А. Ю. Кузнецов, С. В. Чапышев

СИНТЕЗ 7-АРИЛМЕТИЛЗАМЕЩЕННЫХ ПРОИЗВОДНЫХ 4-АМИНО-2-ПИРРОЛИДИН-1-ИЛ-5,6,7,8-ТЕТРАГИДРОПИРИДО-[3,4-*d*]ПИРИМИДИНА

Конденсацией 1-бензил-3-оксо-4-этоксикарбонилпиперидина с пирролидин-1-карбоксамидином получен 7-бензил-2-пирролидин-1-ил-5,6,7,8-тетрагидро-3Н-пиридо[3,4-*d*]пиримидин-4-он, который при последовательной обработке трифторметансульфоновым ангидридом, водным аммиаком и водородом в присутствии палладия на угле образует 4-амино-2-пирролидин-1-ил-5,6,7,8-тетрагидропиридо[3,4-*d*]пиримидин с выходом 80%. Данное соединение использовано в реакциях восстановительного аминирования альдегидов для синтеза разнообразных 7-арилметилзамещенных производных 4-амино-2-пирролидин-1-ил-5,6,7,8-тетрагидропиридо[3,4-*d*]пиримидина.

Ключевые слова: 1-бензил-3-оксо-4-этоксикарбонилпиперидин, пиридо[3,4-*d*]пиримидины, пирролидин-1-карбоксамидин, триацетоксиборгидрид натрия, восстановительное аминирование, конденсация.

Аминозамещенные производные пиридо[d]пиримидинов проявляют высокую биологическую активность, в частности эффективно ингибируют дегидрофолатредуктазу, вызывая гибель многих патогенных микроорганизмов [1, 2]. Среди таких соединений особенно активными являются разнообразные структурные аналоги метотрексата 1, например пиридо[d]пиримидины 2 и 3 (пиритрексим) [3, 4].

В предыдущей работе мы показали, что удобным методом синтеза производных пиридо[3,4-*d*]пиримидина является реакция конденсации 1-бензил-3-оксо-4-этоксикарбонилпиперидина (4) с морфолин-4-карбоксамидином, позволяющая получать с высоким выходом 7-бензил-2-морфолин-4-ил-5,6,7,8-тетрагидро-3Н-пиридо[3,4-*d*]пиримидин-4-он [5]. В настоящей работе нами изучена конденсация кетоэфира 4 с пирролидин-1-карбоксамидином (5) и разработан метод получения пиридо[3,4-*d*]пиримидинов **10а–г**, являющихся структурными аналогами соединений 2 и 3.

10 а R = 4-EtC₆H₄, b R = 4-MeOC₆H₄, c R = 4-EtOC₆H₄, d R = 2-FC₆H₄, e R = 2-HOC₆H₄, f R = 2-MeOC₆H₄, g R = 2-EtOC₆H₄, h R = 2,4-(MeO)₂C₆H₃, i R = 2-OH-4-MeOC₆H₃, j R = 3,4-(MeO)₂C₆H₃, k R = 3-MeO-4-HOC₆H₃, l R = 3-OH-4-MeOC₆H₃, m R = 3-MeO-4-EtOC₆H₃, n R = 3-HOCH₂-4-MeOC₆H₃, o R = 3-EtO-4-HOC₆H₃, p R = 3,5-(MeO)₂C₆H₃, q R = 2,4,5-(MeO)₃C₆H₂, r R = 2-тиенил

Кипячение спиртового раствора кетоэфира **4** с эквимолярным количеством амидина **5** в присутствии трех эквивалентов EtONa в течение 3 ч приводило к образованию нового соединения. Согласно данным элементного анализа, ИК, ЯМР ¹Н спектроскопии и масс-спектрометрии (табл. 1–4), полученным новым соединением является 7-бензил-2-пирролидин-1-ил-5,6,7,8-тетрагидро-3Н-пиридо[3,4-*d*]пиримидин-4-он (**6**), выход которого составил 73%.

