М. М. Липунов, Е. А. Кайгородова^а, Л. Д. Конюшкин⁶, С. И. Фирганг⁶, Г. Д. Крапивин

СИНТЕЗ И РЕАКЦИОННАЯ СПОСОБНОСТЬ ТИЕНО[2,3-*b*]ПИРИДИН-2,3-ДИАМИНОВ

Установлено, что взаимодействие N¹-[2-гидроксифенилметилтиено[2,3-*b*]пиридин-3ил]ариламидов с гидразингидратом приводит к тиено[2,3-*b*]пиридин-2,3-диаминам. Показано, что реакции последних с ацетилацетоном и ацетоуксусным эфиром протекают регеоселективно по аминогруппе в положении 3 тиофенового кольца.

Ключевые слова: (*Z*)-3-(2-аминотиено[2,3-*b*]пиридин-3-иламино)-1-R-2-бутен-1-он, N^3 -[(*E*)-1-арилметилиденимино]тиено[2,3-*b*]пиридин-2-амин, 2,3-дигидро-1Н-имидазо-[4',5':4,5]тиено[2,3-*b*]пиридин, тиено[2,3-*b*]пиридин-2,3-диамин, кольчато-цепная таутомерия.

Единственным описанным в литературе способом получения 4,6-диметилтиено[2,3-*b*]пиридин-2,3-диамина (**1a**) является взаимодействие 4,6-диметил-2-тиоксо-1,2-дигидро-3-пиридинкарбонитрила с этил-2-хлор-2-фторацетатом [1]. Несмотря на хороший выход такого диамина, этот метод вряд ли приемлем в связи с коммерческой недоступностью этил-2-хлор-2фторацетата. Может быть, и по этой причине авторы [1], впервые получившие это соединение, практически не исследовали его свойств. Вместе с тем тиено[2,3-*b*]пиридин-2,3-диамины представляют интерес в качестве объекта исследования реакционной способности аминогрупп, находящихся в положениях α и β тиофенового цикла.

Известно, что взаимодействие 1-(3-аминотиено[2,3-*b*]пиридин-2-ил)-1этанона с гидразингидратом приводит к трициклической системе 1Н-пиразоло[3',4':4,5]тиено[2,3-*b*]пиридину [2]. При исследовании взаимодействия соединений **2a,b** [3, 4] с гидразингидратом в ДМСО нами наряду с 1Н-пиразоло[3',4':4,5]тиено[2,3-*b*]пиридинами **3a,b** выделены 2,3-диаминотиено[2,3-*b*]пиридины **1a,b** (схема 1, табл. 1). Выход соединений **1a,b** составляет лишь 12 и 1% соответственно.

Схема 1

1–3 a R = Me; **b** R = CH₂OMe

Структуры соединений **1а,b**, **3а,b** подтверждены методами ИК и $\text{ЯМР}^{1}\text{H}$ спектроскопии (табл. 2), а для диаминов **1а,b** – масс-спектрометрически (экспериментальная часть). В ИК спектрах продуктов **1а,b** имеются две полосы поглощения аминогрупп в области 3370–3360 и 3195– 3190 см⁻¹. В спектрах ЯМР ¹H соединений **1а,b** сигналы протонов аминогрупп находятся в области 3.97–3.98 (2-NH₂) и 6.53–6.57 м. д. (3-NH₂) соответственно (отнесение сигналов сделано на основании [5]).

Полагая, что соединения **1а,b** могут оказаться также продуктами реакции спиртов типа **4а,b** [6] с гидразингидратом, мы исследовали их взаимодействие (схема 2).

Схема 2

4a, **5a** R = Me; **4–6 b** $R = CH_2OMe$

Реакция протекает при кипячении в течение 5 ч и оптимальном молярном соотношении реагентов исходный спирт **4**-гидразингидрат, 1 : 30 (без растворителя).

Установлено, что основными продуктами этой реакции являются тиено[2,3-*b*]пиридин-2,3-диамины **1a**,**b** (выходы более 60%), а также 2,3-дигидро-1Н-пиразоло[3',4':4,5]тиено[2,3-*b*]пиридины **5a**,**b** (с выходами ≤5.5%). При использовании соединения **4b** выделен также с небольшим выходом 3-бензоиламинотиено[2,3-*b*]пиридин **6b** (9%). Соединений **3a**,**b** среди продуктов реакции не обнаружено. Продукты **1**, **5** и **6** были разделены методами фракционирования и дробной кристаллизации.

Предполагаемые маршруты реакции представлены на схеме 3.

