С. В. Волков, С. В. Кутяков, А. Н. Левов, Е. И. Полякова, Ле Туан Ань, С. А. Солдатова, П. Б. Терентьев^а, А. Т. Солдатенков

ПРЕВРАЩЕНИЕ 3-БЕНЗОИЛ-1-МЕТИЛ-4-ФЕНИЛ-7-ПИПЕРИДОЛА ПОД ДЕЙСТВИЕМ АРИЛАМИНОВ И АРИЛГИДРАЗИНОВ. СИНТЕЗ 3-АРИЛАМИНО-1-ОКСО-1-ФЕНИЛПРОПАНОВ И 1,3-ДИАРИЛПИРАЗОЛОВ И ИХ ФРАГМЕНТАЦИЯ ПОД ЭЛЕКТРОННЫМ УДАРОМ

Установлено, что 3-бензоил-4-гидрокси-1-метил-4-фенилпиперидин при нагревании в присутствии ариламинов дециклизуется по типу ретроальдольной реакции с последующим переаминированием промежуточного основания Манниха и образованием 3-ариламино-1-оксо-1-фенилпропанов. В случае использования арилгидразинов этот у-пиперидол рециклизуется с образованием 1,3-диарилпиразолов и их 4,5-дигидропроизводных. Изучено масс-спектральное поведение серии 3-ариламинозамещенных 1фенилпропанонов.

Ключевые слова: ариламины, арилгидразины, 3-ариламино-1-оксо-1-фенилпропаны, 3-бензоил-4-гидрокси-1-метил-4-фенилпиперидин, 1,3-диарилпиразолы, масс-спектры.

Ранее [1] нами при попытке синтеза основания Шиффа из 3-бензоил-4гидрокси-1-метил-4-фенилпиперидина (1) [2] и 1,2-диаминобензола было установлено необычное направление их взаимодействия в стандартных для конденсации такого рода условиях (кипячение в толуоле в присутствии каталитических количеств *пара*-толуолсульфокислоты). Вместо ожидаемого имина из реакционной смеси были выделены моно- и ди-N-(бензоилэтил)замешенные орто-фенилендиамины и бензоаннелированный макроцикл – 1,4,8-триазациклоундекан. Строение полученных в этом случае соединений указывало на протекание сложного каскада реакций, главными из которых могли быть: дециклизация пиперидола 1, переаминирование продуктов дециклизации и внутримолекулярная циклоконденсация новых оснований Манниха. В настоящем сообщении представлены результаты систематического изучения реакций пиперидола 1 с пара-, мета- и орто-замещенными анилинами и арилгидразинами. Во всех случаях взаимодействия 2 экв. ариламинов с 1 экв. пиперидола 1 в указанных выше условиях образуются ожидаемые (в соответствии с результатами работы [1]) N-монобензоилэтилированные анилины 2а-и (табл. 1 и 2). При использовании незамещенного анилина выход аминопропанона 2а составил 49%. Введение в пара-положение анилина электронодонорных заместителей, снижающих NH-кислотность ариламинов (алкильных или метоксильных групп), приводило к заметному уменьшению выхода соответствующих аминопропанонов 2b-е.

2 a R = H, b R = 4-Me, c R = 4-Et, d R = 4-*i*-Pr, e R = 4-OMe, f R = 4-Br, g R = 4-Cl, h R = 4-I, i R = 4-COOEt, j R = 4-NO₂, k R = 3-Cl, l R = 3-COMe, m R = 3-CF₃, n R = 3-NO₂, o R = 2-COOMe, p R = 2-F, q R = 2-Cl, r R = 2-Br, s R = 2-NH₂ [1], t R = HNCH₂CH₂COPh [1], u R = 2-Cl, 4-Br

В то же время наличие в *пара*-положении галогенов или этоксикарбонильных групп обеспечивало повышение выхода аналогичных продуктов до 63–74%. Можно было предположить, что такой сильный электроноакцепторный заместитель, как нитрогруппа при атоме C(4) анилина, еще более увеличит выход ожидаемого 3-амино- пропанона **2j**. Однако этот продукт образовался только в следовом количестве и был идентифицирован лишь при хромато-масс-спектро- метрическом анализе реакционной смеси. Причиной неактивности 4-нитроанилина в этой реакции может, по-видимому, служить переход первичной аминогруппы в иминную с образованием иминохиноидного таутомера, который не способен вступать в реакцию переаминирования. Если нитрогруппа присутствует в *мета*-положении нитроанилина, то реакция происходит гладко и с высоким выходом (82%) образуется соединение **2n**.

