И. Е. Якунина, Ю. М. Атрощенко, И. В. Шахкельдян, К. И. Кобраков^а, Н. А. Троицкий⁶, О. И. Бойкова

СИНТЕЗ N-ЗАМЕЩЕННЫХ 9-[2-(3,4-МЕТИЛЕНДИОКСИФЕНИЛ)-2-ОКСОЭТИЛ]-1,5-ДИНИТРО-7,8-БЕНЗО-3-АЗАБИЦИКЛО[3.3.1]НОН-7-ЕН-6-ОНОВ

Осуществлено аминометилирование анионного аддукта Яновского 2,4-динитронафтола и 3,4-метилендиоксиацетофенона. Структура полученных 3-замещенных 9-[2-(3,4-метилен-диоксифенил)-2-оксоэтил]-1,5-динитро-7,8-бензо-3-азабицикло[3.3.1]нон-7-ен-6-она уста-новлена с помощью двумерной гомо- и гетероядерной корреляционной спектроскопии.

Ключевые слова: 3-азабицикло[3.3.1]нонаны, анионные аддукты Яновского, гомо- и гетероядерная корреляционная спектроскопия, реакция аминометилирования, реакция Манниха.

Одним из интересных классов гетероциклических соединений являются азабицикло[3.3.1]нонаны. Это обусловлено, прежде всего тем, что азабициклический каркас входит в качестве структурного фрагмента в состав природных биологически активных соединений, обладающих нейротропными, антиаритмическими, противоопухолевыми свойствами [1–5]. Многие соединения с преобладающим воздействием на к-опиоидные рецепторы после клинических испытаний нашли практическое применение [6–9]. Кроме того, бициклононаны и их гетероаналоги являются удобными моделями для изучения влияния внутримолекулярных взаимодействий на конформационное поведение органических соединений.

Нитропроизводные ароматических углеводородов являются уникальной сырьевой базой для синтеза гетероциклических соединений [10]. При присоединении нуклеофильных агентов к 1,3-динитроаренам получаются устойчивые σ-комплексы, которые, обладая высокой реакционной способностью в электрофильных реакциях, выступают в качестве CH-кислотного компонента в реакции Манниха с образованием 3-азабицикло[3.3.1]нонанов. Ранее нами была исследована реакция аминометилирования анионного аддукта Яновского 2,4-динитронафтола и ацетона [11]. В продолжение этих работ мы изучили возможность использования в исследуемой реакции 3,4-метилендиоксиацетофенона в качестве источника карбаниона.

Методика синтеза включает несколько стадий, первая из которых заключается в получении динатриевой соли σ-аддукта Яновского 1 при действии этоксида натрия на раствор 2,4-динитронафтола и 3,4-метилендиоксиацетофенона в этаноле. Анионный интермедиат 1 из реакционного раствора осаждали эфиром. Выпавшие в осадок ярко-оранжевые кристаллы отфильтровывали, промывали сначала абсолютным спиртом, а затем абсолютным эфиром. Реакция протекает почти с количественным выходом. На следующей стадии динатриевую соль 1 вводили в реакцию аминометилирования с формальдегидом и первичными аминами. При слабом подкислении 20% фосфорной кислотой (pH 5–6) целевые соединения выпадали из реакционного раствора в виде кристаллических осадков, которые очищали с помощью колоночной хроматографии, в результате чего с выходом 40–60% были получены 3-замещенные 9-[2-(3,4-метилендиоксифенил)-2-оксоэтил]-1,5-динитро-7,8-бензо-3-азабицикло[3.3.1]нон-7-ен-6-оны **2а–і**.

2 a R = Me, b R = Et, c R = Pr, d R = *i*-Pr, e R = Bu, f R = C₅H₁₁, g R = (CH₂)₂OH, h R = (CH₂)₂Br, i R = CH₂Ph

Следует отметить, что определяющим фактором в синтезе гетероциклов на стадии аминометилирования является кислотность среды. Проведение реакции в кислых и сильнокислых средах значительно снижает выход продукта реакции, и не только вследствие нестабильности анионного интермедиата **1** в этих условиях [12], но и протекания конкурирующего процесса – протонирования *о*-комплекса. Образование продуктов С-протонирования происходит, вероятно, в результате изомеризации промежуточных биснитроновых кислот.

В ИК спектрах азабициклононанов **2а–і** наблюдается ряд полос, однозначно свидетельствующих в пользу предложенной структуры. В области колебаний связей СН ароматического кольца фиксируются полосы при 3050 см⁻¹. Интенсивные полосы поглощения в области 2840–2960 см⁻¹ относятся к колебаниям связей СН алифатических метиленовых групп. Полоса $v_{C=0}$ имеет два подмаксимума, что указывает на наличие в молекуле неэквивалентных карбонильных групп. Колебания связи С=С обнаруживаются в области 1598 см⁻¹. Симметричным и антисимметричным колебаниям нитрогрупп соответствуют полосы при ~1340, 1365 и ~1555 см⁻¹ Отнесение сигналов в спектрах ЯМР ¹Н и ¹³С синтезированных соединений может быть сделано более надежно с использованием методов двумерной гомо- (COSY) и гетероядерной (HSQC, HMBC) корреляционной спектроскопии. Отправной точкой для расшифровки спектров ЯМР соединения **2d** могут служить дублеты дублетов при 0.77 и 0.87 м. д. (³*J* = 6.41, ⁴*J* = 1.83 Гц) протонов двух метильных групп заместителя при атоме азота, которые в спектре HSQC коррелируют за счет прямых констант ¹*J*_{CH} с сигналом в наиболее сильном поле при $\delta_{\rm C}$ 17.68 м. д..

