А. А. Калинин, О. Г. Исайкина, В. А. Мамедов

ХИНОКСАЛИН–БЕНЗИМИДАЗОЛЬНАЯ ПЕРЕГРУППИРОВКА В РЕАКЦИЯХ 3-АЛКАНОИЛХИНОКСАЛИН-2-ОНОВ С 1,2-ФЕНИЛЕНДИАМИНАМИ

Взаимодействие 3-алканоилхиноксалин-2-онов с 1,2-фенилендиаминами в кипящей уксусной кислоте протекает с сужением пиразинового цикла в результате хиноксалин-бензими- дазольной перегруппировки с образованием 2-бензимидазолилзамещенных хиноксалинов.

Ключевые слова: 3-алканоилхиноксалин-2-оны, бензимидазол, 1,2-фенилендиамины, ИК и ЯМР ¹Н спектры, перегруппировки, сужение цикла.

Бензимидазольная система является структурным фрагментом витамина B_{12} [1, 2], а некоторые производные бензимидазола получают в промышленности в качестве лекарственных препаратов [3], средств, используемых в ветеринарии [4], и фунгицидов [5]. Наиболее распространенные методы синтеза бензимидазольной системы включают введение атома C(2) между атомами азота в различных *орто*-ди-N-замещенных производных бензола [6–10] и внутримолекулярное замещение N-фениламидинов [11, 12] или родственных им соединений [13–15]. Кроме реакции Филлипса–Ладенбурга [16, 17] практически отсутствуют общие доступные методы введения бензимидазольного фрагмента в различные гетероциклические системы.

Ранее нами было найдено, что реакция 3-бензоилхиноксалин-2-онов 1 с *о*-фенилендиамином 2 в кипящей уксусной кислоте протекает с образованием вместо ожидаемых хиноксалино[2,3-*b*]бензо-1,5-диазепинов 3 продуктов хиноксалин–бензимидазольной перегруппировки – 2-(бензимидазол-2-ил)-3-фенилхиноксалинов 4 [18, 19] (схема 1).

Схема 1

В данной работе мы распространяем эту перегруппировку на 3-алканоилхиноксалиноны.

На схеме 2 представлен синтез 3-алканоилхиноксалин-2-онов на основе эфиров α -кетокислот 5 – продуктов реакций диэтилоксалата с алкилмагнийбромидами. Последние были превращены в 3-алкилхиноксалин-2-оны 6 и 7 [20], окисление которых с помощью CrO₃ привело к алканоилхиноксалинонам 8. Конденсация соединений 8 с *о*-фенилендиамином 2а по ранее разработанной нами методике [19] (нагревание в течение 1 ч в уксусной кислоте) приводит к образованию кристаллических 3-алкил-2-бензимидазолхиноксалинов 9 – алкильных аналогов соединения 4. Отсутствие кислорода в их составе подтверждается данными элементного анализа и исчезновением карбонильного поглощения в ИК спектрах.

Схема 2

5, **6** a $R^1 = Me$, b $R^1 = Pr$; **8**, **9** a $R^1 = Me$, $R^2 = H$, b $R^1 = Pr$, $R^2 = H$, c $R^1 = Me$, $R^2 = Et$

Обращает на себя внимание смещение на ~0.7 м. д. в слабые поля синглетного сигнала метильной (соединения 9a,c) и квартетного сигнала метиленовой (соединение 9b) групп в спектрах ЯМР ¹Н продуктов по сравнению с сигналами протонов аналогичных групп в спектрах исходных алканоилхиноксалин-2-онов 8a,c, что свидетельствует о протекании перегруппировки с перемещением этих заместителей от алканоильных групп в непосредственное окружение гетероароматических систем, где благодаря "эффекту кольцевого тока" происходит дополнительное дезэкранирование атомов водорода в них [21].