Путь 1 – нуклеофильное замещение группы OH на гидразиногруппу – приводит к интермедиату **A**, который в результате: 1a) внутримолекулярного нуклеофильного замещения бензамидной группы у 3-C атома приводит к соединениям **5a**,**b**; 1b) разрыва связей N–N и C–C, сопровождающегося миграцией группы NH₂ к атому 2-C и отщеплением фенилметанимина, приводит к интермедиату **B** (последний под действием гидразина дает диамины **1a**,**b**); 1c) миграции атома водорода к атому 2-C тиофенового цикла, разрыва связи C–C и элиминирования бензгидразона, приводящих к веществам **6a**,**b**.

Схема 3

Путь 2 – нуклеофильное замещение бензамидной группы на гидразиногруппу (структура С) с последующей внутримолекулярной дегидратацией (соединения **5**а,**b**).

Исследована реакционная способность аминогрупп в положениях 2 и 3 тиофенового кольца соединений **1а,b** в реакциях с 1,3-дикарбонильными соединениями и ароматическими альдегидами.

Химическая неэквивалентность аминогрупп в положениях 2 и 3 тиено-[2,3-*b*]пиридинов, проявляемая при взаимодействии тиено[2,3-*b*]пиридин-2,3-диаминов **1a**,**b** с ацетилацетоном **7a** и ацетоуксусным эфиром **7b**, приводит к продуктам моноконденсации **8a–d** (схема 4).

Схема 4

8 a, c R = Me, b, d R = CH₂OMe; 7a, 8 a, b R¹ = Me; 7b, 8 c, d R¹ = OEt

1402

Структура (Z)-3-(2-аминотиено[2,3-b]пиридин-3-иламино)-1-R¹-2бутен-1-онов **8а-d** доказана методами ИК и ЯМР ¹Н спектроскопии (табл. 2). Сигнал протона аминогруппы соединений **8а-d** в положении 3 тиофено-вого цикла прописывается в слабом поле для **8а,b** при 13.27 и 13.24 м. д. и для **8с,d** при 11.36 и 11.34 м. д., что объясняется образованием водород-ной связи с атомом кислорода (схема 4). Сигнал протонов аминогруппы соединений **8а-d** в положении 2 тиофенового цикла смещается в слабое поле приблизительно на 0.20 м. д. в сравнении со спектрами исходных диаминов **1а,b**.

Таблица 1

Соели-	Брутто- формула	Найдено, %				Вы-
нение		Вычислено, %		Т. пл., °С	ход,	
		0	Н	N		70
1 a	$C_9H_{11}N_3S$	<u>55.87</u> 55.93	<u>5.70</u> 5.74	<u>21.79</u> 21.74	177–178	63
1b	$C_{10}H_{13}N_3OS$	<u>53.88</u> 53.79	<u>5.89</u> 5.87	<u>18.79</u> 18.82	166–167	61
3a	$C_{16}H_{13}N_3S$	<u>68.90</u> 68.79	<u>4.71</u> 4.69	<u>15.00</u> 15.04	>300	42
3b	C ₁₇ H ₁₅ N ₃ OS	<u>66.06</u> 66.00	<u>4.88</u> 4.89	<u>13.61</u> 13.58	260–261	52
5a	$C_{16}H_{15}N_3S$	<u>68.40</u> 68.30	<u>5.38</u> 5.37	<u>14.90</u> 14.93	284–285	5.6
5b	C ₁₇ H ₁₇ N ₃ OS	<u>65.61</u> 65.57	<u>5.48</u> 5.50	<u>13.52</u> 13.49	155–156	2.4
6b	$C_{17}H_{16}N_2O_2S$	<u>65.45</u> 65.36	<u>5.18</u> 5.16	<u>9.00</u> 8.97	175–176	9
8 a	$C_{14}H_{17}N_3OS$	<u>61.16</u> 61.06	<u>6.20</u> 6.22	<u>15.23</u> 15.26	170–171	72
8b	$C_{15}H_{19}N_3O_2S$	<u>59.07</u> 58.99	<u>6.27</u> 6.27	<u>13.72</u> 13.76	156–157	77
8c	$C_{15}H_{19}N_3O_2S$	<u>59.10</u> 58.99	<u>6.25</u> 6.27	<u>13.74</u> 13.76	138–139	64
8d	$C_{16}H_{21}N_3O_3S$	<u>57.35</u> 57.29	<u>6.33</u> 6.31	<u>12.50</u> 12.53	148–149	73
9a, 10a	C ₁₆ H ₁₅ N ₃ OS	<u>64.69</u> 64.62	<u>5.05</u> 5.08	<u>14.09</u> 14.13	239–240	88
9b, 10b	$C_{17}H_{17}N_3S$	<u>69.03</u> 69.12	<u>5.83</u> 5.80	<u>14.25</u> 14.22	196–197	78
9c, 10c	$C_{16}H_{14}N_4O_2S$	<u>58.81</u> 58.88	<u>4.30</u> 4.32	<u>17.22</u> 17.17	229–230	75
9d, 10d	C ₁₇ H ₁₇ N ₃ OS	<u>65.66</u> 65.57	<u>5.51</u> 5.50	<u>13.45</u> 13.49	158–159	85
9e, 10e	$C_{17}H_{17}N_3O_2S$	<u>62.45</u> 62.37	<u>5.21</u> 5.23	<u>12.85</u> 12.83	203–204	68
9f, 10f	$C_{17}H_{16}N_4O_3S$	<u>57.20</u> 57.29	<u>4.52</u> 4.53	<u>15.76</u> 15.72	203–204	72
9g, 10g	$C_{18}H_{19}N_3O_2S$	<u>63.41</u> 63.32	<u>5.59</u> 5.61	<u>12.34</u> 12.31	173–174	65
9h, 10h	$C_{17}H_{15}Br_2N_3O_2S$	$\frac{42.20}{42.08}$	<u>3.11</u> 3.12	<u>8.61</u> 8.66	211–212	73

