Т. Е. Хоштария, Л. Н. Курковская, М. М. Матнадзе, М. И. Сихарулидзе, Т. О. Джаши, В. О. Ананиашвили, К. Т. Бацикадзе

КОНДЕНСИРОВАННЫЕ ТЕТРАЦИКЛИЧЕСКИЕ СИСТЕМЫ С ИЗАТИНОВЫМ ФРАГМЕНТОМ В МОЛЕКУЛЕ

Описан новый путь синтеза гетероциклических систем – диоксодигидро-1H-бензо[*b*]фуроиндолов из соответствующих изомерных аминокислот с аминогруппами в положениях 2 и 3. Метод позволяет получать указанные тетрациклические системы не только в виде одного изомера, но и взаимопревращать их: из тетрациклических систем ангулярного строения можно получать соответствующие им изомеры линейного строения и наоборот. Моделью для подобных превращений послужила классическая реакция Зандмейера.

Ключевые слова: изатин, индол, пиррол.

Изатин является структурным фрагментом лекарственных препаратов с широким спектром физиологического действия. Высокую антибактериальную активность проявляет, например, препарат метисазон (марборан) – 3-тиосемикарбазон 1-метилизатина [1–3]. Ранее мы разработали методы синтеза тетрациклических систем – изомерных диоксодигидро-1H-бензо[*b*]фуроиндолов [4, 5]. Настоящая работа посвящена синтезу новых тетрациклических конденсированных систем с линейным и ангу-лярным типом сочленения, сочетающих в своей структуре изатиновый и бензофурановый фрагменты.

Полученные из 2- и 3-аминодибензофуранов (1, 2) изонитрозоацетамидодибензофураны 3 и 4 претерпевают в условиях реакции Зандмейера по методикам, описанным в работах [4, 5], циклизацию с образованием 1,2-диоксо-1,2-дигидро-1H-бензо[b]фуро[3,2-e]- (5), 2,3-диоксо-2,3-дигидро-1H-бензо[b]фуро[2,3-f]- (6), 2,3-диоксо-2,3-дигидро-1H-бензо[b]фуро-[3,2-f]- (7) и 1,2-диоксо-1,2-дигидро-1H-бензо[b]фуро[2,3-e]индолов (8).

Изучая химические свойства полученных гетероциклов, мы установили, что ангулярные структуры 5 и 7 сравнительно легко можно превращать по единой методике в линейные 6, 8 и наоборот через соответствующие ароматические *орто*-аминокислоты 9–12. Последние получаются обработкой соединений 5–8 водным раствором NaOH с последующим окислением пероксидом водорода.

Характеристики соединений 3-20 приведены в табл. 1-3.

Соеди-	Брутто-	B	Найдено, % ычислено, '	Т. пл., °С	Выход,	
нение	ение формула		Н	N	, _	%
3	$C_{14}H_{10}N_2O_3$	<u>66.3</u> 66.14	<u>3.7</u> 3.93	<u>11.1</u> 11.02	200–201	80
4	$C_{14}H_{10}N_2O_3$	<u>66.4</u> 66.14	<u>3.8</u> 3.93	<u>11.3</u> 11.02	220–221	93
5	$C_{14}H_7NO_3$	<u>70.7</u> 70.88	<u>2.8</u> 2.95	<u>5.8</u> 5.90	246–247	69
6	$C_{14}H_7NO_3$	<u>70.8</u> 70.88	<u>2.9</u> 2.95	<u>5.7</u> 5.90	250-251	25
7	$C_{14}H_7NO_3$	<u>70.6</u> 70.88	<u>3.0</u> 2.95	<u>6.0</u> 5.90	220–221	77
8	$C_{14}H_7NO_3$	<u>70.7</u> 70.88	<u>2.7</u> 2.95	<u>6.1</u> 5.90	215–217	18
9	$C_{13}H_9NO_3$	<u>68.7</u> 68.72	<u>3.7</u> 3.96	<u>6.2</u> 6.16	186–187	83
10	$C_{13}H_9NO_3$	<u>68.6</u> 68.72	<u>3.8</u> 3.96	<u>6.4</u> 6.16	160–162	89
11	$C_{13}H_9NO_3$	<u>68.5</u> 68.72	<u>3.9</u> 3.96	<u>6.3</u> 6.16	157–158	74
12	$C_{13}H_9NO_3$	<u>68.9</u> 68.72	<u>4.0</u> 3.96	<u>6.4</u> 6.16	190–193	76
13	$C_{15}H_{10}N_2O_5$	<u>60.3</u> 60.40	<u>3.4</u> 3.35	<u>9.3</u> 9.39	217–219	77
14	$C_{15}H_{10}N_2O_5$	<u>60.5</u> 60.40	<u>3.1</u> 3.35	<u>9.5</u> 9.39	235–237	78
15	$C_{15}H_{10}N_2O_5$	<u>60.3</u> 60.40	<u>3.3</u> 3.35	<u>9.4</u> 9.39	199–201	95
16	$C_{15}H_{10}N_2O_5$	<u>60.2</u> 60.40	<u>3.5</u> 3.35	<u>9.0</u> 9.39	180–181	80
17	$C_{15}H_7NO_5$	<u>64.4</u> 64.05	<u>2.1</u> 2.49	<u>4.9</u> 4.98	299–300	90
18	$C_{15}H_7NO_5$	<u>64.3</u> 64.05	<u>2.3</u> 2.49	<u>4.8</u> 4.98	289–290	80
19	C ₁₅ H ₇ NO ₅	<u>64.1</u> 64.05	<u>2.2</u> 2.49	<u>5.0</u> 4.98	321-322	95
20	C ₁₅ H ₇ NO ₅	<u>64.3</u> 64.05	<u>2.6</u> 2.49	<u>4.9</u> 4.98	333–334	92