В результате реакции углеродный фрагмент Alk–C(O)–C(3)–C(2) исходных алканоилхиноксалинонов 8 полностью переходит в соеди- нения 9, входя в структуры возникающего алкилзамещенного хинокса- линового цикла в виде фрагмента Alk–C(3)–C(2) и вновь построенного

Таблица 1

Соеди-	Брутто-	<u>Найдено, %</u> Вычислено, %			Т. пл., °С*	Выход,
нение	формула	С	Н	Ν		⁹ 0
6b	$\mathrm{C}_{12}\mathrm{H}_{14}\mathrm{N}_{2}\mathrm{O}$	<u>71.34</u>	<u>7.09</u>	<u>14.04</u>	258-260	78
8b	$C_{12}H_{12}N_2O_2$	71.26 <u>66.78</u> 66.65	6.98 <u>5.73</u> 5.59	13.85 <u>12.89</u> 12.95	165–166	28
9a	$C_{16}H_{12}N_4$	<u>73.90</u> 73.83	$\frac{4.52}{4.64}$	$\frac{21.46}{21.52}$	176–178	72
9b	$C_{18}H_{16}N_4$	<u>74.99</u> 74.97	<u>5.43</u> 5.59	<u>19.38</u> 19.43	186–188	75
9c	$C_{18}H_{16}N_4$	<u>74.82</u> 74.97	<u>5.47</u> 5.59	<u>19.57</u> 19.43	125–127	99
10	$C_{24}H_{26}N_4O_3$	<u>68.73</u> 68.88	<u>6.35</u> 6.26	$\frac{13.24}{13.39}$	164–166	89
11	$C_{24}H_{22}N_4O_5$	<u>64.67</u> 64.57	$\frac{5.04}{4.97}$	$\frac{12.42}{12.55}$	162–164	60
12	$C_{36}H_{30}N_8O$	$\frac{73.35}{73.20}$	<u>5.02</u> 5.12	<u>19.07</u> 18.97	189–191	75
13a + 14a	$C_{16}H_{11}N_5O_2$	<u>63.06</u> 62.05	$\frac{3.57}{3.63}$	$\frac{23.08}{22.04}$	299–339	52
13b + 14b	$C_{17}H_{14}N_4$	<u>73.34</u> 73.43	<u>5.03</u> <u>5.23</u> 5.14	$\frac{22.94}{20.56}$	203–205	72

Характеристики синтезированных соединений 6-14

* Растворитель: *i*-PrOH (соединения **6b**, **9a**), MeOH (соединение **9b**), EtOH (соединение **9c**), ацетон (соединения **10–12**).

бензимидазольного цикла в виде µ-атома углерода. Такая реакция подпадает под наиболее общее определение молекулярной перегруппировки как химической реакции с изменением скелета молекулы и нарушением принципа минимальности структурных изменений [22].

Данная перегруппировка распространяется и на поданды с концевыми 3-ацетилхиноксалиноновыми фрагментами. Например, легко получаемый алкилированием 3-этилхиноксалин-3-она 6 [20] бис(2-бромэтиловым)эфиром и окислением образующегося продукта 10 СгО₃ 1,5-бис(3-аце- тил-2-оксохиноксалин-1-ил)-3-оксапентан (11) [23] при взаимодействии с *о*фенилендиамином с хорошим выходом превращается в 1,5-бис[2- (3метилхиноксалин-2-ил)бензимидазол-1-ил]-3-оксапентан (12) (схема 3).

Все реакции, включенные в цепочки превращения **6a** \rightarrow **10** \rightarrow **11** \rightarrow **12**, протекают с хорошими выходами. Характерными признаками, свидетельствующими об образовании указанных продуктов в этих реакциях, на первой стадии являются наличие в спектре ЯМР ¹Н наряду с другими сигналами двух триплетных сигналов фрагмента CH₂CH₂OCH₂CH₂ при δ 3.82 и 4.39 м. д. и наличие в ИК спектре полос поглощения карбамоильной карбонильной группы (v_{C=0} = 1649 см⁻¹), на второй стадии – исчезновение в спектре ЯМР ¹Н триплетного и квартетного сигналов при δ 1.32 и 2.95 м. д. протонов этильной группы, появление синглетного сигнала