Мультиплет при б 2.69 м. д. может быть отнесен к протону CH изопропильной группы; он определяется по вицинальным константам ${}^{3}J_{\text{CH-CH3}}$ в спектре COSY, а также по корреляционным пикам за счет КССВ через две связи ${}^{2}J_{\text{CH}}$ с атомами углерода групп CH₃.

Для метинового протона в спектре НМВС (таблица) наблюдается также взаимодействие с сигналами при $\delta_{\rm C}$ 56.54 и 57.46 м. д. с соответствующими КССВ ${}^{3}J_{\rm CH}$. Отсюда можно сделать вывод о том, что эти сигналы принадлежат атомам C₍₄₎ и C₍₂₎ пиперидинового цикла. В свою очередь, группа из четырех дублетов (${}^{2}J$ = 10.99 Гц) при 3.22, 3.33, 3.42 и 3.63 м. д., отнесенная к диастереотопным протонам метиленовых групп H-2*e*, H-4*a*, H-2*a* и H-4*e*, соответственно, на основании прямых констант CH в спектре HSQC, имеет кросс-пики H-2/CHMe₂, H-4/CHMe₂ за счет дальних констант ${}^{3}J_{\rm CH}$. Кроме того, для аксиальных и экваториальных протонов групп NCH₂ в спектре HMBC фиксируются следующие корреляционные пики: H-2/C₍₁₎ и H-4/C₍₅₎ (${}^{2}J_{\rm CH}$), H-2/C₍₄₎, H-2/C₍₉₎, H-2/C₍₈₎, H-4/C₍₂₎, H-4/C₍₉₎, H-4/C₍₆₎ (${}^{3}J_{\rm CH}$), которые позволяют не только различать эти сигналы, но и идентифицировать соответствующие сигналы четвертичных атомов C₍₁₎ и C₍₅₎ (91.63 и 92.33), C₍₈₎ (136.89), мостикового атома C₍₉₎ (45.64), а также атома C₍₆₎ эндоциклической карбонильной группы (187.15 м. д.).

Сигналы протонов H- α и H- α' остатка кетона образуют с мостиковым протоном H-9 трехспиновую ABX-систему и проявляются в спектре ЯМР ¹Н в виде двух дублетов дублетов при 3.25 и 3.36 м. д. (²J = 17.77, ³J = 5.34, ³J = 1.98 Гц). В спектре HSQC (рисунок) наблюдаются корреляционные пики для метиленовых протонов H- α и H- α' с сигналом при 36.97 м. д., который можно приписать атому C_(α). Подтверждением сделанного отнесения сигналов служит наличие корреляционных пиков за счет КССВ ² J_{CH} H- $\alpha/C_{(9)}$, H- $\alpha/C_{(8)}$, H- $\alpha'/C_{(8)}$ в спектре HMBC (таблица).

Сигналы протонов метиленовой группы диоксоланового цикла фиксируются при 5.97 м. д. и имеют корреляционные пики с атомами углерода $C_{(3')}$ и $C_{(4')}$ в спектре HMBC.

Анализ двумерных спектров COSY соединения **2d** позволяет выявить две отдельные замкнутые спиновые системы в области резонанса ароматических протонов. Протоны H-10, H-11, H-12 и H-13 конденсированного бензольного кольца образуют четырехспинувую ABCD-систему и наблюдаются в спектре ЯМР ¹Н в виде двух дублетов при 8.16 (H-10) и 7.30 (H-13) и двух триплетов при 7.58 (H-11) и 7.70 м. д. (H-12). Различить схожие по мультиплетности сигналы протонов H-10 и H-13 позволяют кросспики в спектре HMBC (таблица): H-10/C₍₁₂₎, H-8/C₍₁₂₎, H-10/C₍₆₎ и H-13/C₍₁₁₎, H-13/C₍₇₎, H-13/C₍₁₎ соответственно. Сигналы атомов углерода конденсиро-

ванного бензольного кольца однозначно определяются по спектру HSQC: 134.85 (C₍₁₂₎), 129.48 (C₍₁₁₎), 127.00 (C₍₁₀₎), 125.39 м. д. (C₍₁₃₎). Сигналы четвертичных атомов C₍₇₎ (133.33) и C₍₈₎ (136.89 м. д.) можно различить по наличию корреляционных пиков H-2 $e/C_{(8)}$ и H-2 $a/C_{(8)}$ в спектре HMBC (таблица).

