А. А. Колодина, Н. И. Гапоненко, А. В. Лесин

СИНТЕЗ 3,4-ДИГИДРО-2Н-ИМИДАЗО[2,1-b][1,3,4]ТИАДИАЗИНОВ

Тиометиленактивные производные N-имидазолилиминов претерпевают внутримолекулярную циклизацию с образованием 3,4-дигидро-2H-имидазо[2,1-*b*][1,3,4]тиадиазинов. Данная реакция является новым удобным методом аннелирования дигидротиадиазинового цикла к имидазольному фрагменту путем формирования связи С–С.

Ключевые слова: N-алкилизатин, аминотиоимидазол, имидазотиадиазин, тиобензиловый эфир, тиофенациловый эфир.

Ранее нами сообщалось [1] о новой термоиндуцированной внутримолекулярной циклизации производных N-арилиминов 1, содержащих в *орто*положении S-метиленактивные заместители, в ходе которой образуются спиробензотиазины 2.

Данное сообщение посвящено изучению этой реакции при использовании 1-амино-2-меркапто-4-R-имидазолов **3** в качестве гетероциклических аналогов *о*-аминотиофенолов.

Конденсацией в уксусной кислоте 1-амино-2-меркаптоимидазола (**3a**) с бензилизатином и *n*-бромбензальдегидом были получены соответственно альдимины **4** и **5**.

При алкилировании тиольной группы соединения **4** *п*-бромфенацилгалогенидом сразу был выделен спироимидазо[2,1-*b*][1,3,4]тиадиазин **6**.

На циклическую структуру соединения **6** указывают два однопротонных пика в районе 6.05 и 7.52 м. д., относящиеся, соответственно, к группам СН и NH, а также отсутствие двупротонного сигнала метилтиогруппы в спектре ЯМР ¹Н. Кроме того, наблюдается АВ-квартет протонов прохиральной метиленовой группы бензилизатинового фрагмента в районе 4.8 м. д., что также свидетельствует об образовании спирановой хиральной молекулы **6**.

3, **9**, **a** R = H; **b** R = Ph; **7a** $R^1 = Ph$; **b** $R^1 = 4$ -BrC₆H₄; **10 a** $R^1 = 3$ -O₂NC₆H₄; **b** $R^1 = 4$ -BrC₆H₄; **11 a** $R = R^1 = H$, **b** R = H, **c** R = Ph, **b**, **c** $R^1 = CH_2Ph$

При алкилировании альдимина 5 фенацилгалогенидами образуются имидазотиадиазины 7a,b.

В спектрах ЯМР ¹Н полученных соединений 7 наблюдается удвоение всех сигналов в соотношении 68.5 к 31.5% (для 7а) и 82.8 к 17.2% (для 7b), что можно объяснить образованием в обоих случаях смеси диастереомеров.

При использовании *п*-метоксифенацилбромида реакция останавливалась на стадии имидазолил(фенацил)сульфида **8**, что объясняется снижением кислотности метиленовых протонов из-за наличия донорной метоксигруппы в фенильном кольце.

Сульфиды **9а,b** в условиях щелочного катализа вступают в реакцию с N-R-изатинами и бензальдегидами с образованием имидазо[2,1-*b*][1,3,4]-тиадиазинов **10а,b** и **11а–с**.

Строение соединений **10** подтверждается эволюцией сигналов метиленовой и аминогрупп исходного тиоэфира **9a** в спиновосвязанные однопро-1416 тонные сигналы вицинальных протонов двух групп CH и группы NH тиадиазинового цикла в спектрах ЯМР ¹H. Четкая разрешенность сигналов H-2 и H-3 и значение их КССВ (J = 10 Гц) свидетельствуют, что тиадиазины **10** являются не стохастической смесью четырех возможных конфигураций вследствие наличия двух стереогенных углеродных центров C(2) и C(3), а, по-видимому, рацематом с *транс*-взаиморасположением атомов H-2 и H-3.