Соеди-	Брутто-	<u>Найдено, %</u> Вычислено, %			Т. пл.,	Выход,	
нение	формула	С	C H N			% 0	
6	$C_{18}H_{22}N_4O$	<u>69.91</u> 69.65	<u>7.29</u> 7.14	<u>17.79</u> 18.05	228–230	73	
8	$C_{18}H_{23}N_5$	<u>70.05</u> 69.87	<u>7.37</u> 7.49	<u>22.58</u> 22.63	164–165	67	
9	$C_{11}H_{17}N_5$	<u>60.46</u> 60.25	<u>7.68</u> 7.77	<u>31.86</u> 31.93	148–150	80	
10a	$C_{20}H_{27}N_5$	<u>71.34</u> 71.18	<u>8.14</u> 8.06	$\frac{20.52}{20.75}$	175–176	78	
10b	$C_{19}H_{25}N_5O$	<u>67.48</u> 67.23	<u>7.64</u> 7.42	$\frac{20.41}{20.63}$	198–200	75	
10c	$C_{20}H_{27}N_5O$	<u>68.21</u> 67.96	<u>7.91</u> 7.70	<u>19.59</u> 19.81	147–148	71	
10d	$C_{18}H_{22}FN_5$	<u>66.28</u> 66.03	<u>6.82</u> 6.77	<u>21.04</u> 21.39	190–191	74	
10e	$C_{18}H_{23}N_5O$	<u>66.71</u> 66.44	<u>7.22</u> 7.12	<u>21.25</u> 21.52	165–166	73	
10f	$C_{19}H_{25}N_5O$	<u>67.48</u> 67.23	<u>7.56</u> 7.42	<u>20.48</u> 20.63	157–158	76	
10g	$C_{20}H_{27}N_5O$	<u>68.18</u> 67.96	<u>7.82</u> 7.70	<u>19.62</u> 19.81	155–156	72	
10h	$C_{20}H_{27}N_5O_2$	<u>65.26</u> 65.02	<u>7.48</u> 7.36	<u>18.86</u> 19.03	153–154	78	
10i	$C_{19}H_{25}N_5O_2$	<u>64.46</u> 64.20	<u>7.30</u> 7.09	<u>19.54</u> 19.70	199–200	76	
10j	$C_{20}H_{27}N_5O_2$	<u>65.27</u> 65.02	<u>7.51</u> 7.36	<u>18.86</u> 19.03	163–164	79	
10k	$C_{19}H_{25}N_5O_2$	<u>64.36</u> 64.20	<u>7.32</u> 7.09	<u>19.48</u> 19.70	189–190	73	
101	$C_{19}H_{25}N_5O_2$	<u>64.47</u> 64.20	<u>7.30</u> 7.09	<u>19.45</u> 18.70	192–193	75	
10m	$C_{21}H_{29}N_5O_2$	<u>65.94</u> 65.77	<u>7.83</u> 7.62	<u>17.96</u> 18.26	159–160	74	
10n	$C_{20}H_{27}N_5O_2$	<u>65.28</u> 65.02	<u>7.52</u> 7.36	<u>18.78</u> 19.03	116–117	77	
100	$C_{20}H_{27}N_5O_2$	<u>65.24</u> 65.02	<u>7.58</u> 7.36	<u>18.81</u> 19.03	205–207	75	
10p	$C_{20}H_{27}N_5O_2$	<u>65.30</u> 65.02	<u>7.54</u> 7.36	<u>18.78</u> 19.03	140–141	76	
10q	$C_{21}H_{29}N_5O_3$	<u>63.38</u> 63.14	<u>7.48</u> 7.32	<u>17.26</u> 17.53	170–171	78	
10r	$C_{16}H_{21}N_5S$	<u>61.18</u> 60.92	<u>6.92</u> 6.71	$\frac{21.96}{22.20}$	168–169	71	

