К. С. Чунихин, Л. А. Родиновская, А. М. Шестопалов

СИНТЕЗ 2-АМИНО-4-АРИЛ-5-ГИДРОКСИМИНО-3-ЦИАНО-4,5-ДИГИДРОТИОФЕНОВ

Исследованы реакции присоединения по Михаэлю цианотиоацетамида к нитростиролам, получены ранее не известные 2-амино-4-арил-5-гидроксимино-3-циано-4,5-дигидротиофены.

Ключевые слова: Нитростиролы, цианотиоацетамид, михаэлевское присоединение.

Алифатические нитросоединения представляют интерес как реакционноспособные исходные вещества в синтезе гетероциклов, как содержащих нитрогруппу, так и без нее [1]. Нами было проведено систематическое изучение реакций α -карбонильных и α , β -непредельных нитросоединений с различными СН-нуклеофилами, определена их региоселективность, зависящая от строения исходных соединений и условий реакции. Показано, что продуктами реакций нитросоединений с СН-нуклеофилами могут быть как ациклические соединения, так и гетероциклы ряда индолизина, тиофена, пиридина [2–5].

Нами установлено, что реакция между нитростиролами **1а**–е, цианотиоацетамидом **2** и эквивалентом тетраметилэтилендиамина (ТМЭДА) или морфолина протекает в этаноле при комнатной температуре с образованием соединений **3а**–**f** с выходами 30–60%.

1a, **3a**, **f** Ar = Ph; **1**, **3 b** Ar = 4-ClC₆H₄, **c** Ar = 2-C₄H₃S, **d** Ar = 4-FC₆H₄, **e** Ar = 4-MeOC₆H₄; **3 a–e** B = 0.5(Me₂NCH₂CH₂NMe₂), **f** B = HN \bigcirc O

Соединения **3а**-**f** являются комплексами 2-амино-4-арил-5-гидроксиимино-3-циано-4,5-дигидротиофенов с основаниями в соотношении 2 : 1 в случае ТМЭДА (**3а**-**e**) и 1:1 в случае морфолина (**3f**). Проведение этой реакции в этиловом эфире позволяет получать соединения **3а**-**f** с выходами 50–80% [6]. Дальнейшее изучение реакции показало, что могут быть выделены соединения, не содержащие связанного в комплекс основания. Так, непродолжительное кипячение нитростирола 1а с цианотиоацетамидом 2 в ацетонитриле в присутствии каталитических количеств морфолина приводит к образованию 2-амино-4-арил-5-гидроксимино-3-циано-4,5-дигидротиофена 4a с почти количественным выходом. Нам также удалось получить соединения 4b-е с высокими выходами при перемешивании соответствующих нитростиролов 1a-d,f с цианотиоацетамидом 2 в этаноле при комнатной температуре с добавлением каталитических количеств морфолина.

1, 4 a Ar = Ph, **b** Ar = 4-ClC₆H₄, **c** Ar = 2-C₄H₃S, **d** Ar = 4-FC₆H₄; **1f**, **4e** Ar = 4-BrC₆H₄

Механизм реакции включает, по-видимому, первоначальное присоединение цианотиоацетамида 2 к нитростироам 1 по реакции Михаэля с образованием аддукта 5 и последующую внутримолекулярную циклизацию с участием ациформы нитросоединения 6. При наличии достаточного количества основания тиофены 4 превращаются в комплексы 3.

Известно, что нитростиролы способны присоединять различные нуклеофилы, например СН-кислоты, по реакции Михаэля [7]. В то же время известно, что цианотиоацетамид благодаря СН-кислотности используется в синтезах серусодержащих гетероциклов [8].

До настоящего времени синтез 2-амино-3-циано-4,5-дигидротиофенов 1473

был представлен несколькими примерами [9–12], и образование соединений **3** и **4** было достаточно неожиданным. Ожидаемыми продуктами были 2,5-диамино-4-арил-3-цианотиофены [13]. Ранее нами были получены 2N-ацилированные производные 2,5-диамино-4-арил-3-цианотиофенов [4] на основе михаэлевского присоединения α-нитрокетонов к арилметиленцианотиоацетамидам. Соединения ряда 2-амино-3-цианотиофена представляют интерес как биологически активные соединения [14] и как исходные в синтезе аннелированных гетероциклов [15]. Реакция тиоамидов с нитростиролами практически не изучена. Известны два примера взаимодействия [16, 17] β-нитростиролов с N-арилзамещенными тиоамидами 3-оксопропионовых кислот с образованием 4-арил-2-ариламино-3-ароил-5-гидроксимино-4,5-дигидротиофенов.