В спектрах ЯМР ¹Н соединений **11а–с** наблюдаются два однопротонных сигнала в районе 7.6 и 5.2–5.5 м. д., обусловленные группами NH и CH. В спектрах соединений **11b** и **11c**, как и в случае соединения **6**, присутствует АВ-квартет протонов прохиральной метиленовой группы NCH₂Ph в районе 4.9 м. д., указывающий на спироциклизацию тиадиазинового и изатинового фрагментов молекул.

Строение соединения **11а** было подтверждено данными РСА (рис. 1). Основные значения длин связей, валентных и торсионных углов представлены в табл. 2 и 3.

Конденсированный с имидазольным кольцом тиадиазиновый цикл уплощен в части S(1)-C(9)-N(5)-N(4), связь C(9)-S(1) фактически лежит в плоскости имидазольного цикла (атом серы выходит из данной плоскости на 0.075, а атом N(4) на 0.17 Å). Атомы C(2) и C(3) значительно выступают из практически копланарного расположения остальных атомов тиадиазинового и имидазольного циклов. Расстояние от атомов C(3) и C(2) до плоскости имидазольного цикла составляет 1.160 и 0.658 Å соответственно.

Атом N(4) имеет пирамидальную геометрию связей (углы N(5)–N(4)–C(3), N(5)–N(4)–H(4), C(3)–N(4)–H(4) равны 109.15, 106.7 и 107.1° соответственно). Атомы водорода H-4 и H-2 тиадиазинового цикла находятся в *цис*-положении по отношению друг к другу и *транс*- к связи C(3)–C(13) изатинового фрагмента (торсионные углы H(4)–N(4)–C(3)–C(13) и H(2)–C(2)–C(3)–C(13) –178.78 и –164.20° соответственно). Следует отметить также *цис*-ориентацию изатинового и *n*-нитрофенильного заместителей относительно тиадиазинового цикла (торсионный угол C(13)–C(2)–C(18) равен 46.94°). Двугранный угол, образуемый плоскостями изатинового и *n*-нитрофенильного тиадиазинового и *n*-нитрофенильного хамет 51.29°.

Асимметрические атомы C(2) и C(3) молекулы, представленной на рис. 1, имеют *S*-конфигурации согласно системе Кана–Ингольда–Прелога. Моноклинную кристаллическую решетку соединения **11а** с пространственной группой симметрии $P2_1/n$ образуют два хиральных антипода (*s*, *s* и *r*, *r*) в соотношении 50:50.

В кристаллической структуре наблюдается объединение разноименных молекул (*S*- и *R*-энантиомеров) (рис. 2) путем образования двух водородных связей (длина связи NH...O равна 2.01 Å.) между изатиновыми фрагментами. Одноименные молекулы соединены водородной связью NH...N (длина связи 2.10 Å) между тиадиазиновой и имидазольной частями молекул.