Характеристики синтезированных соединений

1403

Таблица 2

ИК и ЯМР ¹Н спектры синтезированных соединений

Соеди- нение	ИК спектр, v, см ⁻¹	Спектр ЯМР ¹ Н (ДМСО-d ₆), б, м. д. (<i>J</i> , Гц)
1a	3360 (N–H); 3190 (N–H)	2.34, 2.42 (по 3H, оба с, 4-CH ₃ , 6-CH ₃); 3.98 (2H, с, 2-NH ₂); 6.53 (2H, уш. с, 3-NH ₂); 6.77 (1H, с, H _{Py})
1b	3370 (N–H); 3195 (N–H); 1130 (C–O–C)	2.41 (3H, c, 6-CH ₃); 3.40 (3H, c, OCH ₃); 3.97 (2H, c, 2-NH ₂); 4.68 (2H, c, CH ₂ O); 6.57 (2H, уш. c, 3-NH ₂); 7.03 (1H, c, H _{Py})
3a	3445 (N-H)	1-Н форма (34%): 2.57, 2.75 (по 3Н, оба с, 4-СН ₃ , 6-СН ₃); 7.24 (1Н, с, Н _{Ру}); 7.39–7.45 (1Н, м, Н-4 аром.); 7.53–7.57 (2Н, м, Н-3 и Н-5 аром.); 7.88 (2Н, д, <i>J</i> = 8.0, Н-2 и Н-6 аром.); 14.01 (1Н, уш. с, NH)
		2-Н форма (66%): 2.56, 2.77 (по 3Н, оба с, 4-СН ₃ , 6-СН ₃); 7.21 (1Н, с, Н _{Ру}); 7.39–7.45 (1Н, м, Н-4 аром.); 7.58–7.62 (2Н, м, Н-3 и Н-5 аром.); 7.78 (2Н, д, <i>J</i> = 8.1, Н-2 и Н-6 аром.); 14.08 (1Н, уш. с, NН)
3b	3486 (N–H); 1123 (C–O–C)	1-Н форма (34%): 2.59 (3H, с, 6-CH ₃); 3.43 (3H, с, OCH ₃); 4.91 (2H, с, CH ₂ O); 7.37 (1H, с, H _{Py}); 7.40–7.47 (1H, м, H-4 аром.); 7.53–7.64 (2H, м, H-3 и H-5 аром.); 7.85 (2H, д, <i>J</i> = 7.9, H-2 и H-6 аром.); 13.71 (1H, уш. с, NH)
		2-H форма (66%): 2.60 (3H, c, 6-CH ₃); 3.46 (3H, c, OCH ₃); 4.99 (2H, c, CH ₂ O); 7.37 (1H, c, H _{Py}); 7.40–7.47 (1H, м, H-4 аром.); 7.53–7.64 (2H, м, H-3 и H-5 аром.); 7.76 (2H, д, <i>J</i> = 7.9, H-2 и H-6 аром.); 14.08 (1H, уш. c, NH)
5a	3425 (N–H); 3158 (N–H)	2.03, 2.32 (по 3H, оба с, 4-СН ₃ , 6-СН ₃); 6.57 (1H, д, <i>J</i> = 6.1, CH); 6.60 (1H, с, H _{Py}); 7.26–7.33 (1H, м, H-4 аром.); 7.38–7.45 (2H, м, H-3 и H-5 аром.); 7.84 (2H, д, <i>J</i> = 8.0, H-2 и H-6 аром.); 12.81, 13.41 (по 1H, оба уш.с, NH и NH)