Характеристики синтезированных соединений 3-20

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Контроль за ходом реакций и чистотой синтезированных соединений осуществляли методом TCX на пластинках Silufol UV-254 с закрепленным слоем силикагеля. УФ спектры сняты на спектрофотометре Specord UV-vis в этаноле, ИК спектры – на приборе UR-20 с призмами из NaCl и LiF (в вазелиновом масле). Спектры ЯМР ¹Н измеряли на приборе Bruker WM-250 (250 МГц), внутренний стандарт TMC.

2-Изонитрозоацетамидодибензофуран (3). К раствору 16.5 г (0.1 моль) хлоральгидрата в 150 мл воды последовательно добавляют 257 г (0.8 моль) Na₂SO₄•10H₂O, 18.3 г (0.1 моль) 2-аминодибензофурана **1**, растворенного в 3 л воды, подкисленной 20 мл конц. HCl и 22.0 г (0.32 моль) гидрохлорида гидроксиламина в 100 мл воды. Смесь кипятят 2 ч, выпавшие кристаллы отфильтровывают, промывают водой, сушат и перекристаллизовывают из этилацетата. Получают 6.3 г соединения **3**.

Таблица 2

Соеди-				Химические сдвиги, δ, м. д. в ДМСО-d ₆										
нение	H-1	H-2	Н-3	H-4	H-5	H-6	H-7	H-8	Н-9	H-10	H-11	H-12	H-13	
3	8.71, д	_	7.82, д. д	7.81, д	Ι	8.13, м	~ 7.:	50	8.23, м	10.60, уш. с	7.75, c	12.40, уш. с	-	$J_{1,3} = 2.1, J_{3,4} = 9.2$
4	8.33, д. д	7.75, д. д	-	8.51, д. д	_	7.90, м	~ 7.:	50	8.25, м	10.50, уш. с	7.80, c	12.30, уш. с	_	$J_{1,2} = 9.3,$ ${}^{5}J_{1,4} = 0.5,$ $J_{2,4} = 2.2$
5	-	-	11.10, уш. с	7.13, д	8.31, д	_	8.13, м	~	7.50	9.52, м	_	_	-	$J_{4,5} = 8.6$
6	11.50, уш. с		-	8.44, д	_	8.24, м	~ 7.:	50	8.45, м	7.77, д	-	-	-	${}^{5}J_{4,10} = 0.8$
7	-	_	11.50, уш. с	7.10, д	8.40, д	8.33, м	~ 7.:	50	8.22, м	-	-	-	-	$J_{4,5} = 8.5$
8	11.00, уш. с	-	-	8.40, д	8.45, м	~ 7	7.50	7.85, м	-	8.21, д	_	_	_	${}^{5}J_{4,10} = 0.8$
9*	-	-	6.62, д	7.85, д	_	7.95, м	~ 7.:	50	8.25, м	9.30, уш. с	8.50, уш. с	-	-	$J_{3,4} = 8.8$
10	7.24, д	_	_	7.92, д	_	8.22, м	~ 7.:	50	8.33, м	9.40, уш. с	8.60, уш. с	_	_	${}^{5}J_{1,4} = 0.5$