Таблица 2

Соеди-	MK cherto $\lambda c M^{-1}$	CHAPTED SIMP 1 H S M T (VCCP / Fu)*
нение		
<u> </u>	2 469, 590, 624, 706, 751, 893, 943, 1150, 1287, 1565, 1608, 1666, 2500–3300	³ 0.93 (3H, т, <i>J</i> = 7.28, CH ₃), 1.33–1.45 (2H, м, CH ₃ <u>CH₂</u>), 1.63–1.77 (2H, м, CH ₃ CH ₂ <u>CH₂</u>), 2.80 (2H, т, <i>J</i> = 7.28, C(3)CH ₂), 7.24 (1H, д. д, <i>J</i> = 8.28, <i>J</i> = 6.96, H-6 или H-7), 7.28 (1H, д, <i>J</i> = 7.64, H-8), 7.45 (1H, д. д. д, <i>J</i> = 7. 96, <i>J</i> = 7.28, <i>J</i> = 1.00, H-6 или H-7), 7.69 (1H, д, <i>J</i> = 8.28, H-5), 12.08 (1H, уш. с, NH)
8b	416, 475, 542, 555, 593, 728, 768, 792, 832, 892, 968, 1140, 1179, 1264, 1300, 1336, 1400, 1421, 1464, 1490, 1611, 1643, 1710, 2500–3200	1.05 (3H, т, <i>J</i> = 7.54, CH ₃), 1.77–1.85 (2H, м, CH ₃ <u>CH₂</u>), 3.15 (2H, т, <i>J</i> = 7.20, CH ₂ CO), 7.42 (1H, д. д., <i>J</i> = 7.55, <i>J</i> = 7.54, H-6 или H-7), 7.47 (1H, д. <i>J</i> = 7.89, H-8), 7.64 (1H, д. д. <i>J</i> = 7.55, <i>J</i> = 6.85, H-6 или H-7), 7.93 (1H, д, <i>J</i> = 7.54, H-5), 12.73 (1H, уш. с, NH)
9a	430, 738, 766, 955, 1010, 1073, 1133, 1180, 1214, 1253, 1274, 1320, 1338, 1486, 2600–3400	3.43 (3H, c, CH ₃), 7.33–7.40 (2H, м, H-5,6 бензимидазол), 7.70–7.80 (4H, м, H-4,7 бензимидазол, H-6,7 хиноксалин), 8.05–8.11 (2H, м, H-5,8 хиноксалин)
9b	433, 578, 608, 729, 746, 764, 954, 1063, 1089, 1145, 1172, 1209, 1277, 1317, 1344, 1422, 1485, 1549, 3397	1.06 (3H, т, <i>J</i> = 7.56, CH ₃), 1.80–2.00 (2H, м, CH ₃ <u>CH₂</u>), 3.80 (2H, т, <i>J</i> = 7.56, C(3)CH ₂), 7.28–7.38 (2H, м, бензимидазол), 7.70–7.80 (2H, м, бензимидазол), 7.89–7.93 (2H, м, хиноксалин), 8.10–8.15 (1H, м, хиноксалин), 8.16–8.25 (1H, м, хиноксалин)
9c	433, 738, 754, 767, 1008, 1038, 1123, 1138, 1174, 1209, 1289, 1309, 1334, 1376, 1412, 1451, 1484, 1559, 1611	1.53 (3H, т, $J = 7.28$, CH_2CH_3), 2.97 (2H, с, C(3)CH ₃), 4.49 (2H, к, $J = 7.28$, CH_2CH_3), 7.36 (1H, д. д. д. $J = 7.32$, J = 6.88, $J = 0.88$, H-5 или H-6 бензимидазол), 7.43 (1H, д. д. д. $J = 8.16$, $J = 7.32$, $J = 0.84$, H-5 или H-6 бензимидазол), 7.67 (1H, д. $J = 8.16$, H-4 или H-7 бензимидазол), 7.81 (1H, д. $J = 8.16$, H-4 или H-7 бензимидазол), 7.82–7.91 (2H, м, H-6 или H-7 хинокса- лин), 8.09 (1H, д. д. $J = 8.56$, $J = 1.68$, H-5 или H-8 хиноксалин), 8.14 (1H, д. $J = 7.72$, $J = 1.72$, H-5 или H-8 хиноксалин)
10	442, 460, 522, 562, 581, 635, 717, 748, 888, 940, 954, 986, 1049, 1075, 1192, 1114, 1177, 1224, 1262, 1313, 1353, 1371, 1424, 1467, 1487, 1569, 1604, 1649	1.32 (6H, т, <i>J</i> = 7.30, CH ₃), 2.95 (4H, к, <i>J</i> = 7.30, <u>CH</u> ₂ CH ₃), 3.82 (4H, т, <i>J</i> = 5.60, OCH ₂), 4.39 (4H, т, <i>J</i> = 5. 60, NCH ₂), 7.12–7.49 (6H, м, H-6–8 хиноксалин), 7.82 (2H, д, <i>J</i> = 8.15, H-5 хиноксалин)