Таблица 1

Со- еди-	Брутто-	<u>Найдено, %</u> Вычислено, %				Т. пл.,	Выход,
не- ние	формула	С	Н	Ν	S	°C	(метод)
3 a	$C_{28}H_{34}N_8O_2S_2$	<u>57.94</u> 58.11	<u>5.67</u> 5.92	<u>19.21</u> 19.36	<u>10.87</u> 11.08	127–128	59 (А), 70 (Б)
3b	$C_{28}H_{32}Cl_2N_8O_2S_2$	<u>51.79</u> 51.93	<u>4.78</u> 4.98	$\frac{17.17}{17.30}$	<u>9.78</u> 9.90	114–115	23 (А), 80 (Б)
3c	$C_{24}H_{30}N_8O_2S_4\\$	<u>48.59</u> 48.79	<u>4.97</u> 5.12	<u>19.21</u> 18.97	<u>21.87</u> 21.71	127–128	56 (А), 65 (Б)
3d	$C_{28}H_{32}F_2N_8O_2S_2$	<u>54.59</u> 54.71	<u>5.07</u> 5.25	<u>18.31</u> 18.23	$\frac{10.27}{10.43}$	124–125	25 (A)
3e	$C_{30}H_{38}N_8O_4S_2\\$	<u>56.29</u> 56.41	<u>6.07</u> 6.00	<u>17.37</u> 17.54	<u>9.87</u> 10.04	138–139	53 (А), 65 (Б)
3f	$C_{15}H_{18}N_4O_2S$	<u>56.49</u> 56.58	<u>5.77</u> 5.70	<u>17.71</u> 17.60	<u>9.88</u> 10.07	135–136	56 (A)
4 a	$C_{11}H_9N_3OS$	<u>57.19</u> 57.13	<u>3.97</u> 3.92	<u>18.01</u> 18.17	<u>13.67</u> 13.86	154–155	98 (А), 75 (Б)
4b	C ₁₁ H ₈ ClN ₃ OS	<u>50.01</u> 49.72	<u>3.18</u> 3.03	<u>15.97</u> 15.81	<u>12.16</u> 12.07	144–145	80 (Б)
4c	$C_9H_7N_3OS_2$	<u>45.59</u> 45.55	<u>2.92</u> 2.97	<u>17.41</u> 17.71	<u>27.17</u> 27.02	147–148	78 (Б)
4d	C ₁₁ H ₈ FN ₃ OS	<u>53.09</u> 53.00	<u>3.07</u> 3.23	<u>16.51</u> 16.86	<u>12.77</u> 12.86	153–154	75 (Б)
4 e	C ₁₁ H ₈ BrN ₃ OS	<u>42.39</u> 42.60	<u>2.27</u> 2.60	<u>13.71</u> 13.55	<u>10.57</u> 10.34	155–156	78 (Б)