5b	3418 (N–H); 3120 (N–H)	2.41 (3H, c, 6-CH ₃); 3.26 (3H, c, OCH ₃); 4.11 (2H, c, CH ₂ O); 6.64 (1H, д, <i>J</i> = 5.8, CH); 6.76 (1H, c, H _{Py}); 7.26–7.37 (1H, м, H-4 аром.); 7.39–7.48 (2H, м, H-3 и H-5 аром.); 7.82 (2H, д, <i>J</i> = 8.0, H-2 и H-6 аром.); 12.83, 13.57 (по 1H, оба уш. с, NH и NH)
6b	_	2.61 (3H, c, 6-CH ₃); 3.33 (3H, c, OCH ₃); 4.43 (2H, c, CH ₂ O); 7.33 (1H, c, H _{Py}); 7.56–7.61 (2H, м, H-3 и H-5 аром.); 7.62–7.66 (1H, м, <i>J</i> = 8.2, H-4 аром.); 7.97 (2H, д, <i>J</i> = 8.0, H-2 и H-6 аром.); 8.08 (1H, c, H _{Het}); 10.62 (1H, уш. c, NH)
8a	3455 (N–H); 3385 (N–H); 1625 (C=O); 1610 (C=O)	2.05 (3H, c, CH ₃); 2.19 (3H, c, CH ₃ CO); 2.41, 2.50 (по 3H, оба c, 4-CH ₃ , 6-CH ₃); 4.17 (2H, c, 2-NH ₂); 5.36 (1H, c, CH); 6.92 (1H, c, H _{Py}); 13.27 (1H, уш. c, NH)
8b	3371 (N–H); 1615 (C=O); 1115 (C–O–C)	2.06 (3H, c, CH ₃); 2.22 (3H, c, CH ₃ CO); 2.48 (3H, c, 6-CH ₃); 3.19 (3H, c, OCH ₃); 4.17 (2H, c, 2-NH ₂); 4.73 (2H, c, CH ₂ O); 5.37 (1H, c, CH); 7.13 (1H, c, H _{Py}); 13.24 (1H, ym. c, NH)
8c	3205 (N–H); 1650 (C=O); 1620 (C=O); 1280 (CO–O–C)	1.23 (3H, т, <i>J</i> = 6.8, CH ₃); 2.02 (3H, с, CH ₃); 2.43, 2.51 (по 3H, оба с, 4-CH ₃ , 6-CH ₃); 4.09 (2H, кв, <i>J</i> = 6.8, OCH ₂); 4.18 (2H, с, 2-NH ₂); 4.82 (1H, с, CH); 6.91 (1H, с, H _{Py}); 11.36 (1H, уш. с, NH)
8d	1650 (C=O); 1615 (C=O); 1280 (CO-O-C); 1115 (C-O-C)	1.23 (3H, т, <i>J</i> = 6.9, CH ₃); 2.22 (3H, с, CH ₃); 2.46 (3H, с, 6-CH ₃); 3.45 (3H, с, OCH ₃); 4.11 (2H, кв, <i>J</i> = 6.9, OCH ₂); 4.17 (2H, с, 2-NH ₂); 4.73 (2H, с, CH ₂ O); 4.82 (1H, с, CH); 7.13 (1H, с, H _{Py}); 11.34 (1H, уш. с, NH)

