А. Ю. Кузнецов, С. В. Чапышев

СИНТЕЗ 2-ПИРИДИЛЗАМЕЩЕННЫХ ПРОИЗВОДНЫХ 7-БЕНЗИЛ-5,6,7,8-ТЕТРАГИДРОПИРИДО[3,4-*d*]ПИРИМИДИНА

Разработан метод синтеза 2-пиридилзамещенных производных 7-бензил-5,6,7,8-тетрагидропиридо[3,4-*d*]пиримидина на основе конденсации 1-бензил-3-оксопиперидин-4-этоксикарбоксилата с придил-2-, пиридил-3- и пиридил-4-карбоксамидинами и последующих реакций 7-бензил-2-пиридил-5,6,7,8-тетрагидро-3H-пиридо[3,4-*d*]пиримидин-4-онов с трифторметансульфоновым ангидридом и вторичными аминами.

Ключевые слова: 1-бензил-3-оксопиперидин-4-этоксикарбоксилат, пиридинкарбоксамидины, пиридо[3,4-*d*]пиримидины, конденсация.

Пиридо[3,4-d]пиримидины проявляют высокую биологическую активность, в частности селективно ингибируют тирозинкиназу, полностью подавляя рост многих видов злокачественных опухолей [1-3]. Отдельные представители данного класса соединений являются антагонистами α_1 -адренорецепторов и используются в медицине при лечении нервных расстройств [4], а также эффективно ингибируют деятельность дегидрофолатредуктазы, вызывая гибель многих патогенных микроорганизмов [5]. Направление и эффективность биологического действия пиридо[3,4-d]пиримидинов во многом зависит от заместителей в их пиридопиримидиновом ядре. В предыдущих работах мы показали, что удобными методами синтеза пиридо[3,4-*d*]пиримидинов являются реакции конденсации 1-бензил-3-оксопиперидин-4-этилкарбоксилата (1) с морфолин- и пирролидинзамещенными карбоксамидинами, позволяющие получать с высоким выходом производные 7-бензил-5,6,7,8-тетрагидро-3Н-пиридо[3,4-d]пиримидин-4-она [6, 7]. В настоящей работе нами изучены конденсации кетоэфира 1 с пиридинкарбоксамидинами 2а-с и реакции промежуточно образующихся 7-бензил-2-пиридил-5,6,7,8-тетрагидро-3Н-пиридо[3,4-*d*]пиримидин-4-онов За-с с трифторметансульфоновым ангидридом и аминами.

Кипячение спиртового раствора кетоэфира 1 с эквимолярным количеством амидина **2а–с** в присутствии 3 экв. EtONa в течение 3 ч приводило к образованию новых соединений. Согласно данным элементного анализа, ИК, ЯМР ¹Н спектроскопии и масс-спектрометрии (табл. 1–3), образующиеся соединения являются 7-бензил-2-пиридил-5,6,7,8-тетрагидро-3Нпиридо[3,4-*d*]пиримидин-4-онами **3а–с**, выход которых составил 71–76%.

Пиридопиримидины **За–с** представляют собой перспективные исходные соединения для синтеза производных 7-бензил-2-пиридин-5,6,7,8тетрагидропиридо[3,4-*d*]пиримидина. Так, используя реакции соединений

Соеди-	Брутто-	В	<u>Найдено, %</u> вычислено, ⁶	Т. пл.,	Выход, %		
нение	формула	C H N		Ν	Ĵ		
3 a	$C_{19}H_{18}N_4O$	<u>71.51</u> 71.68	<u>5.84</u> 5.70	<u>17.38</u> 17.60	149–150	71	
3b	$C_{19}H_{18}N_4O$	<u>71.48</u> 71.68	<u>5.93</u> 5.70	<u>17.44</u> 17.60	232–234	76	
3c	$C_{19}H_{18}N_4O$	<u>71.46</u> 71.68	<u>5.87</u> 5.70	<u>17.46</u> 17.60	210–211	72	
5a	$C_{23}H_{25}N_5$	<u>74.12</u> 74.36	<u>6.99</u> 6.78	<u>18.89</u> 18.85	197–199	75	
5b	$C_{23}H_{25}N_5O$	<u>71.04</u> 71.29	<u>6.73</u> 6.50	<u>18.14</u> 18.07	163–164	74	
5c	$C_{25}H_{30}N_6$	<u>72.31</u> 72.43	<u>7.44</u> 7.29	<u>20.25</u> 20.27	139–140	71	
5d	$C_{27}H_{27}N_5O$	<u>73.93</u> 74.12	<u>6.47</u> 6.22	<u>16.13</u> 16.01	146–148	69	
5e	$C_{27}H_{28}N_6$	<u>74.01</u> 74.29	<u>6.70</u> 6.46	<u>19.29</u> 19.25	128–129	70	
5f	$C_{23}H_{27}N_5$	<u>73.71</u> 73.96	<u>7.34</u> 7.28	<u>18.95</u> 18.75	91–92	68	