Таблица 1

Соеди-	Брутто-	<u>Найдено, %</u> Вычислено, %			Т. пл.,		
нение	формула	С	Н	Ν	°C	ЯМР °Н, о, м. д. (J, 1ц)*	
4	$\mathrm{C}_{18}\mathrm{H}_{14}\mathrm{N}_{4}\mathrm{OS}$	<u>64.87</u> 64.65	<u>4.53</u> 4.22	<u>16.56</u> 16.75	148	4.81 (2H, c, N <u>CH</u> ₂ Ph), 6.72–6.8 (2H, м, H _{isat}), 6.88 (1H, c, H-4), 6.99 (1H, c, H-5), 7.04–7.13 (2H, м, H _{isat}), 7.32–7.4 (5H, м, C ₆ H ₅), 7.92 (1H, c, SH)	46
5	$C_{10}H_8BrN_3S$	<u>42.76</u> 42.57	$\frac{3.04}{2.86}$	<u>14.78</u> 14.89	237	7.09 (1H, c, H-4), 7.67–7.85 (5H, м, H-5, H _{Ar}), 9.01 (1H, c, N=CH), 12.41 (1H, c, SH)	65
6	$C_{31}H_{23}N_5O_3S$	<u>59.18</u> 58.76	<u>3.94</u> 3.60	<u>11.05</u> 10.54	209	4.81 (2H, M, <u>CH</u> ₂ Ph), 6.07 (1H, c, H-2'), 6.64 (1H, μ , $J = 6.8$, H _{isat}), 6.85–7.06 (4H, M, Ph, H _{isat}), 7.15–7.38 (6H, M, Ph, H-6,7, H _{isat}), 7.51 (1H, c, NH), 7.65 (2H, μ , $J = 8.4$, H _{Ar}), 7.75 (2H, μ , $J = 8.7$, H _{Ar})	51
7a	$C_{18}H_{14}BrN_3OS$	<u>54.40</u> 54.01	<u>3.71</u> 3.53	$\frac{10.75}{10.50}$	190	5.01–5.05 (1H, M, H-3), 5.74 (1H, π , J = 2.6, H-2), 6.91 (1H, π , J = 1.3, H-7), 7.03 (1H, π , J = 11.4, NH), 7.24 (1H, π , J = 1.3, H-6), 7.48 (2H, π , J = 8.8, H _{Ar}), 7.53–7.56 (5H, M, C ₆ H ₅), 7.96 (2H, π , J = 8.8, H _{Ar})	57
7b	C ₁₈ H ₁₃ Br ₂ N ₃ OS	<u>45.39</u> 45.12	<u>2.96</u> 2.73	<u>8.91</u> 8.77	192	5.03 (1H, μ , μ , $J = 2.3$, $J = 10.3$, H-3), 5.83 (1H, μ , $J = 2.8$, H-2), 6.91 (1H, μ , $J = 1.2$, H-7), 7.23 (2H, μ , $J = 8.5$, H _{Ar}), 7.27 (1H, μ , $J = 1.2$, H-6), 7.29 (2H, μ , $J = 10.2$, NH), 7.45 (2H, μ , $J = 8.5$, H _{Ar}), 7.72 (2H, μ , $J = 8.7$, H _{Ar}), 7.81 (2H, μ , $J = 8.7$, H _{Ar})	60
8	C ₁₉ H ₁₆ BrN ₃ O ₂ S	<u>53.06</u> 53.03	<u>3.92</u> 3.75	<u>9.59</u> 9.76	167	3.88 (3H, c, OCH ₃), 4.8 (2H, c, CH ₂), 6.95 (2H, μ , $J = 8.9$, H _{Ar}), 7.12 (1H, μ , $J = 1.6$, H-4), 7.47 (1H, μ , $J = 1.6$, H-5), 7.6 (2H, μ , $J = 8.6$, H _{Ar}), 7.71 (2H, μ , $J = 8.6$, H _{Ar}), 8.13 (2H, μ , $J = 8.9$, H _{Ar}), 8.22 (1H, c, N=CH)	68.5