1404

Спектр ЯМР ¹Н синтезированных соединений 9а–h, 10а–с,е–h

Соеди- нение	Химические сдвиги, δ , м. д. (J , Γ ц)*				
1	2				
9a	2.44, 2.75 (по 3H, оба с, 4-CH ₃ , 6-CH ₃); 4.48 (2H, с, 2-NH ₂); 6.94–7.00 (3H, м H-3 и H-5 аром, H _{Py}); 7.37–7.42 (1H, м, H-4 аром.); 7.72 (1H, д, <i>J</i> = 8.0, H-6 аром.); 8.86 (1H, с, CH); 11.08 (1H, с, OH)				
	[2.52, 2.68 (по 3H, оба с, 4-CH ₃ , 6-CH ₃); 4.34 (2H, с, 2-NH ₂); 6.78 (1H с, H _{Py}); 6.95–6.99 (1H, м, H-5 аром.); 7.04 (1H, д, <i>J</i> = 8.1, H-3 аром.); 7.35–7.41 (2H, м, H-4 и H-6 аром.); 8.71 (1H, с, CH); 11.57 (1H, с, OH)]				
9b	2.36, 2.43, 2.62 (по 3H, все с, 4-CH ₃ , 6-CH ₃ , CH ₃ -C ₆ H ₅); 4.43 (2H, с, 2-NH ₂) 6.92 (1H, с, H _{Py}); 7.30 (2H, д, <i>J</i> = 8.0, H-3 и H-5 аром.); 7.78 (2H, д, <i>J</i> = 8.0 H-2 и H-6 аром.); 8.50 (1H, с, CH)				
9c	2.53, 2.68 (по 3H, оба с, 4-CH ₃ , 6-CH ₃); 4.43 (2H, с, 2-NH ₂); 6.78 (1H, с, H _{Py}) 8.00 (2H, д, <i>J</i> = 8.1, H-2 и H-6 аром.); 8.30 (2H, д, <i>J</i> = 8.1, H-3 и H-5 аром.) 8.54 (1H, с, CH)				
	[2.44, 2.62 (по 3H, оба с, 4-CH ₃ , 6-CH ₃); 4.48 (2H, с, 2-NH ₂); 6.97 (1H, с H _{Py}); 8.15 (2H, д, <i>J</i> = 8.1, H-2 и H-6 аром.); 8.34 (2H, д, <i>J</i> = 8.1, H-3 и H-2 аром.); 8.69 (1H, с, CH)]				
9d	2.43, 2.62 (по 3H, оба с, 4-CH ₃ , 6-CH ₃); .3.38 (3H, с, OCH ₃); 4.47 (2H, с 2-NH ₂); 6.94 (1H, с, H _{Py}); 7.06 (2H, д, <i>J</i> = 8.0, H-3 и H-5 аром.); 7.85 (2H, д <i>J</i> = 8.0, H-2 и H-6 аром.); 8.52 (1H, с, CH)				
9e	2.48 (3H, c, 6-CH ₃); 3.45 (3H, c, OCH ₃); 4.45 (2H, c, 2-NH ₂); 4.88 (2H, c, OCH ₂); 6.93–6.98 (2H, м, H-3 и H-5 аром.); 7.19 (1H, c, H _{Py}); 7.36–7.40 (1H м, H-4 аром.); 7.72 (1H, д, <i>J</i> = 7.9, H-6 аром.); 8.84 (1H, c, CH); 11.03 (1H, c, OH)				
	[2.58 (3H, c, 6-CH ₃); 3.59 (3H, c, OCH ₃); 4.33 (2H, c, 2-NH ₂); 4.98 (2H, c OCH ₂); 7.25 (1H, c, H _{Py}); 6.96–7.07 (2H, м, H-3 и H-5 аром.); 7.38–7.43 (2H м, H-4 и H-6 аром.); 8.73 (1H, c, CH); 11.52 (1H, c, OH)]				
9f	2.51 (3H, c, 6-CH ₃); 3.46 (3H, c, OCH ₃); 4.47 (2H, c, 2-NH ₂); 4.89 (2H, c OCH ₂); 7.21 (1H, c, H _{Py}); 8.15 (2H, д, <i>J</i> = 8.2, H-2 и H-6 аром.); 8.33 (2H, д <i>J</i> = 8.2, H-3 и H-5 аром.); 8.69 (1H, c, CH)]				
9g	2.49 (3H, c, 6-CH ₃); 3.47, 3.84 (по 3H, оба с, OCH ₃ , OCH ₃); 4.43 (2H, c 2-NH ₂); 4.88 (2H, c, OCH ₂); 7.05 (2H, д, <i>J</i> = 8.1, H-3 и H-5 аром.); 7.18 (1H c, H _{Py}); 7.85 (2H, д, <i>J</i> = 8.1, H-2 и H-6 аром.); 8.52 (1H, c, CH)				
9h	2.52 (3H, c, 6-CH ₃); 3.44 (3H, c, OCH ₃); 4.52 (2H, c, 2-NH ₂); 4.91 (2H, c OCH ₂); 7.28 (1H, c, H _{Py}); 7.92 (1H, c, H-4 аром.); 7.94 (1H, c, H-6 аром.); 8.8 (1H, c, CH); 12.19 (1H, c, OH)				
	[2.59 (3H, c, 6-CH ₃); 3.57 (3H, c, OCH ₃); 4.32 (2H, c, 2-NH ₂); 4.93 (2H, c OCH ₂); 7.24 (1H, c, H _{Py}); 7.48 (1H, c, H-4 аром.); 7.76 (1H, c, H-6 аром.); 8.6 (1H, c, CH); 12.42 (1H, c, OH)]				
10a	2.52, 2.63 (по 3H, оба с, 4-CH ₃ , 6-CH ₃); 6.86–6.91 (3H, м, CH, H-3 и H- аром.); 7.06 (1H, с, H _{Py}); 7.18 (1H, м, H-4 аром.); 7.57 (1H, д, <i>J</i> = 8.1, H- аром.); 8.41 (1H, уш. с, NH); 9.57 (1H, уш. с, NH); 10.58 (1H, с, OH)				
10b	2.33, 2.51, 2.75 (по 3H, все с, 4-CH ₃ , 6-CH ₃ , CH ₃ -C ₆ H ₅); 6.91 (1H, с, CH) 7.03 (1H, с, H _{Py}); 7.22 (2H, д, <i>J</i> = 8.0, H-3 и H-5 аром.); 7.57 (2H, д, <i>J</i> = 8.0 H-2 и H-6 аром.); 8.10 (1H, уш. с, NH); 9.37 (1H, уш. с, NH)				

