И. В. Украинец, Н. Л. Березнякова, А. В. Туров^а, С. В. Слободзян⁶

4-ГИДРОКСИХИНОЛОНЫ-2

128*. БРОМИРОВАНИЕ НЕЗАМЕЩЕННЫХ В ПОЛОЖЕНИИ З N-АЛЛИЛ-4-ГИДРОКСИ-2-ОКСО-1,2-ДИГИДРОХИНОЛИНОВ И ПИРИДИНОВ

Бромирование N-аллил-4-гидрокси-2-оксо-1,2-дигидрохинолина и N-аллил-4-гидрокси-2-оксо-6-метил-5-этоксикарбонил-1,2-дигидропиридина сопровождается не только замыканием пятичленного оксазольного кольца, но и последующим повторным бромированием положения 4 образовавшихся 2-бромметил-5-оксо-1,2-дигидро-5H-оксазоло[3,2-*a*]производных.

Ключевые слова: оксазоло[3,2-*а*]пиридины, оксазоло[3,2-*а*]хинолины, бромирование, гетероциклизация, РСА.

Обработка молекулярным бромом N-аллил-4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот, их сложных эфиров и гидрированных в бензольной части молекулы аналогов представляет собой удобный и эффективный метод получения соответствующих 2-бромметил-5-оксо-1,2дигидро-5H-оксазоло[3,2-*a*]хинолинов [2, 3]. Логично было бы предположить, что и поведение 3H-производных будет таким же. Однако, как показали проведенные нами эксперименты, бромирование N-аллил-4гидрокси-2-оксо-1,2-дигидрохинолина (1) и родственного ему по строению N-аллил-4-гидрокси-6-метил-2-оксо-5-этоксикарбонил-1,2-дигидропиридина (2) хотя и сопровождается замыканием пятичленного оксазольного цикла, но проходит со специфическими особенностями.

4-Гидрокси-2-оксохинолин 1 получен декарбоксилированием кислоты 3. В синтезе 4-гидрокси-2-оксопиридина 2 применена известная схема [4], предполагающая формирование пиридинового ядра в несколько стадий исходя из ацетоуксусного эфира (4) и аллиламина.

По наблюдениям N-аллилзамещенные 3H-азагетероциклы 1 и 2 бромируются без видимых аномалий – введенное эквимолярное количество брома обесцвечивается практически мгновенно. Но уже при перекристаллизации технических соединений было замечено, что в обоих случаях они состоят из двух веществ (по данным спектров ЯМР ¹Н в соотношении 1:1), значительно различающихся по растворимости в органических растворителях. После разделения реакционных смесей оказалось, что легкорастворимые в эфире соединения, вопреки ожиданиям, вообще не содержат в своей структуре бром, и при более детальном были анализе идентифицированы как исходные N-аллилзамещенные 3H-азагетероциклы 1 и 2.

^{*} Сообщение 127 см. [1].

В нерастворимых в эфире веществах бром присутствует. Результаты исследования их строения методом спектроскопии ЯМР свидетельствуют о том, что замыкание пятичленного оксазольного кольца при бромировании все же происходит. Но, вместе с тем, отмечена и одна необычная особенность – отсутствие в спектрах ЯМР ¹Н синглетных сигналов протонов H-4.

Для установления строения продуктов реакции были использованы также спектры ЯМР ¹³С и эксперименты по гетероядерной корреляции $^{13}C^{-1}H$. Анализ углеродных спектров показал, что в них имеется ожидаемое количество атомов углерода. Однако один из них имеет неожиданный химический сдвиг: 81.9 для соединения 7 и 87.2 м. д. для соединения 8. Измерение спектров DEPT позволило установить, что в молекуле 8 присутствуют две метильных группы, три метиленовых группы и один метиновый протон. Таким образом, было установлено, что в этом соединении вместо одного ароматического протона в положении 4 присутствует четвертичный атом углерода с химическим сдвигом 87.2 м. д. Кроме того, были выполнены опыты по гетероядерной корреляции через одну химическую связь (HMQC) и через 2–3 химические связи (HMBC), что позволило полностью отнести сигналы всех атомов углерода.

На схеме приведены отнесения сигналов ¹Н и ¹³С для оксазолохинолона 7. Спиновая связь в протонных мультиплетах была подтверждена спектрами COSY-90. Отнесения протонированных атомов углерода сделаны на основании корреляций через одну связь в спектре HMQC. Стрелками показаны важнейшие корреляции в спектре HMBC, послужившие основанием для отнесений сигналов четвертичных атомов углерода.