Характеристики соединений За-f, 4а-е

Таблица 2

Соеди-	ИК спектр, v, см ⁻¹				Спектр ЯМР ¹ Н, δ, м. д. (³ <i>J</i> , Гц)				
нение	CN	NH ₂ ,	C=NOH	OH	NH ₂ , (2H, c)	OH, (1H, c)	Ar, Alk	C(4)H, (1H, c)	основание
3a	2200	1632	1592		7.45	11.53	7.21–7.39 (5Н, м)	5.09	2.14 (6H, c); 2.30 (2H, c)
3 b	2192	1640	1590		7.49	11.58	7.25 (2Н, м), 7.41 (2Н, с)	5.14	2.12 (6H, c); 2.31 (2H, c)
3c	2192	1632	1584		7.52	11.54	7.00 (2Н, м), 7.35 (1Н, м)	5.39	2.12 (6H, c); 2.31 (2H, c)
3d	2192	1636	1592		7.39	11.42	7.10 (2Н, м), 7.29 (21Н, м)	5.13	2.12 (6H, c); 2.31 (2H, c)
3e	2190	1638	1580		7.44	11.51	3.80 (3H, c, CH ₃), 6.91 (2H, д, <i>J</i> = 7.8, Ar), 7.08 (2H, д, <i>J</i> = 7.8, Ar)	5.01	2.12 (6H, c); 2.31 (2H, c)
3f*	2200	1632	1592		7.45	11.53	7.21–7.39 (5Н, м)	5.09	2.65 (4Н, м); 3.48 (4Н, м)
4 a	2200	1632	1592	3432	7.45	11.53	7.21–7.39 (5Н, м)	5.09	
4b	2188	1628	1584	3620	7.49	11.58	7.25 (2H, д, <i>J</i> = 7.7, Ar), 7.41 (2H, д, <i>J</i> = 7.7, Ar)	5.12	
4c	2196	1628	1584	3428	7.45	11.54	7.00 (2Н, м), 7.45 (1Н, м)	5.39	
4d	2196	1628	1584	3628	7.52	11.62	7.10–7.30 (4Н, м)	5.13	
4e	2188	1632	1580	3612	7.41	11.53	7.21 (2H, д, <i>J</i> = 7.8, Ar), 7.59 (2H, д, <i>J</i> = 7.8, Ar)	5.09	

ИК и ЯМР ¹Н спектры синтезированных соединений

* Спектр ЯМР 13 С, δ , м. д.: 45.74 и 67.00 (С_{морфолин}); 53.40 (С-3); 69.49 (С-4); 117.51 (С=N); 127.50; 128.76; 141.10 (С₆H₅); 153.85 (СNH₂); 158.56 (С=NOH).

1475

Строение соединений **3**а–**f** и **4**а–е установлено методами ИК и ЯМР ¹Н спектроскопии. В спектрах ЯМР ¹Н кроме сигналов арильных протонов присутствуют сигналы аминогруппы в области 7.39–7.52 м. д., близкие к данным, полученным для 4,5-дигидро-2-амино-3-цианотиофенов (7.12–7.30 м. д.) [11]. Характерными для соединений **3**а–**f** и **4**а–е являются сигналы С(4)Н-протонов в области 5.01–5.39 м. д., наблюдаемые у 4-арил-2-ариламино-3-аро- ил-5-гидроксимино-4,5-дигидротиофенов [16, 17]. В спектрах ЯМР ¹Н на-блюдаются также уширенные синглеты групп ОН в интервале 11.42–11.58 м. д. В ИК спектрах присутствуют интенсивные полосы поглощения сопряжен-ной нитрильной группы в области 2188–2200 и аминогруппы в области 1628–1640 см⁻¹, характерные для 4,5-дигидро-2-амино-3-цианотиофенов [11]. Гидроксигруппа соединений **4**а–е проявляется в области 3432–3620, а двойная связь С=NOH в интервале 1580–1592 см⁻¹, что соответствует литературным данным [18].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Температуры плавления полученных соединений определяли на столике Кофлера, ИК спектры регистрировали на приборе Perkin–Elmer 577 в таблетках КВг, спектры ЯМР ¹Н – на спектрометре Brucker WM-250 (250 МГц) в ДМСО-d₆, стандарт ТМС. Элементный анализ проводили на приборе Perkin–Elmer C,H,N-analyzer.

Комплексы 2-амино-4-арил-5-гидроксимино-3-циано-4,5-дигидротиофенов с аминами 3а–f (табл. 1, 2). А. Суспензию 0.1 г (1 ммоль) цианотиоацетамида 2 и 1 ммоль соответствующего *транс*-2-нитростирола 1а–е в 1.5 мл этанола подогревают до гомогенизации, затем охлаждают раствор до 25–30 °С и добавляют раствор 0.06 г (0.52 ммоль) ТМЭДА или 0.1 мл (1.1 ммоль) морфолина в 0.5 мл этанола, при этом смесь разогревается. При создании центров кристаллизации выпадают бесцветные кристаллы соединений 3а–f.

Б. К суспензии 0.1 г (1 ммоль) цианотиоацетамида 2 и 1 ммоль соответствующего нитростирола 1а-е в 2 мл этилового эфира добавляют 0.06 г (0.52 ммоль) ТМЭДА в 0.5 мл эфира, перемешивают при комнатной температуре, при добавлении 0.5 мл гексана выпадают кристаллы. Осадок отфильтровывают, промывают эфиром и гексаном.

