И. В. Украинец, Н. Л. Березнякова, О. В. Горохова, А. В. Туров^а, С. В. Шишкина^б

4-ГИДРОКСИХИНОЛОНЫ-2

124.* СИНТЕЗ И СТРОЕНИЕ ЭТИЛОВОГО ЭФИРА 2-БРОММЕТИЛ-5-ОКСО-1,2,6,7,8,9-ГЕКСАГИДРО-5H-ОКСАЗОЛО[3,2-*a*]ХИНОЛИН-4-КАРБОНОВОЙ КИСЛОТЫ

Гидрирование бензольной части молекулы N-аллилзамещенных 4-гидроксихинолин-2-онов не влияет на характер их бромирования молекулярным бромом и приводит к 2-бромметил-5-оксо-1,2,6,7,8,9-гексагидро-5H-оксазоло[3,2-*a*]хинолинам.

Ключевые слова: оксазоло[3,2-а]хинолины, бромирование, гетероциклизация, РСА.

Синтез производных 5-оксо-1,2-дигидро-5Н-тиазоло[3,2-*a*]хинолин-4-карбоновых кислот **1**, используемых для лечения бактериальных и грибковых инфекций, возможен по двум принципиально различным схемам [2]. В обоих случаях исходными соединениями служат ариламиномеркаптометиленмалонаты, получаемые реакцией арилизотиоцианатов с малоновым эфиром. Далее первый метод предполагает защиту меркаптогруппы, замыкание хинолонового ядра, удаление защитной группировки, после чего к образовавшимся 2-меркаптохинолинонам с помощью этилендибромидов достраивается тиазолиновый фрагмент. И наоборот, во втором варианте первым формируется тиазолиновый цикл и только затем уже 3-арил-1,3-тиазолидин-2-илиденмалонаты конденсируются в тиазоло[3,2-*a*]хинолоны в ПФК.

К сожалению, ни один из этих методов не позволяет получать карбо-, аза- или оксабиоизостеры тиазоло[3,2-*a*]хинолонов **1**, в которых атом серы был бы заменен, соответственно, атомом углерода, азота или кислорода. Между тем, для установления закономерностей связи структура–активность – основы целенаправленного поиска новых биологически активных веществ, изучение таких соединений представляет несомненный теоретический интерес. Поэтому не удивительно, что вскоре данный пробел был устранен и вначале пирроло- [3], а затем имидазоло- и оксазоло[3,2-*a*]хинолин(или родственные им 1,8-нафтиридин)-4-карбоновые кислоты [4]

были синтезированы из этиловых эфиров 3-оксо-3-(2-хлорарил)пропионо-1180

^{*} Сообщение 123 см. [1].

вых кислот. Новая схема сборки азоло[3,2-*a*]хинолиновых систем оказалась в достаточной степени универсальной, так как позволяла синтезировать также и тиоаналоги. Тем не менее, в отношении оксазоло[3,2-*a*]хинолинов ее нельзя считать эффективной, поскольку на ключевой стадии замыкания хинолонового цикла выход составлял всего лишь 35%.

Недавно нами был предложен совершенно иной путь синтеза оксазоло-[3,2-*a*]хинолин-4-карбоновых кислот, заключающийся в обработке N-аллилзамещенных 4-гидрокси-2-оксо-1,2-дигидрохинолинов молекулярным бромом [5]. Существенным преимуществом этого способа является доступность используемых реагентов, необычайная простота выполнения эксперимента при высоких выходах конечных продуктов. С целью определения синтетического потенциала этой интересной реакции в данном сообщении в круг объектов исследования нами вовлечены гидрированные в бензольной части молекулы 4-гидрокси-2-оксохинолины. В их синтезе использована неоднократно показавшая хорошие результаты схема [6, 7]:

Строение молекулы эфира 6 с нумерацией атомов

этилциклогексанон-2-карбоксилат (2) \rightarrow енамин 3 \rightarrow амид 4 \rightarrow этиловый эфир 1-аллил-4-гидрокси-2-оксо-1,2,5,6,7,8-гексагидрохинолин-3-карбоновой кислоты (5). Как оказалось, реакция эфира 5 с молекулярным бромом в принципе ничем не отличается от бромирования негидрированного аналога [5], проходит так же легко и быстро и приводит к этиловому эфиру 2-бромметил-5-оксо-1,2,6,7,8,9-гексагидро-5H-оксазоло[3,2-*a*]хинолин-4-карбоновой кислоты (6).