Характеристики соединений За–с и 5а–f

Таблица 2

Спектры соединений За–с и 5а–f

Со еди- нение	ИК спектр (KBr), v, см ⁻¹	Масс-спектр, <i>m/z</i> (<i>I</i> _{отн} , %)
3 a	3320 (NH), 1730 (C=O), 1610, 1590, 1580, 1565, 1540 (C=N, C=C)	318 [M] ⁺ (100), 225 (55), 174 (5)
3b	3350 (NH), 1725 (C=O), 1610, 1595, 1585, 1570, 1545 (C=N, C=C)	318 [M] ⁺ (100), 225 (5)
3c	3350 (NH), 1725 (C=O), 1610, 1590, 1580, 1570, 1545 (C=N, C=C)	318 [M] ⁺ (100), 225 (5), 174 (5)
5a	1610, 1595, 1580, 1570, 1540 (C=N, C=C)	371 [M] ⁺ (100), 253 (10)
5b	1610, 1595, 1575, 1565, 1535 (C=N, C=C)	387 [M] ⁺ (100)
5c	1610, 1595, 1580, 1570, 1540 (C=N, C=C)	414 [M] ⁺ (100), 177 (8)
5d	3280 (NH), 1610, 1600, 1595, 1580, 1565, 1530 (C=N, C=C)	437 [M] ⁺ (100)
5e	1610, 1600, 1595, 1575, 1565, 1535 (C=N, C=C)	436 [M] ⁺ (100), 318 (5)
5f	1610, 1595, 1575, 1565, 1535 (C=N, C=C)	373 [M] ⁺ (100)

Таблица З

Соеди- нение	Химические сдвиги, б, м. д. (ДМСО-d ₆), (<i>J</i> , Гц)								
	5-CH ₂	6-CH ₂	8-CH ₂	PhCH ₂	Ру	NH	Сигналы протоно фрагмента NR ¹ R		
3a	2.75 (c)	2.75 (c)	3.75 (c)	3.30 (с), 7.30 (м)	8.74 (1H, д, <i>J</i> = 5, H-6'), 8.30 (1H, д, <i>J</i> = 8, H-3'), 8.05 (1H, т, <i>J</i> = 8, H-4'), 7.65 (1H, д. д, <i>J</i> = 5 и <i>J</i> = 8, H-5')	11.8			
3b	2.75 (c)	2.75 (c)	3.70 (c)	3.30 (с), 7.30 (м)	9.20 (1H, c, H-2'), 8.70 (1H, д, <i>J</i> = 5, H-6'), 8.36 (1H, д, <i>J</i> = 8, H-4'), 7.52 (1H, д. д, <i>J</i> = 5 и <i>J</i> = 8, H-5')	12.7			
3c	2.78 (c)	2.78 (c)	3.70 (c)	3.30 (с), 7.30 (м)	8.78 (2H, д, <i>J</i> = 5, H-2',6'), 8.05 (2H, д, <i>J</i> = 5, H-3',5')	12.7			
5a	2.74 (т, <i>J</i> = 7.5)	2.84 (т, <i>J</i> = 7.5)	3.73 (c, <i>J</i> = 7.5)	3.32 (с), 7.30 (м)	8.68 (1H, д, <i>J</i> = 5, H-6'), 8.25 (1H, д, <i>J</i> = 8, H-3'), 7.86 (1H, т, <i>J</i> = 8, H-4'), 7.42 (1H, д. д, <i>J</i> = 5 и <i>J</i> = 8, H-5')		1.87 (4Н, м, CH ₂), 3.62 (4Н, м, NCH ₂)		
5b	2.82 (т, <i>J</i> = 7.5)	2.92 (т, <i>J</i> = 7.5)	3.73 (c)	3.50 (с), 7.30 (м)	8.70 (1H, д, <i>J</i> = 5, H-6'), 8.28 (1H, д, <i>J</i> = 8, H-3'), 7.90 (1H, т, <i>J</i> = 8, H-4'), 7.45 (1H, д. д, <i>J</i> = 5 и <i>J</i> = 8, H-5')		3.40 (4Н, м, NCH ₂), 3.68 (4Н, м, OCH ₂)		

