Г. А. Газиева, П. В. Ложкин, А. Н. Кравченко, К. А. Лысенко^а, Н. Г. Колотыркина, Н. Н. Махова

СИНТЕЗ И СТРОЕНИЕ 1,3-ДИАЛКИЛ-4-(СУЛЬФОНИЛИМИНО)ИМИДАЗОЛИДИН-2-ОНОВ

Изучены реакции 1-1.3-диалкил-4.5-дигидроксиимидазолидин-2-онов с алкилсульфами-дами И получены не описанные ранее 1,3-диалкил-4-(алкиламиносульфонилимино)имид-азолидин-2-оны. Строение 1,3-диметил-4-(фенилсульфонилимино)имидазолидин-2-она ис-следовано методом РСА.

Ключевые слова: 1-алкилсульфамиды, 1,3-диалкил-4-(алкиламиносульфонилимино)имидазолидин-2-оны, 4,5-дигидроксиимидазолидин-2-оны, 1,3-диметил-4-(фенилсульфонилимино)имидазолидин-2-он, РСА.

Производные имидазолидин-2-она обладают широким спектром биологической активности. В частности, гидантоины используются в медицине и агрохимии в качестве антиконвульсантов [1, 2], противораковых препаратов [3], фунгицидов [4] и гербицидов [5]. С другой стороны, соединения, включающие сульфамидный фрагмент, проявляют бактериостатическое, гипогликемическое, диуретическое и гербицидное действие [2, 6-8]. В течение ряда лет в области наших научных интересов находятся реак-ции 4,5-дигидроксиимидазолидин-2-онов (ДГИ) с мочевинами и их гетероаналогами. Недавно в результате проводимых нами исследований взаимодействия 1-алкил- и 1,3-диалкил-ДГИ с сульфамидом и амидами сульфокислот обнаружена необычная реакция [9], приводящая к 4,4'-сульфонилдииминобис(1,3-диалкилимидазолидин-2-онам) 1 и 4(5)-арил(алкил)сульфонилиминоимидазолидин-2-онам 2, содержащим оба фармакофорных фрагмента. Позже мы показали, что реакция 1,3-диалкил-ДГИ с аминогуанидином протекает аналогично с образованием 1,3-диалкил-4-гуанидиниминоимидазолидин-2-онов 3 [10].

С целью расширения границ применения выявленного направления исследована реакция 1,3-диалкил-ДГИ **4а,b** с 1-алкилсульфамидами **5а–d** в условиях, аналогичных условиям получения соединений **2** и **3** (метанол, HCl) (схема 1).

> Схема 1 1159

4a, **6a**, **c**, **e**, **g**, **7a** $R^1 = Me$; **4b**, **6b**, **d**, **f**, **h**, **7b** $R^1 = Et$; **5a**, **6a**, **b** $R^2 = Pr$; **5b**, **6c**, **d** $R^2 = Bu$; **5c**, **6e**, **f** $R^2 = s$ -Bu; **5d**, **6g**, **h** $R^2 = cyclo$ -C₆H₁₁

Анализ продуктов реакции проводили с помощью спектроскопии ЯМР ¹Н упаренных досуха реакционных масс. В этих спектрах обнаруживаются характерные сигналы протонов N-алкильных групп (0.83–3.49), групп CH₂ имидазолидинового цикла (4.44–4.48) и групп NH сульфамидного фрагмента (7.00–7.12 м. д.), по соотношению интенсивностей которых можно предположить, что продуктами реакции являются неизвестные ранее 1,3-диалкил-4-(алкиламиносульфонилимино)имидазолидин-2-оны **6а**– **h**. В области 3.9–4.0 м. д. были зафиксированы также сигналы протонов групп CH₂ гидантоинов **7а,b**, которые образуются в качестве побочных продуктов. Гидантоины **7а,b** не выделяли.

После выделения в индивидуальном состоянии структура соединений **6а–h** подтверждена совокупностью данных элементного анализа, ИК, $\text{ЯМР}^{-1}\text{H}$ и масс-спектров (табл. 1, 2).