2-Амино-4-арил-5-гидроксимино-3-циано-4,5-дигидротиофены 4а-е (табл. 1, 2). А. К раствору 0.2 г (2 ммоль) цианотиоацетамида **2** и 0.3 г (2 ммоль) нитростирола **1а** в 5 мл ацетонитрила добавляют 0.2 мл морфолина и кипятят 3 мин. Реакционную смесь охлаждают до комнатной температуры, добавляют 1 мл дистиллированной воды, перемешивают 10 мин. Выпавший осадок отфильтровывают, промывают водой, гексаном. Получают 0.45 г (98%) вещества с т. пл. 154–155 °C.

Б. К раствору 0.5 г (5 ммоль) цианотиоацетамида 2 и 5 ммоль соответствующего нитростирола 1a-d,f добавляют по каплям при комнатной температуре и сильном перемешивании раствор 0.02 мл морфолина в 1 мл этанола. Смесь перемешивают 1 ч, после чего появляются белые кристаллы соединений 4a-е. К раствору при перемешивании добав-ляют 3 мл воды, осадок отфильтровывают, промывают смесью воды и этанола, 1:1, водой, гексаном.

СПИСОК ЛИТЕРАТУРЫ

- 1. М.-Г. А. Швехгеймер, XTC, 1299 (1994). [Chem. Heterocycl. Comp., 30, 1125 (1994)].
- 2. А. М. Шестопалов, К. С. Чунихин, Л. А. Родиновская, *ХГС*, 346 (2002). [*Chem. Heterocycl. Comp.*, **38**, 310 (2002)].
- 3. Л. А. Родиновская, К. С. Чунихин, А. М. Шестопалов, *ХГС*, 507 (2002). [*Chem. Heterocycl. Comp.*, **38**, 442 (2002)].

- 4. L. A. Rodinovskaya, A. M. Shestopalov, K. S. Chunikhin, Tetrahedron, 58, 4273 (2002).
- 5. К. С. Чунихин, Л. А. Родиновская, А. М. Шестопалов, Изв. АН, Сер. хим., 428 (2003).
- 6. К. С. Чунихин, Дис. канд. хим. наук, Москва, 2002.
- 7. D. Enders, A. Seki, Synlett, 26 (2002).
- V. P. Litvinov, L. A. Rodinovskaya, Yu. A. Sharanin, A. M. Shestopalov, A. Senning, *Sulfur Reports*, 13, 1 (1992).
- 9. K. Yamagata, Y. Tomioka, M. Yamazaki, T. Matsuda, K. Noda, *Chem. Pharm. Bull.*, **30**, 4396 (1982).
- 10. H. Wamhoff, H. Tiemig, Chem. Ber., 118, 4473 (1985).
- 11. A. M. Shestopalov, O. P. Bogomolova, V. P. Litvinov, Synthesis, 277 (1991).
- 12. A. V. Samet, A. M. Shestopalov, V. N. Nesterov, V. V. Semenov, Synthesis, 623 (1997).
- 13. G. N. Sausen, V. A. Engelhardt, W. J. Middleton, J. Am. Chem. Soc., 80, 2815 (1958).
- 14. C. Mörig, H. Koch, Pharmazie, 28, 553 (1975).
- 15. E. C. Taylor, A. McKilop, *The Chemistry of Cyclic Enaminonitriles and o-Aminonitriles*; Intersci. Publ., New York, 1970, p. 415.
- K. Bogdanovizs-Szwed, J. Grochowsky, A. Palasz, B. Rys, P. Serda, D. Soja, *Liebigs Ann. Chem.*, 1457 (1996).
- 17. K. Bogdanovicz-Szwed, J. Grochowsky, A. Obara, B. Rys, P. Serda, *J. Org. Chem.*, **66**, 7204 (2001).
- 18. А. Гордон, Р. Форд, Спутник химика, Изд-во Мир, Москва, 1976. [The Chemist Companion, A. J. Gordon, R. A. Ford, Wiley Interscience, Wiley and Sons, New York, 1972].

Институт органической химии им. Н. Д. Зелинского РАН, Москва 117913 e-mail: chunihin@yandex.ru e-mail: amsh@zelinsky.ru Поступило 18.07.2003 После доработки 14.06.2007