Протоны H-2', H-5' и H-6' 3',4'-метилендиоксифенильной группы образуют в спектре ЯМР ¹Н трехспиновую систему, состоящую из трех дублетов дублетов при 6.72 (H-5', ${}^{2}J = 8.24$, ${}^{5}J = 2.14$ Гц), 7.31 (H-6', ${}^{2}J = 8.24$,

№ атома	δ _н , м. д.	δ _C , м. д.	HMBC	$J_{ m H\!-\!H},$ Гц
1	_	91.63	_	-
2	3.42, д; 3.42, д	57.46	1, 8, 4, 9, CH	10.99
4	3.63, д; 3.33, д	56.54	5, 9, 2, CH, 6	10.99
5	-	92.33	-	_
6	_	187.15	-	-
7	-	133.33	-	_
8	-	136.89	-	_
9	4.2, д. д	45.64		5.34; 1.98
10	8.16, д	127.09	8, 12, 6	7.02
11	7.58, т	129.48	7, 13	7.02
12	7.70, т	134.85	8, 10	7.02
13	7.30, д	125.38	7, 11, 1	7.02
α	3.36, д. д. д; 3.25, д. д. д	36.97	9, β	17.77; 5.34; 1.98
β	_	192.63	_	_
1'	-	130.64	-	_
2'	7.24	107.93	6', β, 4'	
3'	_	148.11	_	-
4′	_	152.08	-	_
5'	6.72, д. д	107.82	1', 3'	8.24; 2.14
6'	7.31	124.34	2', β, 4'	
NCH	2.69, м	54.35	2, 4, Me	
Me	0.87, д. д; 0.77, д. д	17.68	CH, Me	6.41; 1.83
OCH ₂ O	5.97, д	101.89	3', 4'	2.13

Корреляционные пики в спектре HMBC 3-изопропил-9-[2-(3,4-метилендиоксифенил)-2-оксоэтил]-1,5-динитро-7,8-бензо-3-азабицикло[3.3.1]нон-7-ен-6-она (2d)

⁴*J* = 1.53 Гц), 7.24 м. д. (H-2', ⁴*J* = 1.53, ⁵*J* = 2.14 Гц). Отнесение сигналов этих ароматических протонов следует из наличия кросс-пиков в спектре HMBC за счет дальних КССВ: H-5'/C_(1'), H-5'/C_(3'), H-6'/C_(2'), H-6'/C_(4'), H-6'/C_(β), H-2'/C_(4'), H-2'/C_(6'), H-2'/C_(β) (таблица). Атомам углерода соответствуют следующие сигналы в спектре ЯМР ¹³С, также определенные с помощью двумерных спектров HSQC и HMBC: 152.08 (C_(4')), 148.11 (C_(3')), 130.64 (C_(1')), 124.34 (C_(6')), 107.93 (C_(5')), 107.82 м. д. (C_(2')).

Таким образом, в результате аминометилирования анионного аддукта 2,4-динитронафтола и 3,4-метилендиоксиацетофенона синтезировано 10 новых производных 3-азабицикло[3.3.1]нонана и проведено их детальное спектральное исследование.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Значения R_f определяли на пластинках Silufol UV-254 при использовании системы ацетон-толуол-гексан, 1:4:1, детектирование УФ светом и парами иода. Температуры плавления соединений измеряли на столике Кофлера фирмы Boetius. Скорость нагрева составляла 4 град/мин. Электронные спектры поглощения записывали на регистрирующих спектрофотометрах Specord UV-vis. ИК спектры регистрировали на спектрометре Specord IR-75 в таблетках КВг (соединения **2a**-i) и суспензий в вазелиновом масле (соединение **1**), спектры ЯМР ¹Н и ¹³С – на спектрометрах Bruker AC-300 (300 и 75 МГц) (соединения **2a**-c,f,h), Bruker WM-250 (250 и 63 МГц) (соединения **2e**,i) в ДМСО-d₆, Bruker DRX-500 (500 и 127 МГц) (соединение **2d**, в CDCl₃), внутренний стандарт ГМДС.

Динатриевая соль 3-[2-(3,4-метилендиоксифенил)-2-оксоэтил]-2,4-бис(ацинитро)-5,6-бензоциклогекс-5-ен-1-она (1). К раствору 0.005 моль 2,4-динитронафтола в 0.109 моль 3,4-метилендиоксиацетофенона при энергичном перемешивании приливают свежеприготовленный раствор этилата натрия из 0.022 моль металлического натрия в 15 мл абсолютного этанола, перемешивают 30 мин 20–25 °C. Осадок отфильтровывают, промывают по 30 мл абсолютного этанола и эфира и сушат в вакуум-эксикаторе. Выход 87%. ИК спектр, v, см⁻¹: 1485 (NO₂⁻), 1280, 1283 (NO₂⁻), 1700, 1706 (C=O), 1606 (C=C), 2845, 2920 (CH). УФ спектр (ДМСО), λ_{max} : 598 нм.

1,5-Динитро-9-[2-(3,4-метилендиоксифенил)-2-оксоэтил]-7,8-бензо-3-азабицикло-[**3.3.1]нон-7-ен-6-оны 2а-і** (общая методика). К раствору 0.016 моль соответствующего гидрохлорида (гидробромида) амина или свободного амина в 10 мл 50% этанола при охлаждении льдом добавляют 3 мл (0.038 моль) 32% формальдегида. К полученной смеси при –5 °C и перемешивании порциями добавляют 0.0027 моль динатриевой соли **1**, подкисляют 20% раствором ортофосфорной кислоты до рН 5.0–6.0. Образовавшийся осадок отфильтровывают, промывают водой и высушивают до постоянной массы. Очищают хроматографированием на колонке с силикагелем (АСКГ), элюент толуол; толуолацетон (10:1 по объему) – для соединения **2g**. Растворитель отгоняют в вакууме, вещества осаждают добавлением гексана, кристаллизуют из этанола.