Таблица 1

Соеди-	Брутто-	<u>Найдено, %</u> Вычислено, %				Т. пл., °С	Выход,
нение	формула	С	Н	Ν	S	,	%
6a	$\mathrm{C_8H_{16}N_4O_3S}$	<u>38.72</u> 38.70	<u>6.52</u> 6.49	<u>22.55</u> 22.56	<u>12.88</u> 12.91	64–66	37–39
6b	$C_{10}H_{20}N_4O_3S$	<u>43.45</u> 43.46	<u>7.31</u> 7.29	<u>20.31</u> 20.27	<u>11.55</u> 11.60	71–73	50-52
6c	$C_9H_{18}N_4O_3S$	<u>41.22</u> 41.21	<u>6.88</u> 6.92	<u>21.39</u> 21.36	<u>12.17</u> 12.22	72–74	43–45
6d	$C_{11}H_{22}N_4O_3S$	<u>45.52</u> 45.50	<u>7.67</u> 7.64	<u>19.26</u> 19.29	<u>10.99</u> 11.04	65–67	51–53
6e	$C_9H_{18}N_4O_3S$	<u>41.18</u> 41.21	<u>6.91</u> 6.92	<u>21.38</u> 21.36	<u>12.19</u> 12.22	89–91	29–31
6f	$C_{11}H_{22}N_4O_3S$	<u>45.53</u> 45.50	<u>7.64</u> 7.64	<u>19.27</u> 19.29	<u>11.01</u> 11.04	86–88	36–39
6g	$C_{11}H_{20}N_4O_3S$	<u>45.78</u> 45.82	<u>7.03</u> 6.99	<u>19.51</u> 19.43	<u>11.07</u> 11.12	117–119	33–35
6h	$C_{13}H_{24}N_4O_3S$	<u>49.38</u> 49.35	<u>7.67</u> 7.65	<u>17.69</u> 17.71	<u>10.10</u> 10.13	120–124	41–44

Характеристики соединений ба-h

Спектральные характеристики соединений 6а-h

Со- еди- нение	ИК спектр, v, см ⁻¹	Спектр ЯМР ¹ Н, б, м. д. (<i>J</i> , Гц)	Масс-спектр, <i>m/z (I</i> , %)
6a	3284, 1736, 1618, 1320, 1260	0.85 (3H, т, <i>J</i> = 7.3, CH ₃), 1.45 (2H, м, CH ₂), 2.70 (3H, с, NCH ₃), 2.74 (3H, с, NCH ₃), 2.84 (2H, м, NCH ₂), 4.48 (2H, с, CH ₂), 6.97 (1H, уш. с, NH)	248 (5), 219 (48), 190 (100), 140 (35), 127 (36), 126 (32), 112 (29), 98 (10), 97 (13), 83 (41)
6b	3292, 1728, 1612, 1340, 1316, 1248	0.86 (3H, т, <i>J</i> = 7.5, CH ₃), 1.09 (6H, т, <i>J</i> = 7.0, 2CH ₃), 1.47 (2H, м, CH ₂), 2.85 (2H, м, NCH ₂), 3.33, 3.49 (оба 2H, м, NCH ₂), 4.48 (2H, с, CH ₂), 7.12 (1H, т, <i>J</i> = 6.5, NH)	276 (12), 247 (19), 218 (100), 154 (67), 153 (84), 140 (62), 127 (25), 112 (30), 109 (47), 97 (18), 83 (79)
6с	3266, 1754, 1622, 1344, 1316, 1252	0.83 (3H, т, <i>J</i> = 6.7, CH ₃), 1.27 (2H, м, CH ₂), 1.39 (2H, м, CH ₂), 2.84 (3H, с, NCH ₃), 2.90 (3H, с, NCH ₃), 4.44 (2H, с, CH ₂), 7.08 (1H, уш. с, NH)	
6d	3276, 1736, 1624, 1320, 1252	0.83 (3H, r, <i>J</i> = 7.3, CH ₃), 1.06 (6H, r, <i>J</i> = 7.0, 2CH ₃), 1.27 (2H, M, CH ₂), 1.40 (2H, M, CH ₂), 2.87 (2H, M, NCH ₂), 3.30 (2H, M, NCH ₂), 3.47 (2H, M, NCH ₂), 4.45 (2H, c, CH ₂), 7.06 (1H, r, <i>J</i> = 5.8, NH)	290 (5), 247 (23), 218 (100), 155 (48), 154 (74), 140 (15), 127 (17), 112 (15), 99 (7), 83 (46)
6e	3268, 1760, 1624, 1318, 1252	0.83 (3H, т, <i>J</i> = 7.3, CH ₃), 1.07 (3H, д, <i>J</i> = 6.1, CH ₃), 1.40 (2H, м, CH ₂), 2.85 (3H, с, NCH ₃), 2.90 (3H, с, NCH ₃), 3.16 (1H, м, NCH), 4.45 (2H, с, CH ₂), 7.00 (1H, д, <i>J</i> = 8.0, NH)	
6f	3252, 1760, 1620, 1344, 1304, 1252	0.82 (3H, т, <i>J</i> = 7.3, CH ₃), 1.06 (9H, м, 3CH ₃), 1.38 (2H, м, CH ₂), 3.17 (1H, м, NCH), 3.28 (2H, м, NCH ₂), 3.45 (2H, м, NCH ₂), 4.45 (2H, с, CH ₂), 7.01 (1H, д, <i>J</i> = 7.9, NH)	290 (2), 261 (64), 218 (100), 154 (18), 153 (52), 127 (13), 111 (16), 83 (44)
6g	3264, 1760, 1624, 1312, 1296	1.09–1.91 (10H, м, 5CH ₂), 2.88 (3H, с, NCH ₃), 2.93 (3H, с, NCH ₃), 3.10 (1H, м, CH), 4.47 (2H, с, CH ₂), 7.04 (1H, д, <i>J</i> = 7.3, NH)	288 (30), 245 (49), 190 (100), 127 (35), 126 (39), 112 (16), 98 (53), 97 (21), 83 (45)
6h	3244, 1760, 1624, 1344, 1316, 1296, 1252	1.04–1.86 (16H, м, 2CH ₃ + 5CH ₂), 3.05 (1H, м, CH), 3.31 (2H, м, NCH ₂), 3.46 (2H, м, NCH ₂), 4.46 (2H, с, CH ₂), 7.09 (1H, д, <i>J</i> = 7.9, NH)	316 (9), 273 (43), 235 (15), 218 (100), 154 (56), 153 (74), 140 (9), 127 (25), 112 (13), 111 (13), 98 (59), 83 (56)