По данным РСА (рисунок, табл. 1, 2), пиридоновый цикл и атомы $C_{(2)}$, $C_{(5)}$, $C_{(11)}$, $O_{(1)}$, $O_{(2)}$ полученного соединения лежат в одной плоскости с точностью 0.01 Å. Как и в схожих по строению оксазоло[3,2-*a*]пиридин-6-оне [8],

2-метилен- или 2-бромметил-5-оксо-1,2-дигидро-5H-оксазоло[3,2-*a*]хино-1182 лин-4-карбоксилатах [5], в молекуле эфира **6** наблюдается удлинение связей $O_{(2)}-C_{(7)}$ 1.260(5) и $C_{(8)}-C_{(9)}$ 1.377(6) Å по сравнению с их средними значениями [9] 1.210 и 1.326 Å, соответственно, а также укорочение связей $C_{(9)}-O_{(1)}$ 1.331(5) (среднее значение 1.354) и $N_{(1)}-C_{(9)}$ 1.340(6) Å (1.355 Å), которое можно объяснить конъюгационными взаимодействиями между π -донорным фрагментом $N_{(1)}-C_{(9)}-O_{(1)}$ и π -акцепторной карбонильной группой $C_{(7)}-O_{(2)}$.

Молекула эфира 6 разупорядочена по двум конформерам A и B с заселенностью 66 и 34%, соответственно, которые различаются пространственным строением гидрохинолинового и оксазольного фрагментов молекулы. Тетрагидроцикл в обоих конформерах находится в конформации *полукресло* (параметры складчатости [10]: S = 0.79, $\theta = 34.4^\circ$, $\Psi = 29.9^\circ$ для A и S = 0.88, $\theta = 35.2^\circ$, $\Psi = 24.9^\circ$ для B). Отклонения атомов C₍₃₎ и C₍₄₎ от среднеквадратичной плоскости остальных атомов цикла составляют 0.39 и –0.37 Å в A и –0.52 и 0.35 Å в B. Оксазольное ядро разупорядочено по двум конформациям *конверт*. Атом C₍₁₀₎ отклоняется от среднеквадратичной плоскости остальных атомов цикла в конформера A на –0.26 Å, а

Таблица 1

Связь	l, Å	Связь	l, Å
Br ₍₁₎ -C _(12A)	1.92(1)	Br ₍₁₎ C _(12B)	1.93(1)
N ₍₁₎ -C ₍₉₎	1.340(6)	N ₍₁₎ -C ₍₁₎	1.379(6)
N ₍₁₎ –C ₍₁₁₎	1.464(5)	O ₍₁₎ -C ₍₉₎	1.331(5)
O ₍₁₎ -C _(10B)	1.474(9)	O ₍₁₎ -C _(10A)	1.481(7)
O ₍₂₎ –C ₍₇₎	1.260(5)	O ₍₃₎ -C ₍₁₃₎	1.207(6)
O ₍₄₎ –C ₍₁₃₎	1.324(6)	O ₍₄₎ -C ₍₁₄₎	1.464(7)
C ₍₁₎ -C ₍₆₎	1.351(6)	C ₍₁₎ -C ₍₂₎	1.500(6)
C ₍₂₎ -C _(3B)	1.532(9)	C ₍₂₎ -C _(3A)	1.542(8)
C(3A)-C(4A)	1.526(8)	C _(4A) -C ₍₅₎	1.532(8)
C _(10A) -C _(12A)	1.521(9)	C _(10A) -C ₍₁₁₎	1.529(8)
C _(3B) -C _(4B)	1.53(1)	C _(4B) -C ₍₅₎	1.53(1)
$C_{(10B)} - C_{(11)}$	1.538(9)	C _(10B) -C _(12B)	1.540(9)
C ₍₅₎ -C ₍₆₎	1.492(7)	C ₍₆₎ -C ₍₇₎	1.470(6)
C ₍₇₎ –C ₍₈₎	1.426(7)	C ₍₈₎ -C ₍₉₎	1.377(6)
C ₍₈₎ –C ₍₁₃₎	1.484(6)	$C_{(14)} - C_{(15)}$	1.38(1)