1	2
10c	2.51, 2.75 (по 3H, оба с, 4-CH ₃ , 6-CH ₃); 7.07 (1H, с, H _{Py}); 7.12 (1H, с, CH); 7.92 (2H, д, <i>J</i> = 8.1, H-2 и H-6 аром.); 8.22 (1H, уш. с, NH); 8.25 (2H, д, <i>J</i> = 8.1, H-3 и H-5 аром.); 10.07 (1H, уш. с, NH)
	[2.63, 2.77 (по 3H, оба с, 4-CH ₃ , 6-CH ₃); 6.94 (1H, с, H _{Py}); 7.03 (1H, с, CH); 7.79 (2H, д, <i>J</i> = 8.1, H-2 и H-6 аром.); 8.16 (1H, уш. с, NH); 8.24 (2H, д, <i>J</i> = 8.1, H-3 и H-5 аром.); 9.98 (1H, уш. с, NH)]
10e	2.56 (3H, c, 6-CH ₃); 3.42 (3H, c, OCH ₃); 4.92 (2H, c, OCH ₂); 6.82–6.88 (3H, м, H-3 и H-5 аром., CH); 7.17–7.21 (1H, м, H-4 аром.); 7.26 (1H, c, H _{Py}); 7.58 (1H, д, <i>J</i> = 8.0, H-6 аром.); 8.29 (1H, уш. c, NH); 9.62 (1H, уш. c, NH); 10.48 (1H, c, OH)
	[2.68 (3H, c, 6-CH ₃); 3.45 (3H, c, OCH ₃); 4.81 (2H, c, OCH ₂); 6.75 (1H, c, CH); 6.90–6.94 (1H, M, H-5 apon.); 7.01 (1H, c, H _{Py}); 7.02 (1H, π , J = 8.0, H-3 apon.); 7.19 (1H, π , J = 8.0, H-6 apon.); 7.24–7.29 (1H, M, H-4 apon.); 7.98 (1H, ym. c, NH); 9.67 (1H, ym. c, NH); 11.06 (1H, c, OH)]
10f	2.58 (3H, c, 6-CH ₃); 3.43 (3H, c, OCH ₃); 4.91 (2H, c, OCH ₂); 7.13 (1H, c, CH); 7.28 (1H, c, H _{Py}); 7.94 (2H, д, <i>J</i> = 8.1, H-2 и H-6 аром.); 8.12 (1H, уш. c, NH); 8.24 (2H, д, <i>J</i> = 8.1, H-3 и H-5 аром.); 10.10 (1H, уш. c, NH)
10g	2.53 (3H, c, 6-CH ₃); 3.54, 3.79 (по 3H, оба с, OCH ₃ , OCH ₃); 4.91 (2H, c, OCH ₂); 6.93 (1H, c, CH); 6.98 (2H, д, <i>J</i> = 8.2, H-3 и H-5 аром.); 7.25 (1H, c, H _{Py}); 7.66 (2H, д, <i>J</i> = 8.2, H-2 и H-6 аром.); 7.99 (1H, уш. c, NH); 9.76 (1H, уш. c, NH)
10h	2.57 (3H, c, 6-CH ₃); 3.42 (3H, c, OCH ₃); 4.87 (2H, c, OCH ₂); 7.02 (1H, c, CH); 7.20 (1H, c, H _{Py}); 7.71 (1H, c, H-4 аром.); 7.73 (1H, c, H-6 аром.); 8.22 (1H, уш. c, NH); 9.98 (1H, уш. c, NH); 11.93 (1H, c, OH)
	[2.68 (3H, с, 6-CH ₃); 3.44 (3H, с, OCH ₃); 4.80 (2H, с, OCH ₂); 6.78 (1H, с, CH); 7.00 (1H, с, H-4 аром.); 7.24 (1H, с, H _{Py}); 7.59 (1H, с, H-6 аром.); 7.83 (1H, уш. с, NH); 9.97 (1H, уш. с, NH); 11.87 (1H, с, OH)]

* Спектры ЯМР 1 Н снимали в ДМСО-d₆, спектры, снятые в CDCl₃, приведены в квадратных скобках.