В ИК спектрах соединений **6а-h** наблюдается широкая полоса поглощения сульфамидной связи NH при 3244–3292 см⁻¹, а также интенсивное поглощение связи С=О при 1728–1760 см⁻¹. Валентные колебания связи С=N проявляются полосами в области 1612–1624, связи S=O – при 1248–1344 см⁻¹ (табл. 2). Анализ масс-спектров сульфонилиминов **6**а,**b**,**d**,**f**–**h** показал общий характер фрагментации. В спектрах всех исследуемых соединений присутствуют пики молекулярных ионов, в которых положительный заряд локализован преимущественно на сульфамидных атомах азота.

Так, для масс-спектров всех соединений **6** характерно первичное алкиламинное расщепление радикала R^2 (ионы F_1 , схема 2), а также элиминирование фрагментов R^2NH с образованием ионов F_2 , пики которых максимальны в масс-спектрах всех исследованных соединений. Первичные каналы распада молекулярных ионов соединений **6** характеризуются также расщеплением второй связи N–S с элиминированием сульфамидного заместителя, причем процесс сопровождается частичным переносом водорода на иминный атом азота (ионы F_3 и F_4). Еще один необычный путь фрагментации молекулярных ионов имидазолидинов **6** связан с отщеплением целиком всего сульфодиамидного фрагмента (возможно из резонансной формы **B**) с образованием нечетноэлектронного иона F_5 . Первичные фрагментные ионы F_2 – F_5 соединений **6** с радикалами $R^1 = C_2H_5$ элиминируют молекулу этилена по схеме 1,5-сигматропного переноса атома водорода (перегруппировка Мак-Лафферти).

В процессе исследования обнаружена зависимость выходов соединений **6** от длины углеродной цепи заместителей у атомов азота ДГИ **4**: незамещенный ДГИ не реагирует с сульфамидами с образованием связи C=N, а при переходе от 1,3-диметил- (**6**a,c,e,g) к 1,3-диэтил-ДГИ (**6**b,d,f,h) выходы соответствующих продуктов **6** увеличиваются (см. табл. 1).

Таким образом, обнаруженное новое направление реакции N-алкил-ДГИ с гетероаналогами мочевин имеет достаточно общий характер. В условиях кислотного катализа получено несколько типов иминопроизводных имидазолидин-2-она 1–3, 6. Для однозначного доказательства строения полученных соединений в настоящей работе проведен рентгенодифракционный анализ (PCA) на примере 1,3-диметил-4-(фенилсульфонилимино)имидазолидин-2-она 2а, синтезированного по методике работы [9].