Таблица 1

δ, м. д.	HMQC	HMBC
8.11	126.6	172.7; 135.7; 132.9; 116.4
7.72	132.9	135.7; 126.6; 116.4; 124.3
7.47	116.4	124.3; 123.2; 132.9; 126.6
7.38	124.3	135.7; 132.9; 126.6; 123.2; 116.4; 81.9
5.59	80.8	158.8; 35.0
4.73	50.8	158.8; 80.8; 35.0
4.34	50.8	158.8; 80.8; 35.0
4.06	35.0	80.8; 50.8
4.01	35.0	80.8; 50.8

Полный перечень корреляций, найденных для оксазолохинолона 7

Как видно из приведенной схемы, на основании корреляций в спектре HMBC удается отнести все четвертичные атомы углерода. Так, карбонильный атом $C_{(5)}$ хинолонового фрагмента коррелирует с протоном H-6, поглощающим при 8.11 м. д. Узловые атомы $C_{(5a)}$ и $C_{(9a)}$ можно отнести на основании корреляций с протонами H-7 и H-8 соответственно. Для сигнала $C_{(3a)}$ имеются корреляции с сигналами всех протонов оксазолидинового цикла. Наконец, для атома $C_{(4)}$, поглощающего при 81.9 м. д. и, предположительно, связанного с атомом брома, имеется слабая корреляция через 5 связей с протоном H-7 (*w*-взаимодействие). Все найденные гетероядерные корреляции для оксазолохинолона 7 приведены в табл. 1.

При анализе двумерных спектров гетероядерной корреляции ¹³С-¹Н для оксазолопиридона **8** оказалось, что большинство имеющихся корреляций соответствуют описанным для соединения **7**. Это свидетельствует о близости структуры исследованных соединений. Отнесения сигналов в протонном и углеродном спектре были произведены аналогично. На схеме приведены найденные значения химических сдвигов и корреляции в спектре НМВС, послужившие основанием для отнесения сигналов четвертичных атомов углерода.

Таблица 2

Полный перечень корреляций, найденных для оксазолопиридона 8

HMQC	HMBC
80.2	34.5; 157.4
51.7	157.4; 80.2; 34.5
61.5; 51.7	157.4; 166.5; 80.2; 34.5; 14.7
34.5	80.2; 51.7
16.7	141.4; 119.4; 171.1
14.7	61.5
	HMQC 80.2 51.7 61.5; 51.7 34.5 16.7 14.7

Так, сигнал карбонильного атома углерода этоксикарбонильной группы отнесен на основании его корреляции с сигналом метиленовых протонов, поглощающих при 4.20 м. д. Сигнал протонов метильной группы 7-CH₃ имеет корреляции с сигналами атомов углерода при 141.4 и 119.4 м. д. Это позволило отнести данные сигналы к атомам $C_{(7)}$ и $C_{(6)}$ соответственно. Наличие слабой, обусловленной *w*-взаимодействием, корреляции между сигналом 7-CH₃ и сигналом при 171.1 м. д. позволило отнести данный сигнал к карбонильному атому $C_{(5)}$. Сигнал атома $C_{(3a)}$ отнесен на основании наличия корреляций со всеми протонами оксазолидинового цикла. Полный список всех найденных гетероядерных корреляций для оксазолопиридона **8** приведен в табл. 2.

Суммируя данные исследований ЯМР, мы пришли к заключению, что продукты бромирования N-аллилзамещенных 3H-азагетероциклов 1 и 2 представляют собой 4-бром-2-бромметил-1,2-дигидрооксазоло[3,2-*a*]хинолин-5-он (7) и 4-бром-2-бромметил-7-метил-6-этоксикарбонил-1,2-дигидрооксазоло[3,2-*a*]пиридин-5-он (8) соответственно. Подтверждают такой вывод и хромато-масс-спектры, отличительной особенностью которых являются характерные для дибромзамещенных соединений [5] триплетные пики молекулярных ионов с соотношением интенсивностей 1:2:1.

Строение молекулы дибромзамещенного оксазолохинолона 7 с нумерацией атомов

И, наконец, окончательным аргументом в пользу предложенных структур стало рентгеноструктурное исследование одной из них – дибромзамещенного оксазолохинолона 7 (рисунок).