1,5-Динитро-9-[2-(3,4-метилендиоксифенил)-2-оксоэтил]-3-метил-7,8-бензо-3-азабииикло[3.3.1]нон-7-ен-6-он (2а). Т. пл. 185 °С, R_f 0.63. Выход 70%. ИК спектр, v, см⁻¹: 1551, 1505, 1348 (NO₂), 1708, 1682 (С=О), 1607 (С=С), 2940, 2915, 2869 (С-Н_{алиф}), 1467, 1448 (С-Н_{алиф}), 1250, 1118, 1042 (С–О). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 8.09 (1Н, д, *J* = 7.3, H-10); 7.68 (1Н, т, *J* = 7.3, H-11); 7.84 (1Н, т, *J* = 7.3, H-12); 7.46 (1Н, д, *J* = 7.3, H-13); 3.53 (1Н, д, *J* = 10.3, H-4e); 3.24 (1Н, д, *J* = 10.3, H-4a); 3.36 (1Н, д, *J* = 10.0, H-2a); 3.28 (1Н, д, *J* = 10.0, H-2e); 4.24 (1Н, уш. с, H-9); 3.45 (1Н, д. *J* = 19.1, *J* = 5.1, H-α); 3.22 (1Н, д. д, *J* = 19.1, *J* = 2.9, H-α'); 7.48 (1H, д, *J* = 8.0, H-6'); 7.32 (1H, с, H-2'); 6.92 (1H, д, *J* = 8.0, H-5'); 6.09 (2H, с, COC₆H₃OCH₂O); 2.23 (3H, с, NCH₃). Спектр ЯМР ¹³С, δ, м. д.: 91.29 (C₍₁₎); 61.36 (C₍₂₎); 60.38 (C₍₄₎); 92.54 (C₍₅₎); 186.58 (C₍₆₎); 132.08 (C₍₇₎); 136.71 (C₍₈₎); 43.94 (C₍₉₎); 126.67 (C₍₁₀₎); 129.38 (C₍₁₁₎); 135.72 (C₍₁₂₎); 126.18 (C₍₁₃₎); 192.88 (CH₂<u>C</u>OC₆H₃OCH₂O); 36.71 (<u>C</u>H₂COC₆H₃OCH₂O); 129.92, 107.18, 147.67, 151.61, 107.83, 124.39 (CH₂CO<u>C</u>₆H₃OCH₂O); 101.91 (CH₂COC₆H₃O<u>C</u>H₂O); R [43.94 (N<u>C</u>H₃)]. Найдено, %: C 58.18; H 4.18; N 9.28. $C_{22}H_{19}N_3O_8$. Вычислено, %: С 58.28; Н 4.19; N 9.27.

1,5-Динитро-9-[2-(3,4-метилендиоксифенил)-2-оксоэтил]-3-этил-7,8-бензо-3-азабицикло[3.3.1]нон-7-ен-6-он (2b). Т. пл. 196 °С. R_f 0.56. Выход 68%. ИК спектр, v, см⁻¹: 1556, 1510, 1362 (NO₂), 1713, 1683 (С=O), 1607 (С=C), 2976, 2955 (С-Н_{алиф}), 1448, 1490 (С-H_{алиф}), 1250, 1118, 1042 (С-O). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 8.08 (1H, д, *J* = 7.3, H-10); 7.67 (1H, т, *J* = 7.3, H-11); 7.84 (1H, т, *J* = 7.3, H-12); 7.45 (1H, д. *J* = 7.3, H-13); 3.58 (1H, д. *J* = 11.0, H-4e); 3.30 (1H, д. *J* = 11.0, H-4a); 3.43 (1H, д. *J* = 11.0, H-2a); 3.32 (1H, д. *J* = 11.0, H-2e); 4.25 (1H, д. д. *J* = 4.4, *J* = 3.7, H-9); 3.43 (1H, д. д. *J* = 19.1, *J* = 5.1, H-α); 3.21 (1H, д. д. *J* = 19.1, *J* = 5.1, H-α); 7.48 (1H, π, *J* = 8.1, H-6'); 7.34 (1H, с, H-2'); 6.92 (1H, д. *J* = 8.1, H-5'); 6.09 (2H, с, COC₆H₃OC<u>H</u>₂O); 2.46 (2H, к, *J* = 7.7, NC<u>H</u>₂CH₃); 0.74 (3H, т, *J* = 7.4, NCH₂C<u>H</u>₃). Спектр ЯМР ¹³С, δ , м. д.: 91.40 (C₍₁₎); 59.07 (C₍₂₎); 58.18 (C₍₄₎); 92.57 (C₍₅₎); 186.69 (C₍₆₎); 132.31 (C₍₇₎); 136.66 (C₍₈₎); 44.35 (C₍₉₎); 126.41 (C₍₁₀)); 129.29 (C₍₁₁₎); 135.02 (C₍₁₂₎); 125.97 (C₍₁₃)); 192.83 (CH₂COC₆H₃OCH₂O); 36.81 (<u>C</u>H₂COC₆H₃OCH₂O); 129.94, 107.13, 147.65, 151.56, 107.78, 124.33 (CH₂COC₆H₃OCH₂O); 101.86 (CH₂COC₆H₃OCH₂O); R [49.56 (N<u>C</u>H₂CH₃); 10.81 (NCH₂<u>C</u>H₃)]. Hайдено, %: C 59.78; H 4.45; N 9.02. C₂₃H₂₁N₃O₈. Вычислено, %: C 59.87; H 4.49; N 8.99.