В кристалле **2a**, по данным PCA, имидазолидиновый цикл фактически плоский с максимальным отклонением атома C(2) на 0.088(7) Å (атомы N(1), N(3), C(4) и C(5) копланарны с точностью 0.007 Å) (рис. 1).

Анализ длин связей в цикле в кристалле **2a** показал, что атом N(3) вовлечен в сопряжение с двойной связью C(4)–N(6), тогда как неподеленная электронная пара атома N(1), напротив, сопрягается со связью C=O. Действительно, связь C(2)–N(1) существенно короче (1.345(2) Å) связи C(2)–N(3) (1.414(2) Å) и фактически не отличается от связи N(3)–C(4) (1.360(2) Å) (табл. 3). Наблюдаемые различия также приводят к вариации конфигурации атомов азота цикла. Так, атом N(3) характеризуется плоской конфигурацией, тогда как атом N(1) незначительно отклоняется от плоскости своих заместителей. Сумма валентных углов для атомов азота N(1) и N(3) равна 355.7(1) и 359.6(1)^o соответственно.

Таблица 2

Соеди-ИК спектр, v, см⁻¹ Спектр ЯМР¹Н, δ , м. д. (J, Γ ц) Масс-спектр, m/z (I, %) нение 248 (5), 219 (48), 190 (100), 140 (35), 127 3284, 1736, 1618, 0.85 (3H, T, J = 7.3, CH₃), 1.45 (2H, M, CH₂), 2.70 (3H, c, NCH₃), 2.74 (3H, c, 6a (36), 126 (32), 112 (29), 98 (10), 97 (13), NCH₃), 2.84 (2H, м, NCH₂), 4.48 (2H, с, CH₂), 6.97 (1H, уш. с, NH) 1320, 1260 83 (41) 276 (12), 247 (19), 218 (100), 154 (67), 3292, 1728, 1612, 0.86 (3H, T, J = 7.5, CH₃), 1.09 (6H, T, J = 7.0, 2CH₃), 1.47 (2H, M, CH₂), 2.85 (2H, 6b 153 (84), 140 (62), 127 (25), 112 (30), 109 1340, 1316, 1248 м, NCH₂), 3.33, 3.49 (оба 2Н, м, NCH₂), 4.48 (2Н, с, CH₂), 7.12 (1Н, т, *J* = 6.5, (47), 97 (18), 83 (79) NH) 3266, 1754, 1622. 0.83 (3H, т, J = 6.7, CH₃), 1.27 (2H, м, CH₂), 1.39 (2H, м, CH₂), 2.84 (3H, с, 6c 1344, 1316, 1252 NCH₃), 2.90 (3H, c, NCH₃), 4.44 (2H, c, CH₂), 7.08 (1H, ym. c, NH) 290 (5), 247 (23), 218 (100), 155 (48), 154 6d 3276, 1736, 1624, 0.83 (3H, т, J = 7.3, CH₃), 1.06 (6H, т, J = 7.0, 2CH₃), 1.27 (2H, м, CH₂), 1.40 (2H, (74), 140 (15), 127 (17), 112 (15), 99 (7), 1320, 1252 M, CH₂), 2.87 (2H, M, NCH₂), 3.30 (2H, M, NCH₂), 3.47 (2H, M, NCH₂), 4.45 (2H, c, 83 (46) CH_2), 7.06 (1H, T, J = 5.8, NH) 3268, 1760, 1624, 0.83 (3H, T, J = 7.3, CH₃), 1.07 (3H, J, J = 6.1, CH₃), 1.40 (2H, M, CH₂), 2.85 (3H, **6e** 1318, 1252 с, NCH₃), 2.90 (3H, с, NCH₃), 3.16 (1H, м, NCH), 4.45 (2H, с, CH₂), 7.00 (1H, д, J = 8.0, NH) 290 (2), 261 (64), 218 (100), 154 (18), 153 6f 3252, 1760, 1620, 0.82 (3H, т, J = 7.3, CH₃), 1.06 (9H, м, 3CH₃), 1.38 (2H, м, CH₂), 3.17 (1H, м, (52), 127 (13), 111 (16), 83 (44) 1344, 1304, 1252 NCH), 3.28 (2H, м, NCH₂), 3.45 (2H, м, NCH₂), 4.45 (2H, с, CH₂), 7.01 (1H, д, J = 7.9, NH) 288 (30), 245 (49), 190 (100), 127 (35), 3264, 1760, 1624, 6g 1.09–1.91 (10H, M, 5CH₂), 2.88 (3H, c, NCH₃), 2.93 (3H, c, NCH₃), 3.10 (1H, M, 126 (39), 112 (16), 98 (53), 97 (21), 83 (45) 1312, 1296 CH), 4.47 (2H, c, CH₂), 7.04 (1H, д, J = 7.3, NH) 316 (9), 273 (43), 235 (15), 218 (100), 154 3244, 1760, 1624, 6h 1.04–1.86 (16H, M, 2CH₃ + 5CH₂), 3.05 (1H, M, CH), 3.31 (2H, M, NCH₂), 3.46 (2H, (56), 153 (74), 140 (9), 127 (25), 112 (13), 1344, 1316, 1296, м, NCH₂), 4.46 (2H, c, CH₂), 7.09 (1H, д, *J* = 7.9, NH) 111 (13), 98 (59), 83 (56) 1252