Характеристики соединений 6, 8, 9 и 10а–г

Таблица 2

Соеди-	v, см ⁻¹					
нение	OH	NH	СН	C=C, C=N		
6		3230	3010, 2960, 2850	1610, 1580, 1575, 1545		
8		3350, 3220, 1675	3010, 2960, 2850	1590, 1575, 1540		
9		3350, 3240, 3230, 1675	3005, 2965, 2850	1595, 1580, 1545		
10a		3355, 3220, 1670	3010, 2965, 2850	1585, 1570, 1540		
10b		3355, 3220, 1675	3010, 2960, 2850	1600, 1585, 1560, 1540		
10c		3355, 3220, 1675	3010, 2960, 2850	1600, 1580, 1560, 1540		
10d		3355, 3220, 1675	3010, 2960, 2850	1600, 1585, 1560, 1540		
10e	3470	3350, 3220, 1670	3010, 2960, 2850	1600, 1580, 1560, 1540		
10f		3350, 3220, 1675	3010, 2960, 2850	1600, 1585, 1560, 1540		
10g		3350, 3220, 1675	3010, 2960, 2850	1600, 1585, 1560, 1540		
10h		3350, 3220, 1675	3010, 2960, 2850	1600, 1585, 1560, 1540		
10i	3470	3350, 3220, 1675	3010, 2960, 2850	1600, 1580, 1555, 1540		
10j		3350, 3220, 1675	3010, 2960, 2850	1600, 1585, 1560, 1540		
10k	3485	3350, 3220, 1670	3010, 2960, 2850	1590, 1565, 1545		
101	3470	3350, 3220, 1675	3010, 2960, 2850	1600, 1585, 1560, 1540		
10m		3350, 3220, 1675	3010, 2960, 2850	1600, 1585, 1560, 1540		
10n	3495	3350, 3220, 1675	3010, 2960, 2850	1600, 1585, 1560, 1540		
100	3485	3350, 3220, 1675	3010, 2960, 2850	1590, 1565, 1545		
10p		3350, 3220, 1675	3010, 2960, 2850	1600, 1585, 1560, 1540		
10q		3350, 3220, 1675	3010, 2960, 2850	1600, 1585, 1560, 1540		
10r		3350, 3220, 1675	3005, 2965, 2850	1590, 1580, 1560, 1540		

ИК спектры соединений 6, 8, 9 и 10а-г

Реакцию соединения 6 с трифторметансульфоновым ангидридом проводили в растворе пиридина при -20 °C, получая трифлатное производное 7 с выходом 55%. Длительное нагревание (12 ч, 100 °C) трифлата 7 в смеси ДМФА с водным раствором аммиака давало амин 8 с выходом 67%. Гидрирование полученного амина 8 в растворе метанола в присутствии суспензии палладия на угле удаляло бензильный заместитель и приводило к диамину 9 с выходом 80%. Последний легко вступал в реакции восстановительного аминирования альдегидов в присутствии триацетоксиборгидрида натрия, образуя соединения 10а-г с выходом 71–79%.

Общими в спектрах ЯМР ¹Н соединений **8** и **10а–г** являются сигналы аминогрупп при 5.90 м. д. и метиленовых протонов пиперидинового и пирролидинового циклов при 1.8, 2.5, 2.6, 3.4 и 3.7 м. д. В спектрах ЯМР ¹Н соединений **6**, **8** и **10а–г** наблюдаются также общие сигналы метиленовых протонов 7-арилметильных заместителей при 3.2 м. д. (табл. 5).

Таблица З

Масс-спектры соединений 6, 8, 9 и 10а-г

Соеди- нение	<i>m/z</i> (I _{отн} , %)				
6	$310 [M]^+ (100), 192 (30)$				
8	309 [M] ⁺ (100), 212 (25), 191 (10), 162 (10)				
9	219 [M] ⁺ (25), 191 (15), 156 (100), 79 (50)				
10a	337 [M] ⁺ (100), 212 (35), 162 (10), 83 (25)				
10b	339 [M] ⁺ (100), 212 (55), 162 (5)				
10c	353 [M] ⁺ (100), 212 (35), 151 (5), 107 (5)				
10d	327 [M] ⁺ (100), 212 (40), 191 (30), 162 (15)				
10e	325 [M] ⁺ (100), 212 (65), 191 (15), 162 (5), 107 (5)				
10f	339 [M] ⁺ (100), 212 (30), 191 (15)				
10g	353 [M] ⁺ (100), 212 (40), 191 (15), 162 (5)				
10h	369 [M] ⁺ (100), 212 (25), 167 (20), 151 (15), 137 (5)				
10i	355 [M] ⁺ (50), 221 (65), 212 (100), 191 (20), 162 (15), 151 (5), 137 (25)				
10j	369 [M] ⁺ (100), 212 (20), 191 (5), 162 (5), 151 (5)				
10k	355 [M] ⁺ (100), 212 (35), 162 (5), 137 (20)				
101	355 [M] ⁺ (100), 212 (35), 162 (5)				
10m	383 [M] ⁺ (100), 212 (15), 181 (5), 137 (5), 79 (5)				
10n	369 [M] ⁺ (100), 212 (20), 167 (10)				
100	369 [M] ⁺ (100), 212 (15), 151 (10), 79 (5)				
10p	369 [M] ⁺ (100), 212 (20), 151 (10)				
10q	399 [M] ⁺ (100), 212 (20), 198 (5), 181 (20), 167 (40)				
10r	316 [M] ⁺ (100), 212 (55), 191 (15), 162 (5)				