При переходе к *орто*-замещенным анилинам выходы 3-аминопропанонов, как правило, падают (соединения **2о–и**), что, по-видимому, связано с возрастанием роли стерического фактора.

В ИК спектрах полученных 3-(N-ариламино)пропанонов 2 присутствуют интенсивные полосы поглощения групп C=O (при 1655–1686 см⁻¹) и NH (3210–3410 см⁻¹). Для спектров ЯМР ¹Н этих соединений (табл. 2) характерным является наличие двух триплетных сигналов протонов группировки O=C-CH₂-CH₂-N-, которые регистрируются в области 3.46–3.70 и 3.05–3.33 м. д. с КССВ 5.7–6.9 Гц. Протон вторичной аминогруппы резонирует в области 3.8–4.8 м. д. и проявляется в виде уширенного сигнала. Ароматические протоны, находящиеся в *орто*-положении к аминогруппе анилинового фрагмента, дают диагностические по сильнопольному расположению сигналы (при 6.6–6.8 м. д.). В то же время характеристическими для идентификации всех соединений **2** являются три группы сигналов в слабых полях (в области 7.27–7.45, 7.46–7.65 и 7.93– 7.97 м. д. с соотношением интегральной интенсивности 2 : 1 : 2), относящиеся к *мета-, пара-* и *орто-*протонам бензоильного фрагмента.

Таблица 1

Сооти	Химические сдвиги, δ, м. д. (КССВ, J, Гц)									
нение	NCH2 O=CCH2 (2H, T) (2H, T)		O=CPh	Н _{аром} в N–Ar	R, заместитель в N–Ar	NH (1Н, уш. с)				
2a	3.30 (J = 6.1)	3.63 (J = 6.1)	7.47 (2H, м, H-3,5), 7.58 (1H, м, H-4), 7.96 (2H, д, <i>J</i> = 7.5, H-2,6)	6.60 (2H, д, <i>J</i> = 7.6, H-2,6), 7.19 (2H, т, <i>J</i> = 7.6, H-3,5)	6.72 (1Н, т, <i>J</i> = 7.4, Н-4)	4.14				
2b	3.28 (<i>J</i> = 6.0)	3.60 (<i>J</i> = 6.0)	7.46 (2H, м, H-3,5), 7.57 (1H, м, H-4), 7.95 (2H, д, <i>J</i> = 7.6, H-2,6)	6.58 (2H, д, <i>J</i> = 8.1, H-2,6), 7.00 (2H, т, <i>J</i> = 8.1, H-3,5)	2.24 (3H, c, 4-CH ₃)	4.01				
2c	3.26 (<i>J</i> = 6.07)	3.59 (<i>J</i> = 6.07)	7.45 (2H, м, H-3,5), 7.56 (1H, м, H-4), 7.94 (2H, д, <i>J</i> = 7.4, H-2,6)	6.56 и 6.99 (2Н каждый, сист. АА'ВВ', <i>J</i> = 8.2, H-2,6 и H-3,5)	1.20 и 2.54 (3H, т и 2H, к соотв., <i>J</i> = 7.55, CH ₂ CH ₃)	3.98				
2d	3.26 (<i>J</i> = 6.2)	3.60 (<i>J</i> = 6.2)	7.45 (2H, м, H-3,5), 7.56 (1H, м, H-4), 7.95 (2H, д, <i>J</i> = 7.4, H-2,6)	6.58 и 7.04 (2Н каждый, сист. АА'ВВ', J = 8.3, H-2,6 и H-3,5)	1.26 (6Н, д, <i>J</i> = 5.0) и 2.83 (1Н, м, Н(СН ₃) ₂)	4.02				
2e	3.28 (<i>J</i> = 6.2)	3.56 (<i>J</i> = 6.2)	7.27, 7.46 и 7.95 (2H, 1H и 2H соотв., все м, H-3,5, H-4 и H-2,6 соотв.)	6.63 и 6.78 (2Н каждый, сист. АА'ВВ', J = 8.9, H-2,6 и H-3,5)	3.75 (3H, c, 4-OCH ₃)	3.75				
2f	3.27 (<i>J</i> = 5.9)	3.58 (<i>J</i> = 5.9)	7.47 и 7.57 (2Н и 1Н, оба м, Н-3,5 и Н-4 соотв.), 7.94 (2Н, д, <i>J</i> = 7.6, Н-2,6)	6.51 и 7.24 (2Н каждый, сист. АА'ВВ', J = 8.7, Н-2,6 и Н-3,5)	4-Br	4.18				
2g	3.24 (<i>J</i> = 5.7)	3.46 (<i>J</i> = 5.7)	7.45 и 7.54 (2Н и 1Н, оба м, Н-,5- и Н-4 соотв.), 7.93 (2Н, д, <i>J</i> = 7.5, Н-2,6)	6.52 и 7.08 (2Н каждый, сист. АА'ВВ', J = 8.1, H-2,6 и H-3,5)	4-Cl	4.14				
2h	3.23 (<i>J</i> = 5.7)	3.57 (<i>J</i> = 5.7)	7.46 и 7.56 (2Н и 1Н, оба м, Н-3,5 и Н-4 соотв.), 7.93 (2Н, д, <i>J</i> = 7.5, Н-2,6)	6.40 и 7.38 (2Н каждый, сист. АА'ВВ', J = 8.6, Н-2,6 и Н-3,5)	4-I	4.18				
2i	3.28 (<i>J</i> = 5.8)	3.67 (<i>J</i> = 5.8)	7.45 и 7.54 (2Н и 1Н, оба м, Н-3,5 и Н-4 соотв.), 7.93 (2Н, д, <i>J</i> = 7.4, Н-2,6)	6.55 и 7.84 (2Н каждый, сист. АА'ВВ', J = 8.6, H-2,6 и H-3,5)	1.36 (3H, т, <i>J</i> = 7.10) и 4.31 (2H, к, <i>J</i> = 7.10), ОСН ₂ СН ₃	4.54				
2j*	3.33 (<i>J</i> = 5.8)	3.71 (<i>J</i> = 5.8)	7.47 и 7.58 (2Н и 1Н, оба м, Н-3,5 и Н-4 соотв.), 7.95 (2Н, д, <i>J</i> = 7.5, Н-2,6)	6.71 и 8.1 (2Н каждый, сист. АА'ВВ', J = 8.6, H-2,6 и H-3,5)	4-NO ₂	4.85				