Тиено[2,3-*b*]пиридин-2,3-диамины **1а**,**b** легко взаимодействуют с ароматическими альдегидами с образованием равновесной смеси таутомеров **9а–h** и **10а–h** (схема 5).

Схема 5

9, 10 a–d R = Me, e–h R = CH₂OMe; a, e Ar = 2-HOC₆H₄, b Ar = 4-MeC₆H₄; c, f Ar = 4-O₂NC₆H₄, d, g Ar = 4-MeOC₆H₄, h Ar = 3,5-Br₂-2-HO–C₆H₂

_

Таутомеры	Соотно- шение таутомеров	Раство- ритель	Таутомеры	Соотно- шение таутомеров	Раство- ритель
9a : 10a	50: 50	ДМСО-d ₆	9e : 10e	38:62	ДМСО- d ₆
9a : 10a	100 : 0	CDCl ₃	9e : 10e	81:19	CDCl ₃
9b : 10b	89:11	ДМСО-d ₆	9f : 10f	59:41	ДМСО-d ₆
9c : 10c	21:79	ДМСО-d ₆	9g : 10g	93:7	ДМСО- d ₆
9c : 10c	82:18	CDCl ₃	9h : 10h	17:83	ДМСО-d ₆
9d : 10d	100 : 0	ДМСО-d ₆	9h : 10h	40 : 60	CDCl ₃

Соотношение таутомерных форм 9а–h (открытая) и 10а–h (закрытая) в спектрах ЯМР ¹Н

Суммарный выход продуктов 9а-h и 10а-h ~70% (табл. 1).

Существование двух таутомерных форм и возможность перехода одной формы в другую доказана методом ЯМР ¹Н спектроскопии (табл. 3). В табл. 4 представлено соотношение таутомерных форм. Установлено, что донорные заместители в ароматическом фрагменте продуктов способствуют смещению таутамерного равновесия в сторону азаметиновой формы 9, электроноакцепторные, наоборот, – имидазольной 10. В то же время замена ДМСО-d₆ на CDCl₃ способствует увеличению массовой доли открытой формы 9.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н регистрировали на приборе Bruker DRX-500 (500 МГц) в ДМСО-d₆ и CDCl₃, внутренний стандарт ТМС. ИК спектры измеряли на приборе Specord IR-75, призмы NaCl, КВг или в виде суспензии в вазелиновом масле. Масс-спектры снимали на приборе Finnigan MAT INCO S50 с прямым вводом образца в ионный источник (энергия ионизирующих электронов 70 эВ, температура ионизационной камеры 50–180 °C).

6-Метил-8-метоксиметил-3-фенилпиразоло[3',4':4,5]тиено[2,3-b]пиридин (3b) и 6-метил-4-метоксиметилтиено[2,3-b]пиридин-2,3-диамин (1b). Растворяют 3.12 г (10 ммоль) соединения 2b в 20 мл ДМСО, прибавляют 24.5 мл (500 ммоль) гидразингидрата и кипятят в течение 36 ч. Реакционную смесь охлаждают, выпавшие кристаллы отфильтровывают, промывают 10 мл ЕtOH, сушат. Используя дробную кристаллизацию из этанола, разделяют полученную смесь веществ 1b и 3b. Выход соединения 3b 1.57 г (51%), соединения 1b 0.02 г (1%).

Соединения 1а и За получают аналогично.

6-Метил-4-метоксиметилтиено[2,3-*b*]пиридин-2,3-диамин (1b), 6-метил-8-метоксиметил-3-фенил-2,3-дигидро-1Н-пиразоло[3',4':4,5]-тиено[2,3-*b*]пиридин (5b) и 6-метил-4-метоксиметилфенил-3-бензоиламинотиено[2,3-*b*]пиридин (6b). К 4.19 г (10 ммоль) 2-гидрокси(фенил)метил-6-метил-4-метоксиметил-3-фенилкарбоксамидотиено[2,3-*b*]пиридина 4b прибавляют 14.5 мл (300 ммоль) гидразингидрата и кипятят при интенсивном перемешивании в течение 5 ч. Реакционную смесь охлаждают, осадок отфильтровывают (фильтрат 1), промывают 100 мл EtOH (фильтрат 2) и сушат на воздухе. Получают соединение **1b**. Фильтрат 1 выливают в 150 мл воды, выпавшие кристаллы отфильтровывают и получают соединение **5b**. Фильтрат 2 дополнительно охлаждают, образовавшиеся кристаллы отфильтровывают и перекристаллизовывают из этанола до выделения индивидуального вещества (контроль методом TCX, элюент ацетон–гексан, 1:1). Получают соединение **6b**.

