Иванов, *ХГС*, 1551 (2005). [*Chem. Heterocycl. Comp.*, **41**, 1300 (2005)].
- 4. Т. В. Ступникова, А. Р. Кирилаш, Н. А. Клюев, *XTC*, 398 (1987). [*Chem. Heterocycl. Comp.*, **23**, 335 (1987)].
- 5. Г. П. Шкиль, Л. Б. Бердович, В. Лусис, Д. Муцениеце, Р. С. Сагитулин, *XFC*, 86 (1995). [*Chem. Heterocycl. Comp.*, **31**, 76 (1995)].

Московский государственный университет им. М. В. Ломоносова, Москва 119899, Россия e-mail: vter@org.chem.msu.ru Поступило 09.06.2006