Спектры ЯМР ¹Н соединений За-с и 5а-f

5c	2.82 (T, <i>J</i> = 7.5)	2.92 (т, <i>J</i> = 7.5)	3.72 (c)	3.45 (с), 7.30 (м)	8.68 (1H, д, <i>J</i> = 5, 6'-H), 8.28 (1H, д, <i>J</i> = 8, H-3'), 7.90 (1H, т, <i>J</i> = 8, H-4'), 7.45 (1H, д. д, <i>J</i> = 5 и <i>J</i> = 8, H-5')	1.04 (3H, т, <i>J</i> = 7.5, CH ₃), 2.37 (2H, к, <i>J</i> = 7.5, CH ₂), 3.40 (4H, м, NCH ₂), 3.45 (4H, м, NCH ₂)
5d	2.78 (т, <i>J</i> = 7.5)	2.88 (т, <i>J</i> = 7.5)	3.75 (c)	3.45 (с), 7.30 (м)	8.68 (1H, д, <i>J</i> = 5, H-6'), 8.22 (1H, д, <i>J</i> = 8, H-3'), 7.85 (1H, т, <i>J</i> = 8, H-4'), 7.35 (1H, д. д, <i>J</i> = 5 и <i>J</i> = 8, H-5')	3.72 (3H, c, OCH ₃), 4.68 (1H, д, <i>J</i> = 7.5, NCH ₂ C ₆ H ₅), 6.77 (1H, д, <i>J</i> = 8.5, H-4'), 6.95 (1H, д, <i>J</i> = 8.5, H-6'), 7.02 (1H, c, H-2'), 7.25 (2H, м, NH и H-5')
5e	2.78 (т, <i>J</i> = 7.5)	2.88 (т, <i>J</i> = 7.5)	2.69 (c)	3.50 (с), 7.30 (м)	8.68 (1H, д, <i>J</i> = 5, H-6'), 8.28 (1H, д, <i>J</i> = 8, H-3'), 7.90 (1H, т, <i>J</i> = 8, H-4'), 7.45 (1H, д. д, <i>J</i> = 5 и <i>J</i> = 8, H-5')	3.05 (2H, T, $J = 7.5$, CH ₂ C ₆ H ₅), 3.20 (3H, c, NCH ₃), 3.68 (3H, T, $J = 7.5$, NCH ₂), 7.15 (1H, \exists . \exists , $J = 5$ $in J = 8$, H-5'), 7.25 (1H, \exists , J = 8, H-3'), 7.64 (1H, T, $J = 8$, H-4'), 8.48 (1H, \exists , J = 5, H-6')
5f	2.80 (т, <i>J</i> = 7.5)	2.90 (т, <i>J</i> = 7.5)	3.73 (c)	3.45 (с), 7.30 (м)	9.44 (1H, c, H-2'), 8.66 (1H, д, J = 5, H-6'), 8.54 (1H, д, J = 8, H-4'), 7.48 (1H, д. д, J = 5 и J = 8, H-5')	1.10 (6H, т, <i>J</i> = 7.5, CH ₃), 3.40 (4H, к, <i>J</i> = 7.5, NCH ₂)

2–4 a R = 2-Py, **b** R = 3-Py, **c** R = 4-Py;

За-с с трифторметансульфоновым ангидридом и аминами, мы получили 4-амино-7-бензил-2-пиридил-5,6,7,8-тетрагидропиридо[3,4-*d*]пиримидины **5а-f** с высокими выходами.

Общими в спектрах ЯМР ¹Н всех соединений **5а–f** являются сигналы метиленовых протонов пиперидинового цикла и бензильного фрагмента при 2.8 (т, $J = 7.5 \Gamma$ ц, H-5), 2.9 (т, $J = 7.5 \Gamma$ ц, H-6), 3.7 (с, H-8) и 3.3–3.5 м. д. (CH₂Ph) и пяти ароматических протонов фенильного кольца при 7.2–7.4 м. д. (табл. 3), типичные для всех производных 7-бензил-5,6,7,8-тетрагидропиридо[3,4-*d*]пиримидина [6]. Сравнивая спектры ЯМР ¹Н соединений **3а–с** и **5а–f**, интересно отметить, что метиленовые протоны в положениях 5 и 6 соединений **3а–с** являются магнитно-эквивалентными и проявляются в виде синглета четырех протонов при 2.75 м. д. (табл. 3).

Очевидно, аминирование данных соединений по положению 4 сопровождается существенными конформационными изменениями в аннелированном пиперидином цикле, в результате которых метиленовые протоны в положениях 5 и 6 соединений **5а–f** становятся магнитно-неэквивалентными.