1,5-Динитро-9-[2-(3,4-метилендиоксифенил)-2-оксоэтил]-3-пропил-7,8-бензо-3-азабицикло[3.3.1]нон-7-ен-6-он (2с). Т. пл. 150 °С. R_f 0.62. Выход 67%. ИК спектр, v, см⁻¹: 1551, 1510, 1362 (NO₂), 1713, 1683 (С=О), 1607 (С=С), 2966, 2940 (С-Н_{алиф}), 1450, 1449 (С-H_{алиф}), 1250, 1118, 1047 (С-О). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 8.09 (1Н, д. *J* = 7.4, H-10); 7.67 (1Н, т. *J* = 7.4, H-11); 7.83 (1Н, т. *J* = 7.4, H-12); 7.46 (1Н, д. *J* = 7.4, H-13); 3.56 (1Н, д. *J* = 10.3, H-4e); 3.28 (1Н, д. *J* = 10.3, H-4a); 3.42 (1Н, д. *J* = 10.3, H-2a); 3.31 (1Н, д. *J* = 10.3, H-2e); 4.26 (1Н, д. д. *J* = 4.4, *J* = 3.7, H-9); 3.46 (1Н, д. д. *J* = 19.5, *J* = 5.2, H- α); 3.23 (1Н, д. д. *J* = 19.5, *J* = 3.3, H- α '); 7.48 (1Н, д. *J* = 8.1, H-6'); 7.34 (1Н, с. H-2'); 6.92 (1Н, д. *J* = 8.1, H-5'); 6.09 (2H, с. СОС₆H₃ОС<u>H</u>₂O); 2.37 (2H, т. *J* = 7.0, NC<u>H</u>₂CH₂CH₃); 1.16 (2H, м, NCH₂C<u>H</u>₂CH₃); 0.33 (3H, т. *J* = 7.0, NCH₂C<u>H</u>₂C<u>H</u>₃). Спектр ЯМР ^{T3}С, δ , м. д.: 91.45 (C₍₁₎); 59.27 (C₍₂₎); 58.85 (C₍₄₎); 92.63 (C₍₅₎); 186.88 (C₍₆₎); 132.53 (C₍₇₎); 136.86 (C₍₈₎); 44.40 (C₍₉₎); 126.49 (C₍₁₀₎); 129.41 (C₍₁₁₎); 135.15 (C₍₁₂₎); 126.31 (C₍₁₃₎); 193.05 (CH₂COC₆H₃OCH₂O); 36.92 (<u>C</u>H₂COC₆H₃OCH₂O); 129.94, 107.38, 147.79, 151.75, 107.86, 124.63 (CH₂COC₆H₃OCH₂O); 102.07 (CH₂COC₆H₃OCH₂O); R [56.69, 18.05 (N(<u>C</u>H₂)₂CH₃); 10.62 (N(CH₂)₂CH₃)]. Haй-дено, %: C 59.83; H 4.76; N 8.78. C₂₄H₂₃N₃O₈. Вычислено, %: C 59.87; H 4.78; N 8.73.

1,5-Динитро-3-изопропил-9-[2-(3,4-метилендиоксифенил)-2-оксоэтил]-7,8-бензо-3-азабицикло[3.3.1]нон-7-ен-6-он (2d). Т. пл. 201–203 °С. R_f 0.65. Выход 65%. ИК спектр, v, см⁻¹: 1551, 1510, 1367 (NO₂), 1708, 1683 (С=О), 1607 (С=С), 2976, 2925 (С-Н_{алиф}), 1445 (С-Н_{алиф}), 1260, 1103, 1042 (С-О). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 8.16 (1H, д. *J* = 7.9, H-10); 7.58 (1H, т. *J* = 7.9, H-11); 7.70 (1H, т. *J* = 7.9, H-12); 7.32 (1H, д. *J* = 7.9, H-13); 3.63 (1H, д. ²*J* = 11.0, H-4*e*); 3.32 (1H, д. *J* = 11.0, H-4*a*); 3.42 (1H, д. *J* = 11.0, H-2*a*); 3.21 (1H, д. *J* = 11.0, H-2*e*); 4.26 (1H, д. д. *J* = 4.4, *J* = 3.7, H-9); 3.37 (1H, д. д. *J* = 19.5, *J* = 5.1, H-α); 3.25 (1H, д. д. *J* = 19.5, *J* = 3.3, H-α'); 6.72 (1H, д. *J* = 8.2, H-5'); 7.24 (1H, с. H-2'); 7.31 (1H, д. *J* = 8.2, H-6'); 5.97 (2H, с. СОС₆H₃OC<u>H</u>₂O); 2.69 (2H, м. NC<u>H(</u>CH₃)₂); 0.87, 0.77 (6H, д. *J* = 6.4, NCH(<u>CH₃)₂). Спектр ЯМР ¹³С, δ , м. д.: 91.63 (С₍₁₎); 57.46 (С₍₂₎); 56.54 (С₍₄₎); 92.40 (С₍₅₎); 187.15 (С₍₆₎); 133.33 (С₍₇₎); 136.89 (С₍₈₎); 37.05 (С₍₉₎); 127.09 (С₍₁₀₎); 129.48 (С₍₁₁₎); 134.85 (С₍₁₂₎); 124.71 (С₍₁₃₎); 192.63 (CH₂COC₆H₃OCH₂O); 36.97 (<u>C</u>H₂COC₆H₃OCH₂O); 130.64, 107.85, 148.11, 125.078, 107.82, 107.93 (CH₂COC₆H₃OCH₂O); 92.40 (CH₂COC₆H₃OCH₂O); R [45.64 (N<u>C</u>H(CH₃)₂); 17.43, 17.68 (NCH(<u>C</u>H₃)₂)]. Найдено, %: C 59.83; H 4.76; N 8.78. C₂₄H₂₃N₃O₈. Вычислено, %: C 59.87; H 4.78; N 8.73.</u>