Спектры ЯМР ¹Н синтезированных соединений

1488

2k	3.26 (<i>J</i> = 6.0)	3.59 (<i>J</i> = 6.0)	7.47 и 7.57 (2Н и 1Н, оба м, H-3,5 и H-4 соотв.), 7.95 (2Н, д, <i>J</i> = 7.6, H-2,6) 6.49 (1Н, д. д, <i>J</i> = 8.2 и <i>J</i> = 1.6, H-6), 6.61 (1Н, д, <i>J</i> = 1.7, H-2), 6.65 (1Н, д, <i>J</i> = 8.0, H-4), 7.06 (1Н, т. <i>J</i> = 8.0, H-5)		3-Cl	4.27
21	3.28 (<i>J</i> = 5.7)	3.65 (<i>J</i> = 5.7)	7.45 и 7.54 (2Н и 1Н, оба м, Н-3,5 и Н-4 соотв.), 7.94 (2Н, д. д, <i>J</i> = 7.6 и <i>J</i> = 1.3, Н-2,6)	7.45 и 7.54 (2Н и 1Н, оба м, H-3,5 и H-4 соотв.), 7.94 (2Н, д. д. J = 7.6 и J = 1.3, H-2.6) 6.78 (1Н, д. д, J = 7.3 и J = 1.9, H-6), 7.19–7.26 (2Н, м. H-4.5), 7.23 (1Н, с. H-2)		4.33
2m	3.28 (<i>J</i> = 5.6)	3.64 (<i>J</i> = 5.6)	7.45–7.60 (3Н, м, H-3,4,5), 7.94 (2Н, д, <i>J</i> = 7.8, H-2,6)	6.74 (1H, д. д. <i>J</i> = 8.1 и <i>J</i> = 1.5, H-6), 6.8 (1H, т. <i>J</i> = 1.5, H-2), 6.91 (1H, д. <i>J</i> = 7.6, H-4), 7.23 (1H, м, H-5)	3-CF ₃	4.38
2n	3.17 (<i>J</i> = 5.9)	3.66 (<i>J</i> = 5.9)	7.45–7.61 (3Н, м, Н-3,4,5), 7.96 (2Н, д, <i>J</i> = 7.8, H-2,6)	6.88 (1H, д. д. <i>J</i> = 8.1 и <i>J</i> = 1.8, H-6), 7.26 (1H, м, H-5), 7.43 (1H, т, <i>J</i> = 1.8, H-2), 7.46 (1H, м, H-4)	3-NO ₂	4.59
20	3.35 (J = 6.9)	3.70 (<i>J</i> = 6.9)	7.45–7.90 (3Н, м, Н-3,4,5), 7.96 (2Н, д, <i>J</i> = 7.1, Н-2,6)	6.54 (1Н, м, Н-6), 6.74 (1Н, д, <i>J</i> = 8.4, Н-3), 7.3–7.9 (2Н, м, Н-4,5)	3.85 (3H, c, OCH ₃)	3.86
2p	3.30 (J = 6.0)	3.64 (<i>J</i> = 6.0)	7.46 и 7.55 (2Н и 1Н, оба м, Н-3,5 и Н-4 соотв.), 7.95 (2Н, д, <i>J</i> = 7.2, Н-2,6)	6.60, 6.75 и 6.93 (1Н, 1Н и 2Н соотв., все м, Н-6, Н-4 и Н-3,5)	2-F	4.28
2q	3.24 (<i>J</i> = 6.2)	3.63 (<i>J</i> = 6.2)	7.40–7.52 (3Н, м, Н-3,4,5), 7.92 (2Н, д. д, <i>J</i> = 7.1, Н- 2,6)	6.62 и 7.12 (1Н каждый, м, Н-4 и Н-5), 6.71 (1Н, д. д. <i>J</i> = 7.9 и <i>J</i> = 1.1, Н-6), 7.23 (1Н, д. д. <i>J</i> = 7.8 и <i>J</i> = 1.0, Н-3)	2-C1	4.70
2r	3.05 (<i>J</i> = 6.3)	3.46 (<i>J</i> = 6.3)	7.27–7.37 (3Н, м, Н-3,4,5), 7.78 (2Н, д. д. <i>J</i> = 7.4, Н- 2,6)	6.45 и 7.07 (1Н каждый, оба м, Н-4 и Н-5), 6.58 (1Н, д. д. J = 8.5 и J = 1.2, Н-6), 7.28 (1Н, д. J = 8.2, Н-3)	2-Br	4.70
2u	3.29 (J = 5.9)	3.64 (<i>J</i> = 5.9)	7.47 и 7.57 (2Н и 1Н соотв., Н-3,5- и Н-4), 7.95 (2Н, д, <i>J</i> = 7.0, Н-2,6)	6.58 (1H, д, <i>J</i> = 8.5, H-6), 7.21 (1H, д, <i>J</i> = 8.5, H-5), 7.36 (1H, с, H-3)	2-Cl + 4-Br	4.70