Установлено, что хинолоновый фрагмент и атомы $O_{(2)}$, $Br_{(1)}$, $O_{(1)}$ и $C_{(11)}$ этого соединения лежат в одной плоскости с точностью 0.02 Å. Связи $O_{(2)}-C_{(7)}$ 1.242(6) и $C_{(8)}-C_{(9)}$ 1.361(6) Å удлинены по сравнению с их средними значениями [6] 1.210 и 1.326 Å, соответственно, а связи $C_{(7)}-C_{(8)}$ 1.405(7) и $C_{(9)}-O_{(1)}$ 1.319(6) Å укорочены (средние значения 1.455 и 1.354 Å). Такое изменение длин связей позволяет представить строение исследуемой молекулы как суперпозицию двух резонансных структур с преимущественным вкладом 5-оксоформы 7.

Пятичленный гетероцикл разупорядочен по двум конформациям конверт (**A** и **B**) с заселенностью A:B = 45:55%. Атом $C_{(10)}$ отклоняется от среднеквадратичной плоскости остальных атомов цикла в конформере **A**

Связь	l, Å	Связь	l, Å	Связь	l, Å
$Br_{(1)} - C_{(8)}$	1.879(5)	$C_{(6)} - C_{(7)}$	1.472(7)	$O_{(2)} - C_{(7)}$	1.242(6)
Br ₍₂₎ –C _(12A)	1.99(1)	$C_{(8)} - C_{(9)}$	1.361(6)	$C_{(1)} - C_{(2)}$	1.400(7)
$N_{(1)} - C_{(1)}$	1.383(6)	C ₍₁₁₎ -C _(10B)	1.55(1)	$C_{(3)} - C_{(4)}$	1.361(9)
$O_{(1)} - C_{(9)}$	1.319(6)	C(10B)-C(12B)	1.48(2)	$C_{(5)} - C_{(6)}$	1.396(8)
$O_{(1)} - C_{(10B)}$	1.50(1)	Br ₍₂₎ -C _(12B)	1.90(1)	$C_{(7)} - C_{(8)}$	1.405(7)
$C_{(1)} - C_{(6)}$	1.398(7)	N ₍₁₎ -C ₍₉₎	1.358(6)	$C_{(11)} - C_{(10A)}$	1.54(2)
$C_{(2)} - C_{(3)}$	1.362(8)	$N_{(1)}-C_{(11)}$	1.454(6)	$C_{(10A)} - C_{(12A)}$	1.48(2)
$C_{(4)} - C_{(5)}$	1.359(8)	O ₍₁₎ -C _(10A)	1.49(2)		

Длины связей (l) в структуре дибромзамещенного оксазолохинолина 7

на –0.42, а в конформере **В** на 0.30 Å. Бромметильный заместитель в обоих конформерах имеет псевдоэкваториальную ориентацию (торсионный угол $N_{(1)}-C_{(11)}-C_{(10)}-C_{(12)}$ 135(1)° в **А**, –133.0(8)° в **В**). Атом брома не разупорядочен и для обоих конформеров находится в *ар*-конформации относительно связи $C_{(11)}-C_{(10)}$ (торсионный угол $C_{(11)}-C_{(10)}-C_{(12)}-Br_{(2)}$ 177.7(8) **А**, –176.3(6)° **В**). В трициклическом фрагменте обнаружен укороченный внутримолекулярный контакт $H_{(2)}...C_{(11)}$ 2.69 Å (сумма ван-дер-ваальсовых радиусов 2.87 Å [7]).

В кристалле между молекулами оксазолохинолона 7 обнаружены укороченные межмолекулярные контакты: $H_{(2)}...C_{(12a)'}$ (-1-*x*, -1-*y*, -0.5+*z*) 2.78 (2.87), $H_{(3)}...Br_{(1)'}$ (-0.5-*x*, 1+*y*, -0.5+*z*) 3.02 (3.23), $H_{(10a)}...Br_{(1)'}$ (-0.5-*x*, *y*, -0.5+*z*) 2.84 (3.23), $H_{(10b)}...Br_{(1)'}$ (-0.5-*x*, *y*, 0.5+*z*) 3.14 (3.23), $Br_{(1)}...H_{(12b)'}$ (-0.5-*x*, *y*, -0.5+*z*) 3.01 (3.23), $Br_{(1)}...H_{(12c)'}$ (-0.5-*x*, *y*, 0.5+*z*) 3.11 (3.23) и $Br_{(2)}...H_{(12c)'}$ (-1-*x*, -2-*y*, 0.5+*z*) 3.18 Å (3.23 Å).