Физико-химические и спектральные характеристики соединений 4–11

0.	C H N O S	49.12	4.01	22.50	155		
9a	$C_{10}H_{10}N_4O_2S$	<u>48.12</u> 47.99	$\frac{4.21}{4.03}$	<u>22.36</u> 22.39	155	4.41 (2H, c, CH ₂), 5.9 (2H, c, NH ₂), 6.81 (1H, \pm , $J = 1.3$, H-4), 7.12 (1H, \pm , $J = 1.3$, H-5), 7.61 (2H, \pm , $J = 8.7$, H _{Ar}), 8.12 (2H, \pm , $J = 8.7$, H _{Ar})	88
9b	$C_{16}H_{14}N_4O_2S$	<u>59.34</u> 58.88	<u>4.78</u> 4.32	<u>16.88</u> 17.17	167	4.34 (2H, c, CH ₂), 4.46 (2H, c, NH ₂), 7.27 (1H, c, H-5), 7.33–7.4 (3H, m, Ph), 7.44 (2H, α , $J = 8.4$, H _{Ar}), 7.71–7.74 (2H, m, Ph), 8.12 (2H, α , $J = 8.4$, H _{Ar})	67
10a	$C_{17}H_{13}N_5O_4S$	<u>53.45</u> 53.26	<u>3.61</u> 3.42	<u>18.52</u> 18.27	207	5.08 (1H, μ . μ , $J = 9.5$, $J = 9.7$, H-3), 5.28 (1H, μ , $J = 9.5$, H-2), 6.91 (1H, c, H-7), 7.31 (1H, c, H-6), 7.46 (1H, μ , $J = 9.8$, NH), 7.55 (1H, μ , μ , $J = 7.9$, $J = 8.1$, H_{Ar}), 7.71 (2H, μ , $J = 8.6$, H_{Ar}), 7.75 (1H, μ , $J = 7.5$, H_{Ar}), 8.08 (3H, μ , $J = 8.6$, H_{Ar}), 8.31 (1H, c, H_{Ar})	13
10b	C ₁₇ H ₁₃ BrN ₄ O ₂ S	<u>49.11</u> 48.93	<u>3.33</u> 3.14	<u>13.69</u> 13.43	110	4.85 (1H, \exists , \exists , d , $J = 10.0$, $J = 10.0$, H-3), 5.16 (1H, d , J = 9.67, H-2), 6.87 (1H, d , $J = 0.7$, H-7), 7.22–7.29 (4H, M, H-6, NH, H _{Ar}), 7.43 (2H, d , $J = 8.49$, H _{Ar}), 7.65 (2H, d , $J = 8.8$, H _{Ar}), 8.08 (2H, d, $J = 8.8$, H _{Ar})	66
11 a	$C_{18}H_{13}N_5O_3S$	<u>57.15</u> 56.98	<u>4.02</u> 3.45	<u>18.79</u> 18.46	248	5.49 (1H, c, H-2), 6.5 (1H, μ , $J = 7.4$, H_{isat}), 6.7 (1H, μ , $J = 7.5$, H_{isat}), 6.95 (2H, μ , H-7, H_{isat}), 7.15–7.3 (4H, μ , H_{Ar} , H-6, H_{isat}), 7.61 (1H, c, 4-NH), 8.05 (2H, μ , $J = 8.8$, H_{Ar}), 10.65 (1H, c, CONH)	55
11b	$C_{25}H_{19}N_5O_3S$	<u>64.11</u> 63.95	<u>3.93</u> 4.08	<u>14.61</u> 14.92	190	5.02 (2H, M, <u>CH</u> ₂ Ph), 5.51 (1H, c, H-2), 6.62 (1H, μ , $J = 7.7$, H _{isat}), 6.82 (3H, M, H _{isat} , Ph), 6.91–7.13 (5H, M, Ph, H-7, H _{isat}), 7.22 (2H, μ , $J = 8.8$, H _{Ar}), 7.31 (2H, M, H-6, H _{isat}), 7.61 (1H, c, NH), 8.05 (2H, μ , $J = 8.8$, H _{Ar})	52
11c	C ₃₁ H ₂₃ N ₅ O ₃ S	<u>69.18</u> 68.24	<u>3.94</u> 4.25	<u>12.55</u> 12.84	198	4.71 (1H, π , $J = 15.8$, <u>CH</u> ₂ Ph), 5.22 (1H, π , $J = 15.8$, <u>CH</u> ₂ Ph), 5.32 (1H, c, H-2), 6.71 (3H, M, Ph, H _{isat}), 6.87 (1H, π , $J = 7.4$, H _{isat}), 7.03–7.15 (4H, M, Ph, H _{isat}), 7.22 (2H, π , $J = 8.7$, H _{Ar}), 7.32 (2H, M, H-6, H _{isat}), 7.45 (3H, M, Ph), 7.61 (1H, c, NH), 7.75 (2H, M, C ₆ H ₅), 8.05 (2H, π , $J = 8.7$, H _{Ar})	53

* Растворители: CDCl₃ (соединения 4, 8, 9b, 10b, 11c), ДМСО-d₆ (соединения 5, 6, 7b, 9a, 10a, 11a,b) и (CD₃)₂CO (соединение 7a).