Соеди- нение	Химические сдвиги, б, м. д.						
	5-CH ₂	6-CH ₂	8-CH ₂	Ar–CH ₂ *	2-N(CH ₂) ₄ , 4H, уш. с	NH ₂	NH
6	2.45	2.60	3.65	3.20	1.83, 3.38		10.2
8	2.45	2.60	3.65	3.20	1.83, 3.38	5.90	
9	2.30	2.60	3.65		1.83, 3.38	6.10	5.6
10	2.45	2.60	3.65	3.20	1.83, 3.38	5.90	

Спектры ЯМР ¹Н соединений 6, 8–10

* См. табл. 5.

Таблица 5

```
Спектры ЯМР <sup>1</sup>Н соединений 6, 8, 10 (сигналы протонов фрагмента Ar)
```

Соеди-					
нение	Химические сдвиги, б, м. д. (Ј, Гц)				
6	7.25 (3Н, м, Н-3',4',5'), 7.32 (2Н, д, <i>J</i> = 8.5, Н-2',6')				
8	7.25 (3Н, м, Н-3',4',5'), 7.32 (2Н, д, <i>J</i> = 8.5, Н-2',6')				
10a	1.10 (3H, т, <i>J</i> = 6.5, CH ₃), 2.60 (2H, м, CH ₂), 7.17 (2H, д, <i>J</i> = 8.5, H-3',5'), 7.26				
	$(2H, \pi, J = 8.5, H-2', 6')$				
10b	$3.75 (3H, c, OCH_3), 6.88 (2H, \pi, J = 8.5, H-3', 5'), 7.26 (2H, \pi, J = 8.5, H-2', 6')$				
10c	1.35 (3H, T, $J = 6.5$, CH ₃), 4.00 (2H, κ , $J = 6.5$, OCH ₂), 6.87 (2H, μ , $J = 8.5$, H-3',5'), 7.24 (2H, μ , $J = 8.5$, H-2',6')				
10d	7.15 (2H, м, H-6',4'), 7.30 (1H, д. д, J _{H-H} = 8.5, J _{F-H} = 6.0, H-3'), 7.46 (1H, т, J = 8.5, H-5')				
10e	6.76 (2Н, м, Н-3',5'), 7.13 (2Н, м, Н-4',6'), 10.0 (1Н, уш. с, ОН)				
10f	3.80 (3H, c, OCH ₃), 6.91 (1H, т, <i>J</i> = 8.5, H-5'), 6.97 (1H, д, <i>J</i> = 8.5, H-3'), 7.22 (1H, т, <i>J</i> = 8.5, H-4'), 7.35 (1H, д, <i>J</i> = 8.5, H-6')				
10g	1.34 (3H, т, <i>J</i> = 6.5, CH ₃), 4.05 (2H, к, <i>J</i> = 6.5, OCH ₂), 6.90 (1H, т, <i>J</i> = 8.5, H-5'), 6.95 (1H, д, <i>J</i> = 8.5, H-3'), 7.19 (1H, т, <i>J</i> = 8.5, H-4'), 7.35 (1H, д, <i>J</i> = 8.5, H-6')				
10h	3.75 (3H, c, OCH ₃), 3.80 (3H, c, OCH ₃), 6.50 (1H, д.д, <i>J</i> = 8.5, <i>J</i> = 1.5, H-5'), 6.57 (1H, д, <i>J</i> = 1.5, H-3'), 7.25 (1H, д, <i>J</i> = 8.5, H-6')				
10i	3.70 (3H, с, ОСН ₃), 6.33 (2H, м, H-3',5'), 7.00 (1H, д, <i>J</i> = 8.5, H-6'), 10.0 (1H, уш. с, ОН)				
10j	3.75 (6H, с, 20CH ₃), 6.33 (3H, м, H-2',5',6')				
10k	3.80 (3H, c, OCH ₃), 6.80 (2H, c, H-5',6'), 6.90 (1H, c, H-2'), 8.70 (1H, c, OH)				
101	3.75 (3H, с, OCH ₃), 6.71 (1H, д, <i>J</i> = 8.5, H-6'), 6.80 (1H, с, H-2'), 6.85 (1H, д, <i>J</i> = 8.5, H-5'), 8.70 (1H, с, OH)				
10m	1.30 (3H, т, <i>J</i> = 6.5, CH ₃), 3.75 (3H, с, OCH ₃), 4.00 (2H, к, <i>J</i> = 6.5, OCH ₂), 6.84 (1H, д, <i>J</i> = 8.5, H-5'), 6.87 (1H, д, <i>J</i> = 8.5, H-6'), 6.90 (1H, с, H-2')				
10n	3.75 (3H, c, OCH ₃), 4.50 (2H, д, <i>J</i> = 5.5, CH ₂), 4.85 (1H, т, <i>J</i> = 5.5, OH), 6.80 (1H, д, <i>J</i> = 8.5, H-5'), 7.18 (1H, д, <i>J</i> = 8.5, H-6'), 7.38 (1H, c, H-2')				
100	1.30 (3H, т, <i>J</i> = 6.5, CH ₃), 4.00 (2H, к, <i>J</i> = 6.5, OCH ₂), 6.71 (2H, c, H-5',6'), 6.89 (1H, c, H-2'), 8.55 (1H, c, OH)				
10p	3.75 (6H, c, 20CH ₃), 6.38 (1H, c, H-4'), 6.54 (2H, c, H-2',6')				
10q	3.75 (3H, c, OCH ₃), 3.80 (3H, c, OCH ₃), 3.85 (3H, c, OCH ₃), 6.68 (1H, c, H-3'),				
10	6.96 (1H, c, H-6')				
10r	6.98 (1H, д. д, $J = 5.4$, $J = 4.0$, H-4'), 7.03 (1H, д, $J = 4.0$, H-3'), 7.41 (1H, д, $J = 5.5$, H-5')				