Таким образом, бромирование незамещенных в положении 3 N-аллил-4-гидрокси-2-оксо-1,2-дигидрохинолина (1) и N-аллил-4-гидрокси-2-оксо-6-метил-5-этоксикарбонил-1,2-дигидропиридина (2) эквимолярным количеством молекулярного брома дает соответствующие 4-бром-2-бромметил-1,2-дигидрооксазоло[3,2-*a*]гетарил-5-оны 7 и 8. При этом половина исходных N-аллильных производных в реакцию не вступает.

Из этого следует, что первоначально образующиеся 4H-2-бромметилоксазолы 9 тотчас подвергаются повторному бромированию, причем скорость этого процесса существенно превышает скорость бромирования N-аллилгетероциклов 1 или 2. Причина обнаруженного эффекта, несомненно, обусловлена особенностями строения оксазолопиридонов общей формулы 9. Поскольку в резонансный гибрид конечного дибромзамещенного оксазолохинолона 7 заметный вклад вносит форма 7а, представляется весьма вероятным повторное бромирование промежуточных 4H-2-бромметилоксазолов 9 в схожей биполярной форме 10. Высокая нуклеофильность атома $C_{(4)}$ в таких соединениях, очевидно, связана еще и с тем, что он одновременно является частью енамина и винилового эфира, вследствие чего соответствующие им мезомерные формы 11 или 12 должны бромироваться гораздо быстрее, чем нейтральные OH-формы 1, 2 (аналогично фенолам и феноксид-ионам [8]).

В заключение, с учетом результатов проведенных исследований, необходимо подчеркнуть, что для предотвращения образования реакционных смесей, бромирование 1-N-аллилзамещенных 3H-4-гидрокси-2-оксоазагетероциклов следует проводить двукратным количеством молекулярного брома.

Таблица 4

			1
Угол	ω, град.	Угол	ω, град.
$C_{(12B)}$ - $Br_{(2)}$ - $C_{(12A)}$	30.8(5)	$C_{(9)} - N_{(1)} - C_{(1)}$	121.9(4)
$C_{(9)} - N_{(1)} - C_{(11)}$	110.9(4)	$C_{(1)} - N_{(1)} - C_{(11)}$	127.2(4)
$C_{(9)} - O_{(1)} - C_{(10A)}$	107.6(7)	$C_{(9)} - O_{(1)} - C_{(10B)}$	109.2(6)
$N_{(1)}-C_{(1)}-C_{(6)}$	118.7(5)	$N_{(1)} - C_{(1)} - C_{(2)}$	121.5(4)
$C_{(6)} - C_{(1)} - C_{(2)}$	119.8(5)	$C_{(3)} - C_{(2)} - C_{(1)}$	120.2(5)
$C_{(4)}$ - $C_{(3)}$ - $C_{(2)}$	120.3(6)	$C_{(5)} - C_{(4)} - C_{(3)}$	120.7(6)
$C_{(4)} - C_{(5)} - C_{(6)}$	121.4(5)	$C_{(5)} - C_{(6)} - C_{(1)}$	117.6(5)
$C_{(5)} - C_{(6)} - C_{(7)}$	122.3(5)	$C_{(1)} - C_{(6)} - C_{(7)}$	120.1(5)
$O_{(2)} - C_{(7)} - C_{(8)}$	123.1(5)	$O_{(2)} - C_{(7)} - C_{(6)}$	120.5(5)
$C_{(8)}$ - $C_{(7)}$ - $C_{(6)}$	116.4(4)	$C_{(9)} - C_{(8)} - C_{(7)}$	121.3(5)
$C_{(9)}-C_{(8)}-Br_{(1)}$	118.0(4)	$C_{(7)} - C_{(8)} - Br_{(1)}$	120.7(3)
$O_{(1)}-C_{(9)}-N_{(1)}$	111.6(4)	$O_{(1)} - C_{(9)} - C_{(8)}$	126.8(5)
$N_{(1)}-C_{(9)}-C_{(8)}$	121.5(5)	N ₍₁₎ -C ₍₁₁₎ -C _(10A)	101.2(7)
$N_{(1)}-C_{(11)}-C_{(10B)}$	102.0(6)	$C_{(12A)} - C_{(10A)} - O_{(1)}$	107(1)
$C_{(12A)}$ - $C_{(10A)}$ - $C_{(11)}$	110(1)	$O_{(1)} - C_{(10A)} - C_{(11)}$	103(1)
$C_{(10A)}$ - $C_{(12A)}$ - $Br_{(2)}$	110.1(9)	$C_{(12B)}$ - $C_{(10B)}$ - $O_{(1)}$	106.0(8)
$C_{(12B)}$ - $C_{(10B)}$ - $C_{(11)}$	114(1)	$O_{(1)} - C_{(10B)} - C_{(11)}$	101.9(7)
$C_{(10B)}$ - $C_{(12B)}$ - $Br_{(2)}$	113.2(8)		