1419

Рис. 1. Структура молекулы соединения 11а

Рис. 2. Фрагмент Н-связанной цепи в кристалле соединения 11а

Таблица 2

Связь	l, Å	Угол	ω, град.
S(1)–C(9)	1.7321(18)	C(9)–S(1)–C(2)	101.37(7)
S(1)–C(2)	1.8413(15)	C(18)–C(2)–C(3)	112.52(12)
C(2)–C(18)	1.514(2)	C(18)–C(2)–S(1)	110.16(10)
C(2)–C(3)	1.561(2)	C(3)–C(2)–S(1)	112.84(10)
C(2)–H(2)	0.98(2)	S(1)–C(2)–H(2)	107.1(11)
C(3)–N(4)	1.4666(19)	N(4)-C(3)-C(13)	112.73(12)
C(3)–C(13)	1.515(2)	N(4)-C(3)-C(10)	105.80(11)
C(3)–C(10)	1.5533(19)	C(13)–C(3)–C(10)	102.15(11)
N(4)–N(5)	1.4142(17)	N(4)-C(3)-C(2)	112.95(11)
N(4)–H(4)	0.88(2)	C(13)–C(3)–C(2)	116.11(12)
N(5)–C(9)	1.3622(19)	C(10)–C(3)–C(2)	105.63(12)
N(5)–C(6)	1.374(2)	C(9)–N(5)–C(6)	107.85(13)
C(6)–C(7)	1.363(2)	C(9)–N(5)–N(4)	125.96(13)
C(7)–N(8)	1.381(2)	C(6)–N(5)–N(4)	125.29(13)
N(8)–C(9)	1.322(2)	N(8)-C(9)-N(5)	111.08(14)
C(10)–N(11)	1.3453(18)	N(8)–C(9)–S(1)	124.76(12)
		N(5)-C(9)-S(1)	124.11(12)

Длины связей (l) и валентные углы (ω) в молекуле 11а по данным PCA

Таким образом, установлено, что реакция конденсации 1-амино-2-бензилтиоимидазолов с карбонильными соединениями не останавливается на стадии образования имина вследствие дальнейшей внутримолекулярной циклизации, ведущей к образованию 3,4-дигидро-2H-имидазо[2,1-*b*]-[1,3,4]тиадиазинов. Аналогичная внутримолекулярная циклизация протекает при алкилировании меркаптогруппы имидазолилиминов фенацилгалогенидами. Данная реакция является удобным методом аннелирования

Таблица З

Торсионные углы (т) в молекуле 11а по данным РСА

τ, град.	Угол	τ, град.
-138.58(11)	C(7)–N(8)–C(9)–S(1)	-177.71(12)
-11.90(12)	N(4)-N(5)-C(9)-S(1)	6.7(2)
179.39(12)	C(2)-S(1)-C(9)-N(5)	-17.26(14)
53.98(14)	N(4)-C(3)-C(10)-O(1)	58.07(19)
-78.47(14)	C(2)-C(3)-C(10)-O(1)	-61.93(18)
-65.42(15)	C(2)–C(3)–C(10)–N(11)	117.12(13)
169.17(9)	S(1)-C(2)-C(18)-C(23)	-137.24(13)
36.65(18)	C(3)-C(2)-C(18)-C(19)	-80.14(17)
171.70(14)	S(1)-C(2)-C(18)-C(19)	46.71(17)
	т, град. -138.58(11) -11.90(12) 179.39(12) 53.98(14) -78.47(14) -65.42(15) 169.17(9) 36.65(18) 171.70(14)	т, град. Угол -138.58(11) C(7)-N(8)-C(9)-S(1) -11.90(12) N(4)-N(5)-C(9)-S(1) 179.39(12) C(2)-S(1)-C(9)-N(5) 53.98(14) N(4)-C(3)-C(10)-O(1) -78.47(14) C(2)-C(3)-C(10)-O(1) -65.42(15) C(2)-C(3)-C(10)-N(11) 169.17(9) S(1)-C(2)-C(18)-C(23) 36.65(18) C(3)-C(2)-C(18)-C(19) 171.70(14) S(1)-C(2)-C(18)-C(19)

дигидротиадиазинового цикла и получения неизвестных ранее 3,4-дигидро-2H-имидазо[2,1-*b*][1,3,4]тиадиазинов. Особенностью данного метода является образование связи С–С на заключительной стадии гетероциклизации, а условиями протекания – основная среда и повышенная кислотность метиленовых протонов тиоэфирной группы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н зарегистрированы на спектрометре Varian Unity-300 Spectrometer (300 МГц) и на спектрометре Bruker DPX-250 (250 МГц) при температуре 25 °C, внутренний стандарт ТМС.