* Спектр получен путем вычитания спектра исходного 4-нитроанилина из спектра его смеси с продуктом 2j.

Соеди-	Брутто-	<u>Найдено, %</u> Вычислено, %			Тпл⁰С	ИК спектр, v, см ⁻¹		Вы-
нение	формула	С	Н	Ν	, e	NH	C=O	%
2a	C ₁₅ H ₁₅ NO	<u>79.80</u> 80.00	<u>6.88</u> 6.67	<u>6.25</u> 6.22	109–110	3400, 3410	1686	49
2b	C ₁₆ H ₁₇ NO	<u>80.15</u> 80.33	<u>7.35</u> 7.11	<u>6.01</u> 5.86	110–111	3381, 3400	1681	37
2c	C ₁₇ H ₁₉ NO	<u>79.88</u> 80.63	<u>7.62</u> 7.51	<u>5.47</u> 5.53	94–95	3375	1678	44
2d	C ₁₈ H ₂₁ NO	<u>80.30</u> 80.90	<u>7.43</u> 7.87	<u>5.12</u> 5.24	108–109	3378	1679	46
2e	$C_{16}H_{17}NO_2$	<u>75.41</u> 75.29	<u>6.55</u> 6.67	<u>5.62</u> 5.49	104–105	3361	1673	30
2f	C ₁₅ H ₁₄ BrNO	<u>59.14</u> 59.21	<u>4.39</u> 4.61	<u>4.50</u> 4.61	138–140	3400	1681	65
2g	C ₁₅ H ₁₄ ClNO	<u>70.00</u> 69.37	<u>5.70</u> 5.39	<u>5.82</u> 5.39	132–133	3390	1677	63
2h	C ₁₅ H ₁₄ INO	<u>51.36</u> 51.28	<u>3.89</u> 3.99	$\frac{4.07}{3.99}$	140-141	3388	1667	74
2i	C ₁₈ H ₁₉ NO ₃	<u>72.12</u> 72.73	<u>6.80</u> 6.40	<u>5.00</u> 4.71	139–140	3366	1670, 1678	66
2ј	$C_{15}H_{14}N_2O_3$							<1
2k	C ₁₅ H ₁₄ ClNO	<u>70.01</u> 69.37	<u>5.64</u> 5.39	<u>5.73</u> 5.39	112–113	3371	1670	75
21	$C_{17}H_{17}NO_2$	<u>75.90</u> 76.40	<u>6.53</u> 6.37	<u>5.63</u> 5.24	81-82	3378	1678	79
2m	$C_{16}H_{14}F_3NO$	<u>65.63</u> 65.53	<u>4.63</u> 4.78	<u>4.83</u> 4.78	105–106	3378	1670	84
2n	$C_{15}H_{14}N_2O_3$	<u>66.78</u> 66.67	<u>5.31</u> 5.19	<u>10.24</u> 10.37	116-117	3394	1673*	82
20	C ₁₇ H ₁₇ NO ₃	<u>72.01</u> 72.09	<u>6.09</u> 6.01	<u>5.11</u> 4.95	110-112	3353	1680, 1673	60
2p	C ₁₅ H ₁₄ FNO	<u>73.61</u> 74.10	<u>5.48</u> 5.76	<u>5.51</u> 5.76	95–96	3390	1680	60
2q	C ₁₅ H ₁₄ ClNO	<u>69.94</u> 69.37	<u>5.76</u> 5.39	<u>5.02</u> 5.39	Масло	3385	1675	23
2r	C ₁₅ H ₁₄ BrNO	<u>59.45</u> 59.21	<u>4.26</u> 4.61	<u>4.85</u> 4.61	Масло	3400	1655	17
2u	C ₁₅ H ₁₃ BrClNO	<u>53.57</u> 53.25	$\frac{3.57}{3.84}$	$\frac{4.43}{4.14}$	Масло	3392	1687	35