Спектральные характеристики соединений ба-д

Рис. 1. Общий вид соединения 2а

Анализ межмолекулярных взаимодействий в кристалле **2a** показал, что атом O(2) сульфогруппы образует достаточно необычные взаимодействия с π -системой имидазолидинового цикла, а также контакт C–H...O (O(2)....H(5BA) 2.43 Å) с атомом водорода при атоме C(5). Указанные контакты объединяют молекулы в центросимметричные димеры (рис. 2)

Рис. 2. О... и С-Н...О связанный димер в кристалле 2а

Таблица З

Основные длины связей (d) в молекуле соединения 2a

Связь	d, Å	Связь	d, Å
S(1)–O(2)	1.4363(15)	C(4)–N(3)	1.3600(19)
S(1)–O(3)	1.4404(15)	C(4)–C(5)	1.506(2)
S(1)–N(6)	1.6408(14)	N(3)–C(2)	1.414(2)
O(1)–C(2)	1.2195(19)	N(1)–C(2)	1.345(2)
C(4)–N(6)	1.299(2)	N(1)–C(5)	1.457(2)

Таблица 4

Основные валентные углы (ω) в молекуле соединения 2а

Угол	ω, град.	Угол	ω, град.
O(2)–S(1)–O(3)	117.6(1)	C(4)-N(3)-C(14)	125.4(1)
O(2)–S(1)–N(6)	106.72(9)	C(2)–N(3)–C(14)	122.70(1)
O(3)–S(1)–N(6)	112.55(8)	C(2)–N(1)–C(13)	122.43(1)
O(2)–S(1)–C(7)	108.03(8)	C(2)-N(1)-C(5)	111.63(1)
O(3)–S(1)–C(7)	108.01(8)	C(13)–N(1)–C(5)	121.72(1)
N(6)-S(1)-C(7)	102.83(7)	O(1)-C(2)-N(1)	128.7(2)
N(6)-C(4)-N(3)	120.7(1)	O(1)-C(2)-N(3)	124.2(1)
N(6)–C(4)–C(5)	132.5(1)	N(1)-C(2)-N(3)	107.1(1)
N(3)–C(4)–C(5)	106.8(1)	C(4)–N(6)–S(1)	120.4(1)
C(4)–N(3)–C(2)	111.5(1)		

Наличие достаточно коротких межмолекулярных контактов O(2)...C (3.114(3)–3.153(3) Å) и O(2)...N (3.001(3)–3.252(3) Å), а также величина расстояния O(2)...центроид цикла (2.854 Å) с большой вероятностью указывают на наличие специфического взаимодействия O... π [11]. Однако (см., например, [12]) нельзя исключить, что указанное сокращение межмолекулярных контактов является вынужденным и образование димера обусловлено исключительно контактом C–H...O.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н зарегистрированы на спектрометре Bruker AM-300 (300 МГц) в ДМСО-d₆, внутренний стандарт ТМС. Масс-спектры получены на масс-спектрометре MS-30, ИК спектры – на спектрометре Specord M-82 (в таблетках KBr).