Рентгенодифракционное исследование 11а ($C_{18}H_{13}N_5O_3S$) проведено при 183(2) К на автоматическом 4-кружном дифрактометре Syntex P21 (Мо*К* α , графитовый монохроматор, $\theta/2\theta$ -сканирование, $2\theta < 60^\circ$). При –90 °C кристаллы моноклинные, выращенные из ацетонитрила: a = 13.154(3), b = 8.8690(18), c = 16.163(3)Å, $\beta = 111.90(3)^\circ$, V = 1749.4(7)Å³, пространственная группа $P2_1/n$, Z = 4 (Z = 1), M = 379.39, $d_{\text{выч}} = 1.441$ г/см³, $\mu = 2.16$ см⁻¹, F(000) = 748. Из общего числа 5289 измеренных отражений ($R_{\text{int}} = 0.0225$) в дальнейших расчетах и уточнении использовали 5101 независимых отражений.

Структура **11а** расшифрована прямым методом и уточнена МНК в анизотропном полноматричном приближении. Атомы водорода локализованы из разностных Фурье синтезов электронной плотности и их позиции уточнялись в изотропном приближении. Окончательные факторы расходимости: R = 0.0455 по 4258 отражениям с $I>2\sigma(I)$, wR2 = 0.1032, GOOF = 1.072 по всем измеренным отражениям. Все расчеты проведены по комплексу программ SHELXTL PLUS 5 [2].

Полная кристаллографическая информация депонирована в Кембриджском банке структурных данных – депонент № ССDС 633535.

Исходные гидрохлорид 1-амино-2-меркаптоимидазола **3a** и 1-амино-2-меркапто-4-фенилимидазол **3b** получены по методикам [3, 4].

1-Бензил-3-(2-меркаптоимидазол-1-илимино)-2,3-дигидроиндол-2-он (4). Кипятят 0.3 г (2 ммоль) гидрохлорида аминомеркаптоимидазола **3a** и 0.47 г (2 ммоль) N-бензилизатина в 3 мл ледяной уксусной кислоты, с добавлением 2 мл триэтиламина в течение 2 ч. После охлаждения реакционную смесь разбавляют 20 мл воды, отфильтровывают выпавший осадок, промывают водой, сушат. Перекристаллизовывают из бензола.

1-[(4-Бромфенил)метилиденамино]-1Н-имидазол-2-тиол (5). Смешивают 0.5 г (3.3 ммоль) гидрохлорида соединения **За** и 0.611 г (3.3 ммоль) *п*-бромбензальдегида в 10 мл ледяной уксусной кислоты, добавляют 0.6 мл триэтиламина и кипятят 3.5 ч. Выпавшие кристаллы отфильтровывают и перекристаллизовывают из этанола.

1'-Бензил-2-(4-бромбензоил)спиро[имидазо[2,1-*b*][1,3,4]тиадиазин-3,3'-индол]-2'(1Н)-он (6). К раствору 0.04 г (1 ммоль) NaOH в 3 мл этанола добавляют 0.33 г (1 ммоль) имидазолилизатинимина 4, после растворения добавляют 0.28 г (1 ммоль) *n*-бромфенацилбромида. Кипятят 5 мин. После охлаждения разбавляют реакционную смесь 20 мл воды, отфильтровывают осадок. Перекристаллизовывают из ацетонитрила.

2-Бензоил-3-(4-бромфенил)-3,4-дигидро-2Н-имидазо[2,1-*b***][1,3,4**]**тиадиазин** (7а). К раствору 0.04 г (1 ммоль) NaOH в 3 мл этанола прибавляют 0.28 г (1 ммоль) метилиденамино-1Н-имидазол-2-тиола **5**. После его полного растворения прибавляли 0.2 г (1 ммоль) фенацилбромида. Перемешивают 5 мин, затем реакционную смесь разбавляют 20 мл воды, отфильтровывают выпавший осадок. Перекристаллизовывают из ацетонитрила.

2-(4-Бромбензоил)-3-(4-бромфенил)-3,4-дигидро-2Н-имидазо[2,1-*b*][1,3,4]тиадиазин (7b) получают аналогично соединению 7а из эквимолярных количеств соединения 5 и *n*-бромфенацилбромида.