Характеристики синтезированных соединений

* ИК спектр, v, см⁻¹: 1530, 1334 (NO₂).

Детальный анализ масс-спектров соединений **2a–i,k–q,t**, полученных в условиях ионизации электронами (табл. 3) позволил оценить относительную стабильность их молекулярных ионов и найти общие пути фрагментации последних.

Анализ полученных масс-спектров соединений **2** (табл. 3 и 4) показывает, что стабильности их молекулярных ионов ($W_{\rm M}$) колеблются в интервале от 1.9 до 17.9% полного ионного тока, однако выявить влияние электронных свойств заместителей в анилиновой части молекулы на устойчивость молекулярного иона не представляется возможным.

Таблица З

Масс-спектры соединений 2а-i,k-q,t

Соеди- нение	<i>m/z (I</i> _{отн} , %) *
2a	225 [M] (27), 120 (5), 118 (5), 105 (100), 93 (6), 91 (6), 77 (47), 65 (10), 52 (15)
2b	239 [M] (28), 238 (25), 120 (100), 118 (20), 105 (31), 91 (26), 77 (63), 65 (14), 51 (20)
2c	253 [M] (100), 238 (14), 148 (13), 134 (85), 119 (15), 118 (21), 105 (48), 91 (15), 77 (70)
2d	267 [M] (13), 252 (15), 148 (35), 136 (37), 132 (49), 120 (100), 105 (82), 91 (20), 77 (81)
2e	255 [M] (59), 136 (100), 135 (27), 123 (24), 120 (38), 108 (36), 105 (80), 77 (59), 51 (22)
2f	303 [M] (40)**, 184 (100)**, 171 (9)**, 155 (6)**, 118 (12), 105 (58), 91 (19), 77 (87), 51 (21)
2g	259 [M] (34)**, 140 (100)**, 132 (15), 127 (17)**, 111 (8), 105 (39), 77 (56), 65 (8), 51 (16)
2h	351 [M] (56), 232 (88), 219 (25), 105 (100), 92 (19), 91 (23), 77 (29), 65 (23), 51 (35)
2i	297 [M] (27), 178 (74), 165 (35), 132 (48), 120 (100), 105 (28), 77 (98), 65 (34), 51 (45)
2k	259 [M] (56)**, 140 (72)**, 127 (10)**, 118 (11), 111 (13)**, 105 (54), 99 (19)**, 77 (100), 51 (40)
21	267 [M] (27), 162 (11), 148 (100), 135 (13), 120 (17), 105 (13), 77 (55), 51 (23), 43 (40)
2m	293 [M] (37), 274 (10), 174 (100), 161 (18), 145 (10), 120 (8), 105 (21), 77 (22), 51 (8)
2n	270 [M] (29), 151 (53), 138 (34), 132 (18), 120 (21), 105 (100), 92 (25), 77 (84), 51 (25)
20	233 [M] (42), 164 (56), 151 (8), 146 (20), 132 (100), 119 (6), 105 (24), 77 (30), 51 (6)
2p	243 [M] (26), 132 (21), 124 (100), 111 (67), 105 (69), 83 (20), 77 (98), 55 (21), 51 (42)
2q***	273 [M] (6)**, 140 (89)**, 134 (100), 133 (66), 127 (12)**, 119 (15), 103 (20), 91 (14), 77 (51)
2t	372 [M] (75), 240 (13), 147 (14), 133 (51), 132 (35), 119 (44), 105 (94), 92 (14), 77 (100)

* Приведены [M] и восемь наиболее интенсивных пиков ионов.