Спектральные характеристики хиноксалинов 6-14

1	2	3
11	462, 513, 542, 556, 594, 625, 661, 718, 762, 859, 888, 943, 1008, 1038, 1083, 1111, 1127, 1142, 1162, 1201, 1240, 1276, 1317, 1340, 1539, 1583, 1603, 1649, 1714	2.70 (6H, c, CH ₃), 3.84 (4H, т, <i>J</i> = 5.63, OCH ₂), 4.41 (4H, т, <i>J</i> = 5.63, NCH ₂), 7.32 (2H, д, <i>J</i> = 7.30, H-6 или H-7 хиноксалин), 7.37 (2H, д, <i>J</i> = 7.80, H-8 хиноксалин), 7.53 (2H, д. д. д. <i>J</i> = 7.80, <i>J</i> = 7.15, <i>J</i> = 1.30, H-6 или H-7 хиноксалин), 7.91 (2H, д. д. <i>J</i> = 8.20, <i>J</i> = 1.30, H-5 хиноксалин)
12	432, 736, 763, 1006, 1033, 1120, 1165, 1308, 1334, 1407, 1482, 1561, 1610	2.84 (6H, c, CH ₃), 3.69 (4H, т, $J = 5.54$, OCH ₂), 4.50 (4H, т, $J = 5.54$, NCH ₂), 7.22 (2H, д. д, $J = 7.20$, $J = 7.16$, H-5 или H-6 бензимидазол), 7.29 (2H, д. д, $J = 7.64$, $J = 7.16$, H-5 или H-6 бензимидазол), 7.46 (2H, д, $J = 8.04$, H-4 или H-7 бензимидазол), 7.77 (2H, д, $J = 8.04$, H-4 или H-7 бензимидазол), 7.82 (2H, д. д. д, $J = 7.62$, $J = 7.48$, $J = 1.48$, H-6 или H-7 хиноксалин), 7.89 (2H, д. д. д, $J = 7.62$, $J = 7.62$
13a + +14a	430, 587, 623, 652, 693, 723, 740, 788, 900, 935, 968, 1016, 1068, 1144, 1193, 1234, 1345, 1514, 1557, 1581, 1616	3.29 (3H, c, CH ₃ C(3) в соед. 13а или CH ₃ C(3) в соед. 14а), 3.295 (3H, c, CH ₃ C(3) в соед. 13а или CH ₃ C(3) в соед. 14а), 7.25–7.40 (4H, м, H-5,6 бензимидазол), 7.70– 7.80 (4H, м, H-4,7 бензимидазол), 8.29 (1H, д, <i>J</i> = 9.28, H-8 в соед. 13а или H-5 в соед. 14а), 8.34 (1H, д, <i>J</i> = 9.28, H-8 в соед. 13а или H-5 в соед. 14а), 8.55 (2H, д. д, <i>J</i> = 9.28, <i>J</i> = 2.32, H-7, в соед. 13а или H-6 в соед. 14а), 8.82 (1H, д, <i>J</i> = 2.32, H-5 в соед. 13а или H-8 в соед. 14а), 8.89 (1H, д, <i>J</i> = 2.32, H-5 в соед. 13а или H-8 в соед. 14а), 12.22 (2H, уш. с, NH)
13b+ +14b	432, 654, 721, 741, 791, 849, 901, 969, 1015, 1070, 1192, 1324, 1347, 1514, 1558, 1616	2.62 (3H, c, CH ₃ C(6) в соед. 13b или CH ₃ C(7) в соед. 14b), 2.63 (3H, c, CH ₃ C(6) в соед. 13b или CH ₃ C(7) в соед. 14b), 3.29 (3H, c, CH ₃ C(3)), 3.295 (3H, c, CH ₃ C(3)), 7.33–7.39 (4H, м, H-5,6 бензимидазол), 7.68 (1H, д. д, J = 8.40, J = 1.56, H-7 в соед. 13b или H-6 в соед. 14b), 7.69 (1H, д. д, J = 8.40, J = 1.80, H-7 в соед. 13b или H-6 в соед. 14b), 7.72–7.79 (4H, м, H-4,7 бензимидазол), 7.84 (1H, с, H-5 в соед. 13b или H-8 в соед. 14b), 7.91 (1H, с, H-5 в соед. 13b или H-8 в соед. 14b), 7.91 (1H, д, J = 8.6, 4H-8, в соед. 13b или H-5 в соед. 14b), 8.02 (1H, д, J = 8.40, H-8 в соед. 13b или H-5 в соед. 14b)