Интересную информацию о свойствах соединений 6, 8, 9 и 10а-г предоставляют данные масс-спектрометрии. Наличие в масс-спектрах интенсивных пиков молекулярных ионов (100%) на фоне небольшого числа фрагментарных ионов указывает на высокую стабильность соединений 6, 8 и 10а-г к действию электронного удара (табл. 3). При этом наличие в масс-спектрах соединений 6, 8 и 10а-r пиков ионов с массой 212, 191 и 162 свидетельствует о единой для данных соединений схеме распада, включающей первичное отщепление 7-арилметильного заместителя разнообразных производных 5,6,7,8-тетрагидропиридо[3,4-d]пиримидина и последующий распад пиперидинового цикла. Данная схема распада принципиально отличается от схемы распада ранее изученных 7-бензил-5,6,7,8-тетрагидропиридо[3,4-*d*]пиримидинов, нами имевших объемные заместители в положении 4 [5]. Основное направление фрагментации последних, как правило, включало первичный распад пиримидинового цикла с элиминированием фрагментов R-CN. Очевидно, сильный электронодонорный пирролидиновый заместитель в положении 2 соединений 6, 8 и 10а-r существенно повышает связывающую электронную плотность в их пиримидиновом кольце, направляя фрагментацию по пути первичного разложения пиперидинового цикла.

Проведенное исследование показало, что конденсация 1-бензил-3-оксопиперидин-4-этилкарбоксилата с пирролидин-1-карбоксамидином позволяет получать с хорошим выходом 7-бензил-2-пирролидин-4-ил-5,6,7,8тетрагидро-3Н-пиридо[3,4-*d*]пиримидин-4-он, который может использоваться в качестве ключевого исходного соединения в синтезе разнообразных производных 5,6,7,8-тетрагидропиридо[3,4-*d*]пиримидина.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры получали на приборе Specord M-80 (в КВг), спектры ЯМР ¹Н – на приборе Bruker AMX-400 (400 МГц) в ДМСО-d₆, внутренний стандарт ТМС. Масс-спектры регистрировали на приборе Finnigan MAT-90 при энергии ионизации 70 зВ. Для колоночной хроматографии использовали силикагель марки L 40/100. Контроль за реакциями осуществляли методом TCX на пластинах Silufol UV-254.

В работе использовали кетоэфир **4** компании Acros. Метод получения амидина **5** описан в работе [6].