** Ионы, содержащие изотопы ³⁵Cl или ⁷⁹Br.

*** В виде гидразона.

Тем не менее, характер фрагментации молекулярных ионов всех соединений 2 имеет много общего (что видно из нижеприведенной схемы) и определяется прежде всего расщеплением связи С-С в бензоилэтильном фрагменте молекулы с образованием иона F₁, интенсивность пика которого в большинстве случаев максимальна или близка к максимальной (табл. 4). Вторым по значимости каналом распада является отщепление бензоильного фрагмента с образованием ионов F₄, F₅ и F₆. Наконец, расщепление молекулярного иона по третьему основному пути сопровождается переносом атома водорода от бензоилэтильного фрагмента на атом азота с образованием перегруппировочных нечетноэлектронных ионов F₂ и F₃. Как следует из данных табл. 4, суммарная интенсивность пиков молекулярного иона и перечисленных выше шести фрагментных ионов составляет от 33 до 70% полного ионного тока, что указывает на высокую селективность процесса фрагментации исследованных соединений. По всей вероятности, в молекулярных ионах всех соединений 2 положительный заряд локализуется преимущественно на аминоэтилбензоильной части молекулы. Подтверждением этого вывода является очень низкая интенсивность (или даже отсутствие) пиков ионов, связанных с первичным отщеплением или расщеплением заместителей R.

Так, например, в масс-спектре ацетилзамещенного 21 отсутствует ион [M–Me]⁺, столь характерный для ацетиларенов [3], в масс-спектрах 4-метокси- (2e) и 4-карбэтоксизамещенных (2i) отсутствуют ионы, обусловленные потерей метильной (соответственно карб- этоксильной) группы, типичные для масс-спектров 4-метокси(карб- этокси)анилинов [3-5]. Такие процессы однако (зачастую в незначительной степени) протекают лишь после образования ионов F1 или F2. Интенсивные пики ионов F₁-F₄ и F₆ наблюдаются даже в масс-спектре соединения 2q, а в случае 1,2-бис(2-бензоилэтиламино)- бензола (2t) молекулярный ион первоначально теряет молекулу фенилвинилкетона, а образовавшийся нечетноэлектронный (псевдо- молекулярный) ион 2-**2s** элиминирует фенацильный аминозамещенного радикал с образованием иона F₁.

При замене ариламинов на арилгидразины происходит более сложная цепь последовательных превращений пиперидола 1. Действительно, анализ спектров ЯМР ¹Н реакционной смеси и ее хроматомасс-спектрометрический анализ показали, что в случае фенилгидразина конечными продуктами рассматриваемого взаимодействия явились 1,3-дифенилзамещенные 4,5-дигидропиразол (**3a**) и пиразол **4a**.

Оба вещества имеют близкую хроматографическую подвижность и выделены колоночной хроматографией лишь в виде смеси с общим выходом 55% (в соотношении 1:2, соответственно, по данным ЯМР).

При окислении этой смеси диоксидом марганца был получен с высоким выходом индивидуальный пиразол **4a**. Использование вместо фенилгидразина его 2,4-динитропроизводного привело, как и предполагалось, к полному дегидрированию промежуточного дигидропиразола **3b** *in status nascendi*.

Исходя из предположения, что 3-бензоилзамещенный у-пиперидол 1 на первой стадии его превращений в 3-аминопропаноны 2 претерпевает ретроальдольную реакцию, мы изучили взаимодействие 4-броманилина с основанием Манниха 5b. Реакцию проводили в присутствии эквимолярного количества пиридина для перевода соли Манниха 5a [2] в свободное основание 5b. В результате с выходом 60% был выделен ожидаемый аминопропанон 2f.

Таблица 4

Интенсивности пиков характеристических ионов в масс-спектрах соединений 2а–i,k–q,t (ΣI, %)