1-[(4-Бромфенил)метилиденамино]-2-(4-метоксифенацил)тио-1Н-имидазол (8) получают аналогично соединению 7а из эквимолярных количеств соединения 5 и *n*-метоксифенацилбромида.

1-Амино-2-(4-нитробензилтио)имидазол (9а). К раствору 0.12 г (3 ммоль) NaOH 1422

в 5 мл МеОН прибавляют 0.23 г (1.5 ммоль) гидрохлорида соединения **3а**. После его полного растворения прибавляют 0.32 г (1.5 ммоль) *п*-нитробензилбромида, нагревают 2–3 мин. Выпавший при охлаждении осадок отфильтровывают, промывают водой. Перекристаллизовывают из метанола.

1-Амино-2-(4-нитробензилтио)-4-фенилимидазол (9b) получают аналогично соединению 9a, используя эквимолярные количества NaOH, 1-амино-2-меркапто-4-фенилимидазола (3b) и *n*-нитробензилбромида.

3-(3-Нитрофенил)-2-(4-нитрофенил)-3,4-дигидро-2Н-имидазо[2,1-b][1,3,4]тиадиазин (**10a**). К раствору 0.5 г (2 ммоль) S-бензилового эфира **9a** и 0.3 г (2 ммоль) З-нитробензальдегида в 10 мл этанола добавляют каталитические количества (0.5 ммоль) NaOH. Кипятят 1 ч. После охлаждения разбавляют реакционную смесь водой (30 мл), нейтрализуют разбавленной соляной кислотой и отфильтровывают осадок. Перекристаллизовывают из ацетонитрила.

3-(4-Бромфенил)-2-(4-нитрофенил)-3,4-дигидро-2Н-имидазо[2,1-*b***][1,3,4]тиадиазин (10b) получают аналогично соединению 10а из эквимолярных количеств соединения 9а и** *n***-бромбензальдегида.**

2-(4-Нитрофенил)спиро[имидазо[2,1-b][1,3,4]тиадиазин-3,3'-индол]-2'(1Н)-он (11а). К раствору 0.3 г (1.2 ммоль) соединения **9а** и 0.18 г (1.2 ммоль) изатина в 5 мл метанола добавляют 0.05 г (1.2 ммоль) NaOH. Кипятят 1.5 ч. После охлаждения разбавляют реакционную смесь 20 мл воды, нейтрализуют разбавленной уксусной кислотой. Отфильтровывают осадок. Перекристаллизовывают из ацетонитрила.

1'-Бензил-2-(4-нитрофенил)спиро[имидазо[2,1-*b*][1,3,4]тиадиазин-3,3'-индол]-2'(1Н)-он (11b) получают аналогично соединению 11a из эквимолярных количеств соединения 9a и N-бензилизатина.

1'-Бензил-2-(4-нитрофенил)-7-фенилспиро[имидазо[2,1-*b*][1,3,4]тиадиазин-3,3'-индол]-2'(1Н)-он (11с) получают аналогично соединению 11а из эквимолярных количеств соединения 9b и N-бензилизатина.

Работа выполнена при финансовой поддержке РФФИ (грант № 05-03-32534) и гранта Президента РФ НШ-4849.2006.3.

СПИСОК ЛИТЕРАТУРЫ

- 1. Л. П. Олехнович, Е. П. Ивахненко, С. Н. Любченко, В. И. Симаков, Г. С. Бородкин, А. В. Лесин, И. Н. Щербаков, С. В. Курбатов, *Рос. хим. журн.*, **47**, № 1, 103 (2004).
- 2. G. M. Sheldrick, *SHELXTL v 5.10*, *Structure Determination Software Suite*, Bruker AXS, Madison, Wisconsin, USA (1998).
- 3. Заявка ФРГ № 3702757, 1988; РЖХим, 10О140 (1989).
- 4. T. Pyl, F. Waschk, H. Beyer, Liebigs Ann. Chem., 663, 113 (1963).

Ростовский государственный университет, химический факультет, Ростов-на-Дону 344090, Россия e-mail: lexandra@inbox.ru Поступило 29.12.2006