Валентные углы (@) в структуре дибромзамещенного оксазолохинолина 7

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С дибромзамещенных оксазологетероциклов 7 и 8, эксперименты по двумерной спектроскопии ЯМР ¹Н COSY, а также гетероядерные корреляционные спектры HMQC и HMBC зарегистрированы на спектрометре Varian Mercury-400 (400 и 100 МГц соответственно). Все двумерные эксперименты проводились с градиентной селекцией полезных сигналов. Время смешивания в импульсных последовательностях соответствовало ${}^{1}J_{\rm CH} = 140$ и ${}^{2-3}J_{\rm CH} = 8$ Гц. Количество инкрементов в спектрах COSY и HMQC составило 128, а в спектрах HMBC – 400. Спектры ЯМР ¹Н исходных N-аллильных производных 1 и 2 записаны на приборе Varian Mercury-VX-200 (200 МГц). Во всех случаях растворитель ДМСО-d₆, внутренний стандарт ТМС. Хромато-масс-спектры дибромпроизводных 7 и 8 зарегистрированы на спектрометре Agilent 1100 LC/MSD, способ ионизации APCI (химическая позитивная ионизация при атмосферном давлении). Параметры хроматографической колонки: длина 50 мм, диаметр 4.6 мм, неподвижная фаза – ZORBAX Eclipse XDB-C18, растворитель – водный ацетонитрил, подкисленный 0.1% трифторуксусной кислоты, градиентное элюирование, скорость подачи растворителя 2.4 мл/мин.

1-Аллил-4-гидрокси-2-оксо-1,2-дигидрохинолин (1). Раствор 2.45 г (0.01 моль) 1-аллил-4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновой кислоты (3) [2] в 15 мл ДМФА кипятят 10 мин. Охлаждают, разбавляют холодной водой. Выделившийся осадок 3H-производного 1 отфильтровывают, промывают водой, сушат. Выход 1.87 г (93%). Т. пл. 224–226 °C (из этанола). Спектр ЯМР ¹Н, δ , м. д. (J, Гц): 11.42 (1H, с, OH); 7.88 (1H, д. д, J = 7.9 и J = 1.4, H-5); 7.56 (1H, т. д, J = 7.7 и J = 1.7, H-7); 7.35 (1H, д. J = 8.4, H-8); 7.19 (1H, т, J = 7.3, H-6); 5.88 (1H, с, H-3); 5.83 (1H, м, C<u>H</u>=CH₂); 5.07 (1H, д. J = 10.4 и J = 1.4, NCH₂CH=C<u>H</u>-*cis*); 4.89 (1H, д. д, J = 17.4 и J = 1.4, NCH₂CH=C<u>H</u>-*trans*); 4.80 (2H, д, J = 4.7, NCH₂). Найдено, %: С 71.72; H 5.64; N 6.88. C₁₂H₁₁NO₂. Вычислено, %: С 71.63; H 5.51; N 6.96.