Рентгеноструктурное исследование соединения 2а. Кристаллы соединения 2а, выращенные из метанола, при 110 К триклинные: $a = 8.0462(10), b = 8.2895(10), c = 9.2004(11) Å, \alpha = 88.276(2), \beta = 84.394(2), \gamma = 85.481(2)^{\circ}, V = 608.67(13) Å^3, d_{выч} = 1.458 г \cdot сm^{-1}$, пространственная группа P $\bar{1}, Z = 2$. Интенсивности 6003 отражений измерены на автоматическом дифрактометре Smart 1000 CCD при 110 К (МоКа-излучение, графитовый монохроматор, ω -сканирование, $2\theta_{max} = 58^{\circ}$) и 3358 ($R_{int} = 0.0163$) наблюдаемых отражений использованы в дальнейших расчетах. Структура расшифрована прямым методом и уточнена полноматричным МНК в анизотропно-изотропном приближении по F^2 . Атомы

водорода локализованы в разностных синтезах электронной плотности и уточнены по модели *наездника*. Окончательные факторы расходимости: $wR_2 = 0.1057$, GOF = 1.037 по отражениям ($R_1 = 0.0466$ рассчитан по 2729 отражениям с $I > 2\sigma(I)$) по комплексу программ SHELXTL PLUS.

1,3-Диметил- [13] и 1,3-диэтил-ДГИ [9] и 1-алкилсульфамиды [14] синтезированы по описанным методикам.

1,3-Диалкил-4-(алкиламиносульфонилимино)имидазолидин-2-оны ба-h (общая методика). В 5 мл метанола растворяют по 5 ммоль соответствующих 1,3-диалкил-4,5-дигидроксиимидазолидин-2-она **4а,b** и 1-алкилсульфамида **5а-d**, добавляют 2 капли конц. НСl и кипятят в течение 30 мин. Выпавший после охлаждения реакционной массы осадок соединений **6е-h** отфильтровывают и перекристаллизовывают из смеси метанол-вода, 1 : 4. Для получения продуктов **6а-d** растворитель отгоняют на роторном испарителе, соединения **6а** ($R_f = 0.74$), **6b** ($R_f = 0.77$), **6c** ($R_f = 0.84$), **6d** ($R_f = 0.80$) выделяют с помощью колоночной хроматографии на SiO₂ (40 × 100), используя смесь ацетон–хлороформ, 1 : 3.

Работа выполнена при поддержке программы РАН ОХ-10.

СПИСОК ЛИТЕРАТУРЫ

- 1. W. J. Brouillette, V. P. Jestkov, M. L. Brown, M. S. Akhar, J. Med. Chem., 37, 3289 (1994).
- 2. М. Д. Машковский, Лекарственные средства, Новая волна, Москва, 2000.
- 3. R. F. Struck, M. C. Kirk, L. S. Suling, J. Med. Chem., 29, 1319 (1986).
- 4. C. J. Mappes, E. H. Pommer, C. Rentzea, B. Zeeh, US Pat. 4198423, *Chem. Abstr.*, **93**, 71784 (1980).
- 5. H. Ohta, T. Jikikara, Ko. Wakabayashi, T. Fujita, Pestic. Biochem. Physiol., 14, 15 (1980).
- 6. В. П. Черных, в кн. Кислород- и серусодержащие гетероциклы. Тр. Второй Международной конференции "Химия и биологическая активность кислород- и серусодержащих гетероциклов", 2003, т. 1, с. 451.
- 7. P. Ahuja, J. Singh, M. B. Asthana, V. Sardana, N. Anand, *Indian J. Chem.*, **28B**, 1034 (1989).
- 8. Н. Н. Мельников, К. В. Новожилов, С. Р. Белан, *Пестициды и регуляторы роста растений*, Химия, Москва, 1995.
- Г. А. Газиева, А. Н. Кравченко, О. В. Лебедев, Ю. А. Стреленко, К. Ю. Чегаев, Изв. АН, Сер. хим., 1604 (1998).
- 10. А. С. Сигачев, А. Н. Кравченко, К. А. Лысенко, П. А. Беляков, О. В. Лебедев, Н. Н. Махова, *Изв. АН, Сер. хим.*, 836 (2006).
- 11. E. A. Meyer, R. K. Castellano, F. Diederich, Angew. Chem. Int. Ed. Engl., 42, 1210 (2003).
- D. G. Golovanov, D. S. Perekalin, A. A. Yakovenko, M. Yu. Antipin, K. A. Lyssenko, Mendeleev Commun., 237 (2005).
- 13. S. Vail, R. Barker, P. Mennitt, J. Org. Chem., 30, 2179 (1965).
- 14. A. M. Paquin, Angew. Chem., 60A, 316 (1948).

Институт органической химии им. Н. Д. Зелинского РАН, Москва 119991 e-mail: gaz@server.ioc.ac.ru Поступило 19.10.2006

^аИнститут элементоорганических соединений им. А. Н. Несмеянова РАН, Москва 119991 e-mail: kostya@xrlab.ineos.ac.ru