Соединение	$W_{\rm M}$	\mathbf{F}_1	\mathbf{F}_{2}	F ₃	\mathbf{F}_4	F ₅	F ₆	$\sum_{M + Fi\%}$
2a	11.0	_	2.0	_	1.8	37.6	17.3	69.7
2b	6.6	22.1	0.9	0.9	1.0	6.4	15.4	58.3
2c	17.9	15.4	0.5	2.3	1.3	7.7	11.8	60.0
2d	1.9	3.8	3.1	6.2	_	8.9	8.5	32.4
2e	9.5	15.2	4.4	2.1	0.4	5.4	8.0	59.2
2f	12.0	26.6	2.2	_	0.8	8.5	11.6	61.7
2g	8.2	24.6	6.1	1.7	1.0	8.6	11.0	61.2
2h	8.3	12.2	3.7	1.0	0.3	15.7	13.1	54.3
2i	3.3	8.1	3.8	4.3	0.2	9.5	10.5	39.7
2k	11.6	13.6	2.0	-	1.7	7.8	13.8	50.2
21	5.3	18.8	3.0	2.5	2.2	6.6	9.3	47.7
2m	13.1	33.0	5.0	0.8	2.2	5.9	6.7	68.9
2n	5.7	8.1	5.1	3.7	0.6	13.3	8.9	45.4
20	11.0	14.4	2.1	25.8	0.4	6.2	7.8	51.8
2p	4.0	14.0	8.7	2.6	0.6	9.1	12.6	67.7
2q	1.4	18.3	1.8	1.7	0.7	2.1	8.2	44.2
2t	12.4	6.8	1.7	4.7	1.9	14.5	7.4	60.7

На основании полученных в предшествующем [1] и настоящем сообщениях результатов, можно представить схему последовательных превращений пиперидола 1 под действием ариламинов и арилгидразинов в виде:

$$1 \longrightarrow 5b \xrightarrow{H^+} MeNH(CH_2CH_2COPh)_2 \xrightarrow{-H_2NMe, -H^+} 2 CH_2=CHCOPh \longrightarrow A$$

$$ArNHR \xrightarrow{(R = H, NH_2)} ArN(R)CH_2CH_2COPh \xrightarrow{-H_2O} 3 \xrightarrow{[O]} 4$$

Образующееся после ретроальдольного расщепления основание Манниха **5b** после протонирования дает промежуточный катион **A**, который, в свою очередь, распадается до метиламина и винилфенилкетона **B**. Последний затем вступает в реакцию Михаэля с ариламинами и образует новые основания **2**, которые обычно трудно синтезировать прямой конденсацией по методу Манниха. В случае $R = NH_2$ аминокетоны легко подвергаются гетероциклизации и превращаются в дигидропиразолы **3**.

В соответствии с предсказаниями интернет-программы PASS [6] 3-(Nариламино)кетоны **2а–с,е,g,k,п,о,q** могут обладать антилейшманиальной активностью с вероятностью 66–78%. Вазодилаторное действие на сосуды сердца могут проявить соединения **2е,п,о** (вероятность 60–71%). Антивирусной (против герпеса) активности (вероятность 61–67%) можно ожидать у аминокетонов **2с,d,g,h,p,r,u**, а также гидразона аминокетона **2q**. Трифторфенилзамещенный аминокетон **2m** перспективен для испытаний в качестве ингибитора тирозинфосфатазы (74% вероятность), а N-(2фторфенил)аминокетон **2p** – в качестве агониста интерферона (59%) и ГАМК-рецептора (61%). Особо высока вероятность биоактивности аминокетона **2r** как агониста интерферона (70%) и антагониста интерлейкина (90%).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н снимали на спектрометре Bruker WP-400 (400 МГц) в CDCl₃, внутренний эталон ТМС, масс-спектры (ЭУ) получали на масс-спектрометре Finnigan MAT Incos 50 (70 эВ). ИК спектры регистрировали на спектрометре IR-75 в таблетках КВг. Для TCX использовали пластины Silufol UV-254 (проявление парами иода). Характеристики синтезированных соединений приведены в табл. 1–4.

Получение 3-аминопропанонов 2 (общая методика). А. Раствор 2 ммоль пиперидола 1, 4 ммоль ариламина и 10 мг TsOH в 30 мл толуола кипятят 3–5 ч в приборе Дина–Старка. Растворитель упаривают до ½ объема и охлаждают. Выделившиеся кристаллы отделяют и перекристаллизовывают из соответствующего растворителя. Маслообразные продукты 2q,r,u выделяют колоночной хроматографией на силикагеле, элюируя смесью гексан–хлороформ, 5:1. Соединение 2q охарактеризовано также гидразоном, который получают с выходом 36% в виде светло-желтых кристаллов кипячением метанольного раствора 2.8 г (10 ммоль) аминокетона с 2 мл гидразингидрата. Т. пл. 86–88 °C. ИК спектр, v, см⁻¹: 1593 (C=N), 3210 (NH), 3330 (NH₂). Спектр ЯМР ¹H, δ , м. д.: 2.99 и 3.45 (2H каждый, оба м, NCH₂ и N=CCH₂), 4.51 (1H, уш. с, NH), 5.51 (2H, с, NH₂), 6.65, 7.11 и 7.25 (суммарно 4H, все м, NC₆H₄Cl), 7.40–7.76 (5H, м, C₆H₅). Масс-спектр см. табл. 3.