^{*} Спектры ЯМР ¹Н снимали в ДМСО-d₆ (соединения 6b, 9b, 12, 13a + 14a), CDCl₃ (соединения 8b, 9a, 10, 11) и CD₃CN (соединения 9c, 13b + 14b).

в области 2.70 м. д. ацетильной группы и появление в ИК спектре полосы поглощения в области 1714 см⁻¹ ($v_{C=O}$), на третьей стадии – перемещение в спектре ЯМР ¹Н синглетного сигнала метильной группы и триплетного сигнала N-метиленовых групп в 3-оксапентановом фрагменте в более слабые поля по сравнению с исходным соединением **11** (табл. 2) и исчезновение в ИК спектре полосы поглощения кетонной и карбамоильных групп ($v_{C=O}$).

Изучение реакции 3-ацетил-2-оксо-1,2-дигидрохиноксалинов **8a** с 1,2-фенилендиаминами, сильно различающимися по характеру электронного влияния

Схема 4

 $\mathbf{a} \mathbf{X} = \mathbf{NO}_2, \mathbf{b} \mathbf{X} = \mathbf{Me}$

заместителей в бензольном кольце (нитро- (2'а) и метильным (2'b) заместителями), показало, что, как и в случае 3-бензоил-2-оксо-1,2-дигидрохиноксалинов [19], в этих реакциях, независимо от природы заместителя в бензольном кольце 1,2-фенилендиаминов, образуются примерно в равных количествах изомерные продукты перегруппировки 13 и 14, различающиеся заместителями в положениях 6 и 7 хиноксалиновой системы (схема 4).

Это означает, что либо вероятность атаки аминогруппы на атом C(3) и на алканоильный в ходе хиноксалин-бензимидазольной перегруппировки примерно равна, либо эта и последующая стадия не являются лимитирующими, либо не реализуется ни один из этих вариантов атаки на начальных стадиях перегруппировки.

Таким образом найдено, что взаимодействие 3-алканоилхиноксалин-2онов и его N'-алкилпроизводных с 1,2-фенилендиаминами протекает с хиноксалин–бензимидазольной перегруппировкой, приводящей к 2-бензимидазолилзамещенным хиноксалинам.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Температуры плавления определены на столике Boetius. ИК спектры синтезированных соединений зарегистрированы на Фурье-спектрометре Bruker Vector-22 (в вазелиновом масле). Спектры ЯМР ¹Н записаны на спектрометре Bruker-MSL-400 (400 МГц). Химические сдвиги приведены относительно ТМС с использованием в качестве внутреннего стандарта остаточных сигналов соответствующего растворителя.

Этиловый эфир 2-оксобутановой кислоты (5а) получен по методике, приведенной в работе [20].

Этиловый эфир 2-оксогексановой кислоты (5b). К смеси 9.00 г (370 ммоль) магниевых стружек и 100 мл абсолютного ТГФ добавляют по каплям в течение 1 ч при перемешивании раствор 50.74 г (370 ммоль) 1-бромбутана в 50 мл ТГФ. При этом наблюдается помутнение реакционной смеси и кипение ТГФ. После добавления всего 1545