Анализ масс-спектров (табл. 2) показывает, что соединения **3а–с** и **5а–f** являются одинаково устойчивыми к действию электронного удара, давая в большинстве случаев только пики молекулярных ионов на фоне небольшого числа фрагментарных ионов очень низкой интенсивности (< 5%). При этом наличие в масс-спектрах соединений **3а–с** заметных пиков фрагментарных ионов с массой m/z 225 ($I_{\text{отн}}$ 5–55%) указывает на то, что одна

из начальных стадий фрагментации данных соединений под действием электронного удара включает отщепление бензильного фрагмента и образование относительно стабильных ионов протонированных 2-пиридилпиридо[3,4-*d*]пиримидин-4-онов.

Проведенное исследование показало, что реакции 1-бензил-3-оксопиперидин-4-этилкарбоксилата с пиридинкарбоксамидинами позволяют получать с хорошим выходом 7-бензил-2-пиридил-5,6,7,8-тетрагидро-3Hпиридо[3,4-*d*]пиримидин-4-оны, которые далее могут использоваться в синтезе разнообразных производных 5,6,7,8-тетрагидропиридо[3,4-*d*]пиримидина.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры получали на приборе Specord M-80, спектры ЯМР ¹Н – на приборе Bruker AMX-400 (400 МГц), внутренний стандарт ТМС. Масс-спектры регистрировали на приборе Finnigan MAT-90 при энергии ионизации 70 эВ. Для колоночной хроматографии исполь-зовали силикагель марки L 40/100. Контроль за реакциями осуществляли методом TCX на пластинах Silufol UV-254. В работе использовали кетоэфир **1** компании Acros.

Метод получения амидинов 2а-с описан в работе [7].

7-Бензил-2-пиридил-5,6,7,8-тетрагидро-ЗН-пиридо[3,4-d]пиримидин-4-оны За-с. К пе- ремешиваемому раствору NaOEt, полученному из 7.0 г (300 ммоль) Na и 300 мл абсолютного этанола, добавляют небольшими порциями 23.6 г (150 ммоль) гидрохлорида амидина **2а-с**, а затем по каплям 35.5 г (148 ммоль) кетоэфира **1**, кипятят 3 ч, растворитель отгоняют в вакууме, к полученному остатку добавляют насыщенный водный раствор гидрохлорида аммония. Нерастворимый в воде осадок отфильтровывают, промывают водой, метанолом, затем эфиром и сушат на воздухе.

4-Амино-7-бензил-2-пиридил-5,6,7,8-тетрагидропиридо[3,4-d]пиримидины 5а-f. К охлажденной до –20 °С перемешиваемой суспензии 3.2 г (10 ммоль) соединения **3а-с** в 50 мл пиридина добавляют по каплям 4.92 г (12 ммоль) трифторметансульфонового ангидрида, после чего температуру реакционной смеси медленно повышают до ~20°С, перемешивают в течение 30 мин, затем выливают в 500 мл воды. Выпавший осадок отфильтровывают, промывают водой и сушат на воздухе. Высушенный осадок растворяют в 150 мл сухого диоксана. К раствору добавляют 4 г (30 ммоль) К₂CO₃ и 15 ммоль соответствующего амина, кипятят 3 ч, охлаждают и выливают в 300 мл воды, экстрагируют этилацетатом, экстракт сушат Na₂SO₄ и хроматографируют на короткой колонке. Раство- ритель отгоняют в вакууме, остаток сушат на воздухе и перекристаллизовывают из этил- ацетата.

СПИСОК ЛИТЕРАТУРЫ

- 1. A. J. Bridges, Chem. Rev., 101, 2541 (2001).
- 2. G. W. Rewcastle, W. A. Denny, H. D. H. Showwalter, Curr. Org. Chem., 4, 679 (2000).
- 3. H. Daub, K. Specht, A. Ullrich, Nature Reviews, Drug Discov., 3, 1001 (2004).
- 4. T. J. Connolly, M. Matchett, K. Sarma, Organic Process Research & Development, 9, 80 (2005).
- 5. G. Wollein, R. Troschute, J. Heterocycl. Chem., 39, 1195 (2002).
- А. Ю. Кузнецов, Н. Л. Нам, С. В. Чапышев, *XГС*, 762 (2007). [*Chem. Heterocycl. Comp.*, 43, 642 (2007)].
- 7. B. Singh, G. Y. Lesher, J. Heterocycl. Chem., 14, 1413 (1977).

Институт проблем химической физики РАН, Черноголовка, 142432, Московская обл. e-mail: chap@icp.ac.ru Поступило 06.06.2006