3-Бутил-1,5-динитро-9-[2-(3,4-метилендиоксифенил)-2-оксоэтил]-7,8-бензо-3-азабииикло[3.3.1]нон-7-ен-6-он (2е). Т. пл. 125–127 °С. R_f 0.49. Выход 58%. ИК спектр, v, см⁻¹: 1551, 1510, 1367 (NO₂), 1713, 1678 (С=О), 1607 (С=С), 2966, 2935, 2900, 2869 (С-Н_{алиф}), 1463, 1448 (С-Н_{алиф}), 1250, 1118, 1042 (С–О). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 8.08 (1Н, д. *J* = 7.3, H-10); 7.67 (1H, т. *J* = 7.3, H-11); 7.83 (1H, т. *J* = 7.3, H-12); 7.45 (1H, д. *J* = 7.3, H-13); 3.55 (1H, д. *J* = 11.0, H-4*e*); 3.24 (1H, д. *J* = 11.0, H-4*a*); 3.41 (1H, д. *J* = 11.0, H-2*a*); 3.30 (1H, д. *J* = 11.0, H-2*e*); 4.25 (1H, д. д. *J* = 4.3, *J* = 5.5, H-9), 3.46 (1H, д. д. *J* = 18.9, *J* = 5.5, H-α); 3.20 (1H, д. д. *J* = 18.9, *J* = 3.6, H-α'); 6.92 (1H, д. *J* = 8.5, H-5'); 7.34 (1H, с. H-2'); 7.49 (1H, д. *J* = 8.5, H-6'); 6.09 (2H, с. СОС₆H₃OCH₂O); 2.41 (2H, т. *J* = 6.7, NCH₂CH₂CH₂CH₃). Спектр ЯМР ¹³С, δ, м. д.: 96.76 (С₍₁₎); 64.71 (С₍₂₎); 64.18 (С₍₄₎); 97.93 (С₍₅₎); 192.17 (С₍₆₎); 137.86 (С₍₇₎); 142.17 (С₍₈₎); 49.73 (С₍₉₎); 131.78 (С₍₁₀₎); 134.67 (С₍₁₁₎); 140.40 (С₍₁₂₎); 131.55 (С₍₁₃₎); 198.34 (CH₂COC₆H₃OCH₂O); 42.18 (<u>C</u>H₂COC₆H₃OCH₂O);

1387

135.30, 112.60, 153.10, 157.04, 113.26, 129.87 (CH₂CO<u>C</u>₆H₃OCH₂O); 107.35 (CH₂COC₆H₃O<u>C</u>H₂O); R [59.67 (N<u>CH₂CH₂CH₂CH₃); 32.67 (NCH₂<u>CH₂CH₂CH₃); 24.10 (NCH₂CH₂<u>C</u>H₃); 18.41 (NCH₂CH₂CH₂CH₃)]. Найдено, %: C 60.67; H 5.09; N 8.41. C₂₅H₂₅N₃O₈. Вычислено, %: C 60.60; H 5.05; N 8.48.</u></u>

1,5-Динитро-9-[2-(3,4-метилендиоксифенил)-2-оксоэтил]-3-пентил-7,8-бензо-3-азабицикло[3.3.1]нон-7-ен-6-он (2f). Т. пл. 106–108 °С. R_f 0.54. Выход 52%. ИК спектр, v, см⁻¹: 1556, 1505, 1367 (NO₂), 1708, 1678 (C=O), 1607 (C=C), 2967, 2900, 2839 (C-H_{amo}), 1444 (C-Н_{апиф}), 1255, 1103, 1047 (С-О). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 8.08 (1Н, д, *J* = 7.3, Н-10); 7.68 (1H, т, *J* = 7.3, H-11); 7.82 (1H, т, *J* = 7.3, H-12); 7.46 (1H, д, *J* = 7.3, H-13); 3.55 (1H, д, *J* = 11.0, H-4e); 3.30 (1H, д, J = 11.0, H-4a); 3.40 (1H, д, J = 11.0, H-2a); 3.27 (1H, д, J = 11.0, H-2e); 4.25 (1H, уш. с, H-9); 3.46 (1H, д. д, *J* = 19.1, *J* = 5.1, H-а); 3.21 (1H, д. д, *J* = 19.1, *J* = 3.3, Н-а'); 7.49 (1Н, д, J = 8.1, Н-5'); 7.34 (1Н, с, Н-2'); 6.91 (1Н, д, J = 8.1, Н-6'); 6.09 (2Н, с, COC₆H₃OC<u>H₂</u>O); 2.40 (2H, ym. c, NCH₂(CH₂)₃CH₃); 1.14 (2H, ym. c, NCH₂CH₂(CH₂)₂CH₃); 0.92 (2H, уш. с, N(CH₂)₂CH₂CH₂CH₃); 0.65 (2H, уш. с, N(CH₂)₃CH₂CH₃); 0.62 (3H, т, J = 6.6, N(CH₂)₄<u>CH</u>₃). Спектр ЯМР⁻¹³С, б, м. д.: 91.39 (С₍₁₎); 59.27 (С₍₂₎); 58.87 (С₍₄₎); 92.51 (С₍₅₎); 186.63 (C₍₆₎); 132.45 (C₍₇₎); 136.75 (C₍₈₎); 44.38 (C₍₉₎); 126.33 (C₍₁₀₎); 129.18 (C₍₁₁₎); 134.91 (C₍₁₂₎); 126.06 (C₍₁₃₎); 192.80 (CH₂COC₆H₃OCH₂O); 36.76 (CH₂COC₆H₃OCH₂O); 129.94, 107.14, 147.65, 151.56, 107.79, 124.34 (CH₂CO<u>C</u>₆H₃OCH₂O); 101.86 (CH₂COC₆H₃O<u>C</u>H₂O); R [54.50 (NCH₂(CH₂)₃CH₃); 27.70 (NCH₂CH₂(CH₂)₂CH₃); 24.93 (N(CH₂)₂CH₂CH₂CH₃); 21.18 (N(CH₂)₃<u>CH</u>₂CH₃); 13.56 (N(CH₂)₄<u>CH</u>₃)]. Найдено, %: С 61.34; Н 5.31; N 8.29. С₂₆H₂₇N₃O₈. Вычислено, %: С 61.29; Н 5.30; N 8.25.