Аминокетон 2a описан в [7], т. пл. 111–112 °С.

Соединения 2s,t, а также диацетат соединения 2s получены panee [1].

Б. К суспензии 0.66 г (2 ммоль) соли Манниха **5а** в 30 мл толуола добавляют 0.16 г 1494 (2 ммоль) пиридина, 0.71 г (4.1 ммоль) 4-броманилина и 10 мг TsOH. Смесь кипятят 3 ч, растворитель упаривают и остаток перекристаллизовывают из эфира. Получают 0.36 г (60%) аминопропанона 2f.

Получение 1,3-дифенил-4,5-дигидропиразола (3а) и 1,3-дифенилпиразола (4а). Смесь 1.2 г (4 ммоль) пиперидола 1, 0.6 г (4 ммоль) гидрохлорида фенилгидразина, 0.32 г (4 ммоль) пиридина и 10 мг ТsOH кипятят 5 ч. Растворитель отгоняют и остаток разделяют на хроматографической колонке с силикагелем, элюируя гексаном. Выделяют 0.5 г (55%) смеси соединений 3а и 4а (в соотношении 1:2, по данным спектра ЯМР и хромато-масс-спектра). Спектр ЯМР ¹Н дигидропиразола 3а, δ , м. д. (J, Гц) (получают вычитанием сигналов спектра пиразола 4a из спектра его смеси с дигидропиразолом 3a): 3.25 и 3.90 (2Н каждый, оба т, J = 10.5, 3-CH₂ и 2-CH₂ соответственно); 6.85 (1H, т, J = 7.4, H-4 NPh фрагмента); 7.1 (2H, д, J = 8.0, H-2,6 NPh фрагмента); 7.25–7.80 (7H, м, H аром.).

Окисление смеси За и 4а. К раствору 0.1 г (0.4 ммоль) смеси соединений За и 4а в 30 мл толуола добавляют 0.7 г (8 ммоль) MnO₂ и полученную суспензию кипятят 3 ч. Твердую фазу отфильтровывают и промывают на фильтре 10 мл горячего толуола, объединенные фильтраты упаривают до ¹/₄ начального объема и охлаждают. Получают 80 мг (80%) 1,3-дифенилпиразола 4а в виде серовато-белых кристаллов, т. пл. 82 °C (т. пл. 84–85 °C [8]).

1-(2,4-Динитрофенил)-3-фенилпиразол (4b) получают аналогично синтезу смеси **3a** и **4a** из 0.6 г (2 ммоль) пиперидола **1** и 0.8 г (4 ммоль) 2,4-динитрофенилгидразина. Разделением реакционной смеси колоночной хроматографией на силикагеле выделяют 0.45 г (60%) соединения **4b** в виде желтоватых кристаллов, т. пл. 159–160 °C (т. пл. 162–163 °C [9]).

СПИСОК ЛИТЕРАТУРЫ

- А. Т. Солдатенков, С. В. Кутяков, С. В. Волков, Ж. А. Мамырбекова, К. Б. Полянский, XTC, 1731 (2004). [Chem. Heterocycl. Comp., 40, 1499 (2004)].
- 2. J. T. Plati, W. Wenner, J. Org. Chem., 14, 543 (1949).
- 3. П. Б. Терентьев, А. П. Станкявичус, *Масс-спектрометрический анализ биологически* активных азотистых оснований, Мокслас, Вильнюс, 1981.
- 4. А. Т. Лебедев, Масс-спектрометрия в органической химии, Бином, Москва, 2003.
- 5. В. Г. Заикин, А. В. Варламов, А. И. Микая, Н. С. Простаков, Основы массспектрометрии органических соединений, МАИК Наука, Москва, 2001, с. 286.
- А. В. Садым, А. А. Лагунин, Д. А. Филимонов, В. В. Поройков, Хим.-фарм. журн., 36, 21 (2002).
- 7. Beilst., vol. 14, 62, 1931.
- 8. Словарь органических соединений, Изд-во иностр. лит., Москва, 1949, т. 1, с. 1041.
- 9. J. Elguero, R. Jacquier, Bull. Soc. Chim. Fr., 2832 (1966).

Российский университет дружбы народов, Москва 117198 e-mail: swelfen@mail.ru Поступило 17.02.2006 После доработки 23.06.2006

^аМосковский государственный университет им. М. В. Ломоносова, Москва 119992, Россия e-mail: petr terentev@mail.ru