Спектры ЯМР ¹Н соединений 3–20

1318

11	8.45, д	_	-	7.63, д	_	8.23, м	~ 7.	50	8.32, м	9.20, уш. с	8.30, уш. с	_	_	${}^{5}J_{1,4} = 0.4$
12	8.22, д	6.61, д	-	-	-	7.92, м	~ 7.	50	8.28, м	9.30, уш. с	8.40, уш. с	-	-	$J_{1,2} = 8.8$
13	-	-	7.82, д	8.14, д	-	7.94, м	~ 7.	50	8.02, м	10.60, уш. с	8.80, уш. с	8.30, c	10.60, уш. с	$J_{3,4} = 9.3$
14	8.29, д	-	-	8.50, д	-	8.12, м	~ 7.	50	8.25, м	10.40, уш. с	8.50, уш. с	7.87, c	10.30, уш. с	${}^{5}J_{1,4} = 0.8$
15	8.91, д	_	-	7.64, д	_	7.75, м	~ 7.	50	8.28, м	12.20, уш. с	12.30, уш. с	8.98, c	13.60, уш. с	${}^{5}J_{1,4} = 0.6$
16	7.92, д	7.77, д	-	-	-	7.94, м	~ 7.	50	8.26, м	9.20, уш. с	8.00, уш. с	6.10, уш. с	9.20, уш. с	$J_{1,2} = 8.8$
17	10.90, уш. с	_	-	8.25, c	_	7.78, м	~ 7.	50	8.18, м	-	10.70, уш. с	_	_	
18	_	-	11.00, уш. с	-	8.63, c	-	8.24, м	~	7.50	8.79, м	11.30, уш.с	-	_	
19	_	-	11.10, уш. с	-	8.62, c	8.33, м	~ 7.	50	7.77, м	-	11.50, уш. с	-	_	
20	10.60, уш. с	-	_	8.71, c	8.27, м	~ 7	.50	7.79, м	_	_	$\Sigma H_2 O \leftrightarrow O H$	_	_	

* Снято в ацетоне-d₆.

Таблица З

Соеди-	И	К спектр, v, см	1 ⁻¹					
нение	CO NH NH…O=C		NH…O=C	$5 \oplus \text{chertp}, \Lambda_{\text{max}}, \text{find} (1g \varepsilon)$				
3	1710	3280	_	240 (4.35), 270 (4.00), 290 (4.15),				
				300 (4.00), 342 (3.90)				
4	1700	3400	_	250 (4.31), 260 (4.22), 280 (4.25),				
				299 (4.05), 330 (4.15)				
5	1720	3450	3290	-				
6	1720	3420	3300	-				
7	1710	3410	3350	-				
8	1700	3450	3270	-				
9	1700	3410	_	244 (4.25), 275 (4.35), 298 (4.45),				
				310 (4.15), 348 (4.00)				
10	1690	3385	-	242 (4.33), 266 (4.15), 278 (4.25),				
				288 (4.00), 325 (4.10)				
11	1700	3390	—	255 (4.15), 260 (4.25), 280 (4.35),				
	1.000	2 4 6 6		315 (4.22), 320 (4.50)				
12	1680	3400	—	230(3.90), 270(4.15), 269(4.10), 205(4.55), 215(4.10)				
12	1(00	2400		295(4.55), 515(4.10)				
15	1090	3400	_	230(4.23), 277(4.17), 200(4.50), 285(4.20), 300(4.44)				
14	1690	3400	_	244 (4 17) 258 (4 25) 288 (4 34)				
14	1090	5100		280 (4.76), 290 (4.38)				
15	1710	3420	_	249 (4.20), 265 (4.22), 279 (4.33),				
-				279 (4.10), 298 (4.17)				
16	1710	3400	_	233 (4.36), 270 (4.35), 269 (4.25),				
				284 (4.25), 300 (4.00)				
17	1700	3400	3330	-				
18	1700	3395	3230	-				
19	1690	3390	3250	-				
20	1710	3400	3345	-				

Спектральные характеристики соединений 3-20

3-Изонитрозоацетамидодибензофуран (4) получают из 3-аминодибензофурана 2 аналогично соединению 3 и перекристаллизовывают из этилацетата. Получают 7.3 г соединения 4.

1,2-Диоксо-1,2-дигидро-1Н-бензо[b]фуро[3,2-е]индол (5) и 2,3-диоксо-2,3-дигидро-1Н-бензо[b]фуро[2,3-f]индол (6). К 50 г (0.51 моль) 90% серной кислоты при постоянном перемешивании небольшими порциями прибавляют 20 г (0.08 моль) сухого 2-изонитрозоацетамидодибензофурана (3) при температуре не выше 50 °C. Смесь нагревают еще 2 ч при 80 °C, охлаждают и выливают на 10–12-кратное количество льда. Через 3 ч осадок отфильтровывают и промывают водой. Сырой продукт суспендируют в 5-кратном количестве горячей воды и при перемешивании прибавляют 10% раствор NaOH до полного растворения. Затем осторожно добавляют 10% соляную кислоту до начала образования осадка. Осадок отфильтровывают и отбрасывают. Фильтрат подкисляют уксусной кислотой до pH 3 и оставляют на 1.5 ч. Выпавший осадок соединения **5** отфильтровывают, промывают водой и сушат. Получают 12.87 г чистого соединения **5**.