3-(2-Гидроксиэтил)-1,5-динитро-9-[2-(3,4-метилендиоксифенил)-2-оксоэтил]-7,8бензо- 3-азабицикло[3.3.1]нон-7-ен-6-он (2g). Т. пл. 81–83 °С. Выход 45%. ИК спектр, v, см⁻¹: 1554, 1515, 1368 (NO₂), 1707, 1700 (С=О), 1601 (С=С), 2965, 2930, 2898 (С-Н_{алиф}), 1447 (С-Н_{алиф}), 1255, 1118, 1042 (С-О), 3530 (О-Н). Найдено, %: С 57.12; Н 4.34; N 8.68. С₂₃H₂₁N₃O₉. Вычислено, %: С 57.14; Н 4.35; N 8.69.

3-(2-Бромэтил)-1,5-динитро-9-[2-(3,4-метилендиоксифенил)-2-оксоэтил]-7,8-бензо-3-азабицикло[3.3.1]нон-7-ен-6-он (2h). Т. пл. 202–203 °С. Выход 65%. ИК спектр, v, см⁻¹: 1551, 1505, 1369 (NO₂), 1704, 1683 (С=O), 1602 (С=C), 2965, 2940 (С-Н_{алиф}), 1449 (С-Н_{алиф}), 1255, 1118, 1036 (С=O), 812 (С=Bг). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 8.09 (1H, д, *J* = 7.4, H-10); 7.66 (1H, т, *J* = 7.4, H-11); 7.83 (1H, т, *J* = 7.4, H-12); 7.47 (1H, д, *J* = 7.4, H-13); 3.68 (1H, д, *J* = 11.0, H-4e); 3.48 (1H, д, *J* = 11.0, H-4a); 3.61 (1H, д. *J* = 11.0, H-2a); 3.40 (1H, д, *J* = 11.0, H-2e); 4.26 (1H, д. д. *J* = 5.1, *J* = 3.7, H-9); 3.45 (1H, д. д. *J* = 14.0, *J* = 5.1, H-α); 3.22 (1H, д. д. *J* = 14.0, *J* = 3.7, H-α'); 6.92 (1H, д. ³*J* = 8.1, H-5'); 7.35 (1H, с. H-2'); 7.48 (1H, д. *J* = 8.1, H-6'); 6.09 (2H, с. СОС₆H₃ОС<u>H</u>₂O); 2.84 (2H, т, *J* = 5.9, N<u>СH</u>₂CH₂Br); 3.24 (2H, м, NCH₂<u>CH</u>₂Br). Спектр ЯМР ¹³С, δ, м. д.: 91.44 (C₍₁₎); 58.88 (C₍₂₎); 58.02 (C₍₄₎); 92.54 (C₍₅₎); 186.61 (C₍₆₎); 132.61 (C₍₇₎); 136.66 (C₍₈₎); 44.34 (C₉)); 126.77 (C₍₁₀₎); 129.56 (C₍₁₁₁)); 135.13 (C₍₁₂)); 126.77 (C₍₁₃)); 193.05 (CH₂<u>C</u>OC₆H₃OCH₂O); 36.87 (<u>C</u>H₂COC₆H₃OCH₂O); 129.93, 107.26, 147.80, 151.75, 107.88, 124.62 (CH₂COC₆H₃OCH₂O); 102.08 (CH₂COC₆H₃O<u>C</u>H₂O); R [56.07 (N<u>C</u>H₂CH₂Br); 3.001 (NCH₂<u>C</u>H₂Br)]. Hайдено, %: C 50.56; H 3.70; Br 14.63; N 7.70. C₂₃H₂₀BrN₃O₈. Вычислено, %: C 50.55; H 3.66; Br 14.65; N 7.69.