7-Бензил-2-пирролидин-1-ил-5,6,7,8-тетрагидро-3Н-пиридо[3,4-*d***]пиримидин-4-он (6). К перемешиваемому раствору NaOEt, полученному из 7.0 г (300 ммоль) Na и 300 мл абсолютного этанола, добавлют небольшими порциями 22.4 г (150 ммоль) гидрохлорида амидина 5**, а затем по каплям 35.5 г (148 ммоль) кетоэфира **4**, кипятят 3 ч, растворитель отгоняют в вакууме и к полученному остатку добавляют насыщенный водный раствор гидрохлорида аммония. Нерастворимый в воде остаток отфильтровывают, промывают водой, метанолом, затем эфиром и сушат на воздухе.

4-Амино-7-бензил-2-пирролидин-1-ил-5,6,7,8-тетрагидропиридо[3,4-d]пиримидин (8). К охлажденной до -20 °С перемешиваемой суспензии 5.58 г (18 ммоль) соединения **6** в 50 мл пиридина добавляют по каплям 4.92 г (12 ммоль) трифторметансульфонового ангидрида, после чего температуру реакционной смеси медленно повышают до комнатной. Смесь перемешивают при комнатной температуре 20 мин, выливают в 500 мл воды. Выпавший осадок отфильтровывают, промывают водой и сушат на воздухе. Выход трифлата **7** составляет 4 г (53%). Полученный трифлат растворяют в 20 мл ДМФА, к полученному раствору добавляют 6.7 г (50 ммоль) K_2CO_3 и 5 мл 25% водного раствора аммиака, перемешивают 12 ч при 100 °С, затем охлаждают и разбавляют 200 мл воды. Продукт реакции экстрагируют дихлорметаном (2 × 200 мл), экстракт сушат Na₂SO₄, растворитель отгоняют в вакууме. Остаток перекристаллизовывают из этилацетата. **4-Амино-2-пирролидин-1-ил-5,6,7,8-тетрагидропиридо[3,4-***d***]пиримидин (9). Раствор 15.45 г (50 ммоль) соединения 8** в 300 мл метанола гидрируют под давлением 3 атм при 50 °C в присутствии 0.7 г суспензии 10% палладия на угле. После поглощения рассчитанного количества водорода (50 ммоль) раствор отфильтровывают от катализатора и упаривают в вакууме на 80%. Выпавший осадок отфильтровывают, промывают эфиром и сушат в вакууме.

4-Амино-7-арилметил-2-пирролидин-1-ил-5,6,7,8-тетрагидропиридо[3,4-d]пиримидины **10а–г.** К раствору 2 ммоль соединения **9** в 10 мл сухого дихлорметана добавляют 2.6 ммоль альдегида, 1 мл (8 ммоль) триэтиламина и три капли уксусной кислоты, перемешивают 3 ч при комнатной температуре, добавляют небольшими порциями 1.25 г (6 ммоль) NaHB(OAc)₃ и перемешивают при комнатной температуре еще 48 ч. После этого реакцию останавливают, добавляя к ней 20 мл насыщенного водного раствора Na₂CO₃. Продукт реакции экстрагируют дихлорметаном (2 × 20 мл), экстракт промывают насыщенным раствором CaCl₂ и сушат Na₂SO₄. Растворитель отгоняют в вакууме, остаток хроматографируют на колонке с силикагелем, используя в качестве элюента систему этилацетат–гексан, 1:3.

Свойства соединений 6, 8, 9 и 10а-г приведены в табл. 1-5.

СПИСОК ЛИТЕРАТУРЫ

- 1. G. Wollein, R. Troschute, J. Heterocycl. Chem., 39, 1195 (2002).
- 2. M. Zink, H. Lanig, R. Troschute, Eur. J. Med. Chem., 9, 1079 (2004).
- 3. A. Rosowsky, C. E. Mota, S. F. Queener, J. Heterocycl. Chem., 32, 335 (1995).
- 4. A. Rosowsky, C. E. Mota, S. F. Queener, J. Heterocycl. Chem., 33, 1953 (1996).
- 5. А. Ю. Кузнецов, Н. Л. Нам, С. В. Чапышев, *XГС*, 762 (2007). [*Chem. Heterocycl. Comp.*, **43**, 640 (2007)].
- 6. M. S. Bernatowitcz, Y. Wu, G. R. Matsueda, J. Org. Chem., 57, 2497 (1992).

Институт проблем химической физики РАН, Черноголовка 142432, Московская обл. e-mail: chap@icp.ac.ru Поступило 06.06.2006