количества 1-бромбутана реакционную смесь кипятят 10 мин. Затем к охлажденному до -50 °C раствору 54.74 г (375 ммоль) диэтилоксалата в 50 мл ТГФ при перемешивании по каплям добавляют в течение 0.5 ч свежеприготовленный раствор *n*-BuMgBr в ТГФ. При этом происходит разогревание реакционной смеси, температуру которой поддерживают не выше -15 °C. Реакционную смесь перемешивают 2 ч при -15 °C, приливают раствор 60 мл 6 М HCl в 60 мл воды. Органический слой отделяют и промывают водой (3 × 100 мл). Водный слой экстрагируют бензолом (3 × 70 мл), бензольный экстракт объединяют с органическим слоем, сушат MgSO₄ и растворители отгоняют в вакууме. Получают 49.00 г смеси диэтилоксалата и соединения **5b** с 54% содержанием последнего в реакционной смеси (по данным спектров ЯМР ¹H).

3-Этил-1,2-дигидро-2-оксохиноксалин (6а) получают по методике, приведенной в работе [20].

3-Бутил-1,2-дигидро-2-оксохиноксалин (**6b**). К 49 г смеси диэтилоксалата и соединения **5b** приливают 250 мл 2-пропанола и добавляют 30.86 г (291 ммоль) *о*-фенилендиамина. Реакционную смесь перемешивают 6 ч при комнатной температуре и оставляют на ночь (при этом уже через 5 мин наблюдается выпадение осадка). Выпавшие кристаллы хиноксалинона **6b** отфильтровывают, промывают 2-пропанолом и перекристаллизовывают. Фильтрат выливают в воду и оставляют на ночь. Выпавшие кристаллы соединений **6b** отфильтровывают, промывают и перекристаллизовывают.

1,3-Диэтил-1,2-дигидро-2-оксохиноксалин (7) получают по методике, приведенной в работе [20].

3-Ацетил-1,2-дигидро-2-оксохиноксалин (8а) получают по методике, приведенной в работе [20].

3-Бутаноил-1,2-дигидро-2-оксохиноксалин (**8b**). К нагретому до 40 °C раствору 1 г (4.95 ммоль) соединения **7b** в 17 мл уксусной кислоты при перемешивании приливают раствор 1 г (10 ммоль) хромового ангидрида в 1 мл воды и 2 мл уксусной кислоты и перемешивают в течение 2 ч при температуре 80–85 °C. Затем реакционную смесь охлаждают, выливают в воду и экстрагируют хлороформом (3 × 15 мл). Экстракт промывают водой (3 × 10 мл), органический слой сушат над MgSO₄, затем пропускают через колонку (300 × 15 мм), заполненную 3 г силикагеля (L 100/160 μ), и промывают 80 мл хлороформа. Растворитель отгоняют в вакууме водоструйного насоса, получают аналитически чистое соединение **8b**.

3-Ацетил-1,2-дигидро-2-оксо-1-этилхиноксалин (8с) получают по методике, приведенной в работе [20].

2-(2-Замещенные бензимидазолил)-З-алкил-6- и -7-замещенные хиноксалины 9, 13, 14 (общая методика). К раствору 0.50 ммоль алканоилхиноксалин-2-она 8 в 5 мл уксусной кислоты прибавляют 0.55 ммоль соответствующего 1,2-фенилендиамина и кипятят 1 ч, охлаждают и выливают в воду. Выпавшие кристаллы отфильтровывают, промывают водой.

1,5-Бис(2-оксо-3-этилхиноксалин-1-ил)-3-оксапентан (10). Смесь 8.0 г (45.98 ммоль) З-этилхиноксалин-2-она и 3.9 г (68.4 ммоль) КОН в 200 мл диоксана нагревают до кипения, прибавляют 5.6 г (24.10 ммоль) 1,5-дибром-3-оксапентана и кипятят 3 ч, охлаждают, выливают в воду. Образовавшиеся кристаллы отфильтровывают, промывают раствором КОН, водой и перекристаллизовывают.

1,5-Бис(3-ацетил-2-оксохиноксалин-1-ил)-3-оксапентан (11). К раствору 4.0 г (9.53 ммоль) соединения **10** в 20 мл уксусной кислоты при перемешивании прибавляют 2.8 г (28 ммоль) CrO₃ в 3 мл воды и 3 мл уксусной кислоты, перемешивают 1 ч при температуре 50–55 °C и 1 ч при температуре 60–65 °C. Выливают в воду, экстрагируют хлороформом (5 × 20 мл), органический слой сушат над сульфатом натрия, фильтруют через колонку, заполненную 3 г силикагеля (L 100/160 μ), промывают 100 мл хлороформа и объединенный раствор упаривают в вакууме.