1-аллил-4-гидрокси-6-метил-2-оксо-1.2-дигидропиридин-5-Этиловый эфир карбоновой кислоты (2). К 12.7 мл (0.1 моль) ацетоуксусного эфира прибавляют 11.3 мл (0.15 моль) аллиламина и оставляют на 3 сут при комнатной температуре, периодически перемешивая реакционную смесь. Добавляют 50 мл гексана, тщательно перемешивают и отделяют выделившуюся в процессе реакции воду, растворитель и остаток аллиламина удаляют в вакууме. Остаток (этиловый эфир N-аллиламинокротоновой кислоты 5) растворяют в 200 мл CH₂Cl₂, прибавляют 15.4 мл (0.11 моль) триэтиламина, а затем при охлаждении и интенсивном перемешивании по каплям 16.6 г (0.11 моль) этоксималонилхлорида и оставляют при комнатной температуре на 4-5 ч. Реакционную смесь разбавляют водой, органический слой отделяют, сушат безводным CaCl₂. Растворитель отгоняют в вакууме. К остатку (диэфир 6) прибавляют раствор этилата натрия [из 2.3 г (0.1 моль) металлического натрия и 100 мл абсолютного этилового спирта], кипятят 1 ч, после чего спирт отгоняют. Охлаждают, разбавляют водой и подкисляют разведенной (1:1) HCl до pH 4.5-5. Осадок эфира 2 отфильтровывают, промывают водой, сушат. Выход 18.9 г (80%). Т. пл. 121–123 °С (из водного этанола). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 10.99 (1H, с, OH); 5.85 (1H, м, C<u>H</u>=CH₂); 5.59 (1H, с, H-3); 5.09 (1H, д. д. *J* = 10.5 и J = 1.5, NCH₂CH=C<u>H</u>-cis); 4.85 (1H, д. д, J = 17.2 и J = 1.5, NCH₂CH=C<u>H</u>-trans); 4.57 (2H, д, J = 4.8, NCH₂); 4.20 (2H, к, J = 7.0, OCH₂); 2.24 (3H, с, 6-CH₃); 1.22 (3H, т, J = 7.0, ОСН₂С<u>Н</u>₃). Найдено, %: С 60.61; Н 6.26; N 5.81. С₁₂Н₁₅NO₄. Вычислено, %: С 60.75; Н 6.37; N 5 90

4-Бром-2-бромметил-1,2-дигидрооксазоло[3,2-*а***]хинолин-5-он (7). К раствору 2.01 г (0.01 моль) соединения 1** в 20 мл уксусной кислоты при перемешивании прибавляют 1.04 мл (0.02 моль) брома, который сразу же обесцвечивается. Разбавляют реакционную смесь холодной водой. Выпавший осадок отфильтровывают, промывают водой, сушат. Выход 3.41 г (95%). Т. пл. 218–220 °C (из этанола). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 8.11 (11, д, *J* = 7.9, H-6); 7.72 (11, т, *J* = 7.4, H-8); 7.47 (11, д, *J* = 8.1, H-9); 7.38 (11, т, *J* = 7.4, H-7); 5.59 (11, м, CHO); 4.73 (11, т, *J* = 9.5, NCH); 4.34 (11, д. д. *J* = 8.7 и *J* = 6.6, NCH); 4.06 (11, д. д. *J* = 11.2 и *J* = 4.3, CHBr); 4.01 (11, д. д. *J* = 11.2 и *J* = 3.5, CHBr). Спектр ЯМР ¹³С, δ, м. д.: 172.7 (С=О), 158.8 (С_(3а)), 135.7 (С_(9а)), 132.9 (С₍₈₎), 126.6 (С₍₆₎), 124.3 (С₍₇₎), 123.2 (С_(5а)), 116.4 (С₍₉₎), 81.9 (С₍₄₎), 80.8 (CHO), 50.8 (NCH₂), 35.0 (CH₂Br). Масс-спектр, *m/z* (*I*_{оти}, %): 358 [M + H]⁺ (100), приведено значения *m/z* только для изотопа ⁷⁹Br. Найдено, %: С 40.24; H 2.47; N 3.83. С₁₂H₉Br₂NO₂. Вычислено, %: С 40.15; H 2.53; N 3.90.

Рентгеноструктурное исследование. Кристаллы дибромзамещенного оксазолохинолина 7 ромбические, при 20 °C: a = 16.929(3), b = 9.252(2), c = 7.538(1) Å, V = 1180.6(4) Å³, $M_r = 359.02$, Z = 4, пространственная группа Pca2₁, $d_{выч} = 2.020$ г/см³, μ (Мо $K\alpha$) = 6.853 мм⁻¹, F(000) = 696. Параметры элементарной ячейки и интенсивности 12 601 отражений (3 288 независимых, $R_{int} = 0.089$) измерены на автоматическом четырехкружном дифрактометре Xcalibur-3 (Мо $K\alpha$ излучение, CCD-детектор, графитовый монохроматор, ω -сканирование, $2\theta_{max} = 60^{\circ}$). Поглощение учтено аналитически ($T_{min} = 0.400$, $T_{max} = 0.933$).