Соединения 1а, 5а получают аналогично.

4,6-Диметилтиено[2,3-*b***]пиридин-2,3-диамин (1а**). Масс-спектр, *m/z* (*I*_{отн}, %): 193 [M]⁺ (13), 178 [М–СН₃]⁺ (6), 176 [М–NН₃]⁺ (6), 163 [М–N₂H₂]⁺ (70).

6-Метил-4-метоксиметилтиено[2,3-*b***]пиридин-2,3-диамин (1b)**. Масс-спектр, m/z ($I_{\text{огн}}$, %): 223 [M]⁺ (38), 208 [M–CH₃]⁺ (68), 191 [M–CH₃–NH₃]⁺ (53), 178 [M–CH₃–N₂H₂]⁺ (12), 163 [M–CH₃–NH₃–CO]⁺ (100).

(Z)-4-(2-Амино-6-метил-4-метоксиметилтиено[2,3-*b*]пиридин-3-иламино)-3-пентен-2-он (8b). В раствор 1.12 г (5 ммоль) диамина 1b в 15 мл ЕtOH последовательно прибавляют 0.52 мл (5 ммоль) ацетилацетона и 1.72 мл (30 ммоль) ледяной AcOH. Реакционную смесь доводят до кипения, затем медленно охлаждают. Выпавший осадок отфильтровывают, промывают 10 мл EtOH и сушат на воздухе. Перекристаллизовывают из EtOH.

Соединение 8а получают аналогично.

Этил (Z)-3-(2-амино-6-метил-4-метоксиметилтиено[2,3-b]пиридин-3-иламино)-2-бутеноат (8d). К раствору 1.12 г (5 ммоль) диамина 1b в 15 мл ЕtOH последовательно прибавляют 0.63 мл (5 ммоль) ацетоуксусного эфира и 1.72 мл (30 ммоль) ледяной AcOH. Реакционную смесь кипятят 5 мин, упаривают EtOH на 1/3 и охлаждают на ледяной бане. Выпавший осадок отфильтровывают, промывают 10 мл EtOH и сушат на воздухе.

Соединение 8с получают аналогично.

6-Метил-4-метоксиметил-3-[(E)-1-(4-метоксифенил)метилиденимино]тиено[2,3-b]пиридил-2-амин (9g) и 6-метил-4-метоксиметил-2-(4-метоксифенил)-2,3-дигридро-1Нимидазо[4',5':4,5]тиено[2,3-b]пиридин (10g). К раствору 1.12 г (5 ммоль) диамина 1b в 15 мл толуола и прибавляют 0.6 мл (5 ммоль) 4-метоксибензальдегида, смесь кипятят 5 мин, охлаждают на ледяной бане, выпавшие кристаллы отфильтровывают, промывают 10 мл EtOH, сушат на воздухе и перекристаллизовывают из EtOH.

Соединения 9а-f,h и 10а-f,h получают аналогично.

СПИСОК ЛИТЕРАТУРЫ

- 1. A. W. Erian, F. A. Abu-Shanab, Bull. Chem. Soc. Jpn., 71, 2387 (1998).
- 2. Fawzy A. Attaby, M. A. A. Elneairy, M. S. Elsayed, *Phosphorus, Sulfur, Silicon Relat. Elem.*, **149**, 49 (1999).
- 3. M. Negm Abdalla, Abd El-Aal Fatma, Abd El-Maksoud, Hafez Ebtisam, H. Elnagdi Mohamed, M. N. Mostafa Yasser, *Phosphorus, Sulfur, Silicon Relat. Elem.*, **106**, 1 (1995).
- 4. В. К. Василин, Е. А. Кайгородова, С. И. Фирганг, Г. Д. Крапивин, *XГС*, 462 (2004). [*Chem. Heterocycl. Comp.*, **40**, 377 (2004)].
- 5. E. A. Kaigorodova, V. K. Vasilin, L. D. Konyushkin, E. B. Usova, G. D. Krapivin, *Molecules*, 5, 1085 (2000).
- 6. М. М. Липунов, Е. С. Костенко, Е. А. Кайгородова, С. И. Фирганг, Г. Д. Крапивин, Изв. вузов. Химия и химическая технология, **48**, № 12, 81 (2005).

Кубанский государственный технологический университет, Краснодар 350072, Россия e-mail: organics@kubstu.ru

Поступило 04.12.2006

^аКубанский государственный аграрный университет, Краснодар 350044, Россия e-mail: e_kaigorodova@mail.ru

⁶Институт органической химии им. Н. Д. Зелинского РАН, Москва 119991 e-mail: LeonidK@chemical-block.com