1,5-Бис[(3-метилхиноксалинил-2)бензимидазол-2-ил]-3-оксапентан (12). К раствору 100 мг (0.22 ммоль) соединения 11 в 5 мл уксусной кислоты прибавляют 55 мг (0.51 ммоль) *о*-фенилендиамина, кипятят 1 ч, затем охлаждают и выливают в воду. Выпавшие кристаллы отфильтровывают, промывают водой.

Работа выполнена при финансовой поддержке РФФИ (грант 03-03-32865).

СПИСОК ЛИТЕРАТУРЫ

- 1. М. Д. Машковский, Лекарственные средства, Медицина, Москва, 1993, т. 2, с. 18.
- 2. Т. Джилкрист, Химия гетероциклических соединений, Мир, Москва, 1996, с. 245.
- N. Negwer, H.-G. Scharnow, Organic-Chemical Drugs and Their Synonyms. 8th, Extensively Enlarged Ed. WILEY-VCH, Weinheim, New York, Chichester, Brisbane, Singapur, Toronto, 2001, vol. 1–6.
- 4. Ф. Г. Набиев, Р. Н. Ахмадеев, Лекарственные препараты для ветеринарии, Казань, 2000.
- 5. Н. Н. Мельников, *Пестициды (химия, технология и применение)*, Химия, Москва, 1987, с. 554.
- 6. И. В. Сомин, А. С. Петров, *ЖОХ*, **34**, 3177 (1964).
- 7. А. С. Петров, И. Н. Сомин, С. Г. Кузнецов, ЖОрХ, 1434 (1965).
- 8. R. Garner, H. Suschitzky, Chem. Commun., 129 (1967).
- 9. O. Meth-Cohn, H. Suschitzky, J. Chem. Soc., 2609 (1964).
- 10. J. I. G. Cadogan, R. Marshall, D. M. Smith, M. J. Todd, J. Chem. Soc., 2441 (1970).
- 11. M. W. Partridge, H. A. Turner, J. Chem. Soc., 2086 (1958).
- 12. V. J. Grenda, R. E. Jones, G. Gal, M. Sletzinger, J. Org. Chem., 30, 259 (1965).
- 13. C. A. Ramsden, H. L. J. Rose, Chem. Soc., Perkin Trans. 1, 615 (1995).
- 14. T. Aotsuka, J. Heterocycl. Chem., 28, 485 (1991).
- 15. In-S. H. Lee, E. H. Jeoung, C. K. Lee, J. Heterocycl. Chem., 33, 1711 (1996).
- 16. L. A. Cescon, A. R. Day, J. Org. Chem., 27, 581 (1962).
- 17. M. Kamel, J. Prakt. Chem., 312, 737 (1970).
- А. А. Калинин, В. А. Мамедов, Я. А. Левин, XГС, 995 (2000). [Chem. Heterocycl. Comp., 36, 882 (2000)].
- 19. В. А. Мамедов, А. А. Калинин, А. Т. Губайдуллин, А. В. Чернова, И. А. Литвинов, Я. А. Левин, Р. Р. Шагидуллин, *Изв. АН, Сер. хим.*, 159 (2004).
- 20. В. А. Мамедов, А. А. Калинин, А. Т. Губайдуллин, О. Г. Исайкина, И. А. Литвинов, *ЖОрХ*, 609 (2005).
- 21. Т. Джилкрист, Химия гетероциклических соединений, Мир, Москва, 1996, с. 28.
- 22. P. Müller, Pure Appl. Chem., 66, 1077 (1994).
- 23. A. A. Kalinin, O. G. Isaykina, V. A. Mamedov, in 2nd Internatinal Symposium "Molecular Design and Synthesis of Supramolecular Architectures", Kazan, 2002, p. 80.

Институт органической и физической химии им. А. Е. Арбузова Казанского научного центра РАН, Казань 420088

e-mail: mamedov@iopc.kcn.ru

Поступило 07.07.2005 После доработки 28.06.2006