Структура расшифрована прямым методом по комплексу программ SHELXTL [9]. Положения атомов водорода рассчитаны геометрически и уточнены по модели "наездника" с $U_{iso} = 1.2 \times U_{eq}$ неводородного атома, связанного с данным атомом водорода. Структура уточнена по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов до $wR_2 = 0.095$ по 3261 отражениям ($R_1 = 0.047$ по 2086 отражениям с $F > 4\sigma(F)$, S = 0.975). Полная кристаллографическая информация депонирована в Кембриджском банке структурных данных – депонент № ССDC 608698. Межатомные расстояния и валентные углы представлены в табл. 3 и 4.

4-Бром-2-бромметил-7-метил-6-этоксикарбонил-1,2-дигидрооксазоло[3,2-*a***]-пиридин-5-он** (8) получают по методике синтеза оксазолохинолона 7 из этилового эфира **2**. Выход 3.63 г (92%). Т. пл. 167–169 °C (из этанола). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 5.41 (1H, м, CHO); 4.58 (1H, т, *J* = 9.4, NCH); 4.20 (3H, м, NCH + COOCH₂); 3.96 (1H, д. д, *J* = 11.4 и *J* = 5.6, CHBr); 3.89 (1H, д. д, *J* = 11.4 и *J* = 4.5, CHBr); 2.20 (3H, с, 7-CH₃); 1.22 (3H, т, *J* = 7.5, COOCH₂C<u>H</u>₃). Спектр ЯМР ¹³С, δ , м. д.: 171.1 (C=O), 166.5 (COO), 157.4 (C_(3a)), 141.4 (C₍₇₎), 119.4 (C₍₆₎), 87.2 (C₍₄₎), 80.2 (CHO), 61.5 (OCH₂), 51.7 (NCH₂), 34.5 (CH₂Br), 16.7 (7-CH₃), 14.7 (CH₂<u>C</u>H₃). Масс-спектр, *m/z* (*I*_{отн}, %): 394 [M + H]⁺ (100), приведено значения *m/z* только для изотопа ⁷⁹Br. Найдено, %: С 36.37; H 3.40; N 3.63. C₁₂H₁₃Br₂NO₄. Вычислено, %: С 36.48; H 3.32; N 3.55.

СПИСОК ЛИТЕРАТУРЫ

- 1. И. В. Украинец, Н. Л. Березнякова, С. В. Шишкина, ХГС, 1359 (2007).
- И. В. Украинец, Л. В. Сидоренко, О. В. Горохова, С. В. Шишкина, А. В. Туров, XГС, 736 (2007). [Chem. Heterocycl. Comp., 43, 617 (2007)].
- 3. И. В. Украинец, Н. Л. Березнякова, О. В. Горохова, А. В. Туров, С. В. Шишкина, *XTC*, 1180 (2007).
- И. В. Украинец, Л. В. Сидоренко, О. В. Горохова, О. В. Шишкин, XTC, 217 (2006). [Chem. Heterocycl. Comp., 42, 191 (2006)].
- 5. П. Б. Терентьев, А. П. Станкявичус, *Масс-спектрометрический анализ биологически* активных азотистых оснований, Мокслас, Вильнюс, 1987, с. 255.
- 6. H.-B. Burgi, J. D. Dunitz, Structure Correlation, VCH, Weinheim, 1994, vol. 2, p. 741.
- 7. Ю. В. Зефиров, *Кристаллография*, **42**, 936 (1997).
- 8. П. Сайкс, Механизмы реакций в органической химии, Химия, Москва, 1991.
- 9. G. M. Sheldrick, SHELXTL PLUS. PC Version. A System of Computer Programs for the Determination of Crystal Structure from X-ray Diffraction Data. Rev. 5.1 (1998).

Национальный фармацевтический университет, Харьков 61002, Украина e-mail: uiv@kharkov.ua

^аКиевский национальный университет им. Тараса Шевченко, Киев 01033, Украина e-mail: nmrlab@univ.kiev.ua

⁶Северный университет Огайо, США, Огайо, Ада 45810 e-mail: s-slobodzian@onu.edu Поступило 18.05.2006