3-Бензил-1,5-динитро-9-[2-(3',4'-метилендиоксифенил)-2-оксоэтил]-7,8-бензо-3-азабицикло[3.3.1]нон-7-ен-6-он (2i). Т. пл. 211–212 °С. Выход 57%. ИК спектр, v, см⁻¹: 1550, 1503, 1365 (NO₂), 1700, 1693 (C=O), 1601 (C=C), 2966, 2941, 2880, 2827 (C-H_{auub}), 1449, 1410 (С-Н_{алиф}), 1255, 1118, 1042 (С-О). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 8.19 (1Н, д. *J* = 6.7, H-10); 7.75 (1H, т, J = 6.7, H-11); 7.85 (1H, т, J = 6.7, H-12); 7.43 (1H, д, J = 6.7, H-13); 3.60 (1Н, д, J = 10.4, Н-4е); 3.40 (1Н, д, J = 10.4, Н-4а); 3.47 (1Н, д, J = 10.4, Н-2а); 3.22 (1Н, д, *J* = 10.4, H-2*e*); 4.30 (1H, д. д, *J* = 6.1, *J* = 4.3, H-9); 3.52 (1H, д. д, *J* = 19.0, *J* = 5.5, H-α); 3.25 $(1H, \mu, J, J) = 19.0, J = 3.7, H-\alpha'); 6.92 (1H, \mu, {}^{3}J = 7.9, H-5'); 7.36 (1H, c, H-2'); 7.47 (1H, \mu, J); 7.47 (1H, J); 7.$ *J* = 8.1, H-6'); 6.09 (2H, c, COC₆H₃OC<u>H₂</u>O); 3.71, 3.61 (2H, д, *J* = 13.4, N<u>CH₂</u>Ph); 6.66 (2H, д, *J* = 6.1, *o*-PhCH₂); 7.11 (1H, т, *J* = 6.1, *p*-PhCH₂); 7.16 (2H, д, *J* = 6.1, *m*-PhCH₂). Спектр ЯМР ¹³С, б, м. д.: 91.41 (С₍₁₎); 59.06 (С₍₂₎); 58.34 (С₍₄₎); 92.67 (С₍₅₎); 186.73 (С₍₆₎); 132.64 (С₍₇₎); 136.48 (C₍₈₎); 44.30 (C₍₉₎); 126.57 (C₍₁₀₎); 129.55 (C₍₁₁₎); 135.25 (C₍₁₂₎); 126.43 (C₍₁₃₎); 193.04 (CH₂COC₆H₃OCH₂O); 36.84 (CH₂COC₆H₃OCH₂O); 129.97, 107.31, 147.78, 151.75, 107.94, 124.57 (CH₂CO<u>C</u>₆H₃OCH₂O); 102.03 (CH₂COC₆H₃O<u>C</u>H₂O); R [58.91, (N<u>CH₂Ph)</u>, 136.86, 127.70, 128.15, 127.18, (NCH₂Ph)]. Найдено, %: С 63.42; Н 4.52; N 7.92. С₂₈H₂₄N₃O₈. Вычислено, %: С 63.39; Н 4.53; N 7.92.

СПИСОК ЛИТЕРАТУРЫ

- 1. P. A. Cootes, I. S. Blagbrough, M. G. Rowan, D. P. J. Pearson, T. Lewis, B. V. L. Potter, *J. Pharm.*, *Pharmacol*, **48**, 210 (1996).
- J. B. Gloer, B. L. Rinderknecht, D. T. Wiclow, P. F. Dowd, J. Am. Chem. Soc., 114, 1015 (1992).
- 3. F. Kong, R. J. Andersen, J. Am. Chem. Soc., 116, 6007 (1994).
- 4. K. Samamoto, E. Tsujii, F. Abe, T. Nakanishi, M. Yamashita, N. Shigematsu, S. Izumi, M. Okuhara, *J. Antibiotics*, **49**, 37 (1996).
- 5. I. Ipiepa, B. Gil-Alberdi, E. Galvez, J. Bellanato, P. Carmona, *J. Mol. Struct.*, **408–409**, 487 (1997).
- 6. W. Brandt, S. Drosihn, M. Haurand, U. Holzgrabe, C. Nachtsheim, Arch. Pharm. Pharm. Med. Chem., **329**, 311 (1996).
- 7. P. S. Salve, G. J. Hite, R. A. Heyman, G. Gianutsos, J. Med. Chem., 29, 2111 (1986).
- 8. C. R. Clark, B. Birchmore, N. A. Sharif, J. C. Hunter, R. G. Hill, J. Hugher, *Br. J. Pharmacol.*, **93**, 618 (1988).
- G. F. Costello, B. G. Main, J. J. Barlow, J. A. Carroll, J. S. Shaw, *Eur. J. Pharmacol.*, 151, 475 (1988).
- 10. N. Ono, The Nitro Group in Organic Synthesis, Wiley, New York, 2001.
- И. Е. Якунина, И. В. Шахкельдян, Ю. М. Атрощенко, О. Я. Борбулевич, В. В. Нестеров, М. В. Копышев, Н. А. Троицкий, Ю. А. Ефремов, Е. Н. Алифанова, В. А. Субботин, *ЖОрХ*, 40, 266 (2004).
- 12. M. Arend, B. Westerman, N. Risch, Angew Chem. Int. Ed., 37, 1045 (1998).

Тульский государственный педагогический университет им. Л. Н. Толстого, Тула 300026, Россия e-mail: reaktiv@tspu.tula.ru Поступило 15.11.2006

^аМосковский государственный текстильный университет им. А. Н. Косыгина, Москва 117918

⁶Институт органической химии им. Н. Д. Зелинского РАН, Москва 119991