Фильтрат после отделения изомера 5 подкисляют конц. HCl до pH 1 и оставляют на 24 ч. Выпавшие кристаллы отфильтровывают, промывают водой до нейтральной реакции и сушат. Получают 4.66 г соединения 6.

2,3-Диоксо-2,3-дигидро-1Н-бензо[b]фуро[3,2-f]индол (7) и 1,2-диоксо-1,2-дигидро-1Н-бензо[b]фуро[2,3-*e*]индол (8) получают из соединения 4 аналогично соединениям 5 и 6.

Снять УФ спектры соединений 5-8, к сожалению не удалось из-за их плохой растворимости в этаноле.

2-Аминодибензофуран-1-карбоновая кислота (9). Смесь 2.53 г (0.01 моль) соединения 5, 70 мл воды и 20 мл 30% раствора NaOH кипятят 3 ч, охлаждают, добавляют 46 мл 30% H_2O_2 [6]. Перемешивают при комнатной температуре еще 20 ч и оставляют на ночь, подкисляют HCl до pH 5–6, выпавший осадок отфильтровывают, промывают водой и сушат.

2-Аминодибензофуран-3-карбоновая кислота (10), 3-аминодибензофуран-2-карбоновая кислота (11) и 3-аминодибензофуран-4-карбоновая кислота (12). Получают из диоксодигидробензофуроиндолов 6, 8 и 7, соответственно, аналогично соединению 9 по методикеб описанной в работе [6].

2-Изонитрозоацетамидодибензофуран-1-карбоновая кислота (13), 2-изонитрозоацетамидодибензофуран-3-карбоновая кислота (14), 3-изонитрозоацетамидодибензофуран-2-карбоновая кислота (15) и 3-изонитрозоацетамидодибензофуран-4-карбоновая кислота (16). Получают из аминокислот 9–12 аналогично соединению 3.

2,3-Диоксо-2,3-дигидро-1Н-бензо[*b*]фуро[2,3-*f*]индол-10-карбоновая кислота (17). К 140 г 80% H_2SO_4 , нагретой до 50 °С, при постоянном перемешивании, маленькими порциями добавляют 15.7 г (0.05 моль) хорошо высушенной кислоты 13. По завершении добавления температуру реакционной смеси повышают до 80 °С и выдерживают при этой температуре 2 ч, после чего смесь охлаждают, выливают на 10–12-кратное количество колотого льда и оставляют на ночь. Выпавшие кристаллы отфильтровывают, суспендируют в 5-кратном количестве горячей воды при постоянном перемешивании и добавляют 40% раствор NaOH до полного растворения осадка. К полученному раствору осторожно прибавляют 12% соляную кислоту до появления мути и фильтруют. Осадок отфильтро-вывают и отбрасывают. Фильтрат подкисляют конц. HCl до pH 1. Выпавшие кристаллы отфильтровывают, тщательно промывают водой и сушат в вакуум-эксикаторе. Получают 6.4 г соединения 17.

1,2-Диоксо-1,2-дигидро-1Н-бензо[b]фуро[3,2-е]индол-4-карбоновая кислота (18), 1,2-диоксо-1,2-дигидро-1Н-бензо[b]фуро[2,3-е]индол-4-карбоновая кислота (19) и 2,3-диоксо-2,3-дигидро-1Н-бензо[b]фуро[3,2-f]индол-10-карбоновая кислота (20). Получают из кислот 14–16 аналогично соединению 17.

Снять УФ спектры соединений 17–20 не удалось из-за их плохой растворимости в этаноле.

Диоксодигидробензофуроиндолы 5-8 получают декарбоксилированием около температуры плавления (±10-15 °C) кислот 17, 18, 20 и 19 соответственно. Смешанные пробы температур плавления с заведомо синтезированными соединениями 5-8 не дают депрессии.

СПИСОК ЛИТЕРАТУРЫ

- 1. R. W. Sidwell, G. J. Dison, S. M. Sellers, F. M. Schabel, Appl. Microbiol., 16, 370 (1968).
- 2. D. J. Bauer, P. W. Sadler, Lancet, 1, 1110 (1960).
- 3. P. W. Sadler, Ann. N. Y. Acad. Sci., New York, 130, 71 (1965).
- 4. Т. Е. Хоштария, Т. О. Джаши, Л. Н. Курковская, XIC, 627 (1999). [Chem. Heterocycl. Comp., 35, 557 (1999)].
- 5. Т. Е. Хоштария, М. М. Матнадзе, Труды Груз. техн. ун-та, 2005, 1 (455), с. 65-67.
- 6. R. Ponci, F. Amatori, P. Lorenco, Farmaco, 22, 999 (1967).

Грузинский технический университет, Тбилиси 380075 e-mail: t_khoshtaria@yahoo.com Поступило 14.11.2005 После доработки 11.04.2007