Длины связей (*l*) в структуре эфира 6

Таблица 2

Угол	ω, град.	Угол	ω, град.
C ₍₉₎ -N ₍₁₎ -C ₍₁₎	122.3(3)	$C_{(9)} - N_{(1)} - C_{(11)}$	110.8(4)
$C_{(1)} - N_{(1)} - C_{(11)}$	126.8(4)	C ₍₉₎ -O ₍₁₎ -C _(10B)	106.8(4)
C ₍₉₎ -O ₍₁₎ -C _(10A)	109.1(4)	$C_{(13)} - O_{(4)} - C_{(14)}$	118.9(5)
$C_{(6)} - C_{(1)} - N_{(1)}$	119.7(4)	$C_{(6)} - C_{(1)} - C_{(2)}$	124.3(4)
N ₍₁₎ -C ₍₁₎ -C ₍₂₎	116.0(4)	$C_{(1)}$ - $C_{(2)}$ - $C_{(3B)}$	109.7(9)
$C_{(1)} - C_{(2)} - C_{(3A)}$	112.2(5)	$C_{(4A)} - C_{(3A)} - C_{(2)}$	109.0(7)
$C_{(3A)} - C_{(4A)} - C_{(5)}$	110.6(7)	$O_{(1)} - C_{(10A)} - C_{(12A)}$	105.6(6)
$O_{(1)} - C_{(10A)} - C_{(11)}$	103.1(5)	$C_{(12A)}$ - $C_{(10A)}$ - $C_{(11)}$	110.0(7)
C _(10A) -C _(12A) -Br ₍₁₎	112.5(7)	$C_{(4B)}$ - $C_{(3B)}$ - $C_{(2)}$	106(2)
$C_{(3B)}$ - $C_{(4B)}$ - $C_{(5)}$	109(1)	$O_{(1)} - C_{(10B)} - C_{(11)}$	103.0(6)
O ₍₁₎ -C _(10B) -C _(12B)	104.1(9)	$C_{(11)}$ - $C_{(10B)}$ - $C_{(12B)}$	112.6(9)
C _(10B) -C _(12B) -Br ₍₁₎	109.0(8)	$C_{(6)}$ - $C_{(5)}$ - $C_{(4B)}$	111(1)
$C_{(6)} - C_{(5)} - C_{(4A)}$	113.3(5)	$C_{(1)} - C_{(6)} - C_{(7)}$	119.9(4)
$C_{(1)} - C_{(6)} - C_{(5)}$	121.2(4)	$C_{(7)} - C_{(6)} - C_{(5)}$	118.9(4)
$O_{(2)} - C_{(7)} - C_{(8)}$	122.9(4)	$O_{(2)} - C_{(7)} - C_{(6)}$	119.4(4)
$C_{(8)} - C_{(7)} - C_{(6)}$	117.7(4)	$C_{(9)} - C_{(8)} - C_{(7)}$	118.3(4)
$C_{(9)} - C_{(8)} - C_{(13)}$	120.4(4)	$C_{(7)} - C_{(8)} - C_{(13)}$	121.3(4)
O ₍₁₎ -C ₍₉₎ -N ₍₁₎	111.8(3)	O ₍₁₎ -C ₍₉₎ -C ₍₈₎	126.2(4)
N ₍₁₎ -C ₍₉₎ -C ₍₈₎	122.0(4)	N ₍₁₎ -C ₍₁₁₎ -C _(10A)	102.4(4)
N ₍₁₎ -C ₍₁₁₎ -C _(10B)	99.6(5)	O ₍₃₎ -C ₍₁₃₎ -O ₍₄₎	124.0(5)
O ₍₃₎ –C ₍₁₃₎ –C ₍₈₎	123.4(5)	O ₍₄₎ -C ₍₁₃₎ -C ₍₈₎	112.6(4)
$C_{(15)} - C_{(14)} - O_{(4)}$	112.3(6)		

Валентные углы (ω) в структуре амида 6

в конформере **B** – на 0.44 Å. Бромметильная группа в обоих конформерах имеет псевдоэкваториальную ориентацию (торсионный угол $C_{(9)}$ – $O_{(1)}$ – $C_{(10)}$ – $C_{(12)}$ –132.2(7) в **A** и 144.7(8)° в **B**). Атом брома не разупорядочен и находится в +*sc*- и – *sc*-конформации относительно связи $O_{(1)}$ – $C_{(10)}$ (торсионный угол $O_{(1)}$ – $C_{(10)}$ – $C_{(12)}$ –Br₍₁₎–73.6(8) в **A** и 80(1)° в **B**). В молекуле эфира **6** обнаружены укороченные внутримолекулярные контакты между атомами пятичленного гетероцикла и циклогексенового кольца: H_(2a)...C₍₁₁₎ 2.65 Å (сумма ван-дер-ваальсовых радиусов 2.87 Å [11]), H_(2d)...C₍₁₁₎ 2.59 Å (2.87 Å).

Сложноэфирный заместитель некопланарен плоскости пиридонового 1184

цикла (торсионный угол $C_{(9)}$ — $C_{(13)}$ — $O_{(3)}$ 136.1(5)°). Этильная группа находится в *ар*-конформации относительно связи $C_{(8)}$ — $C_{(13)}$, а связь $C_{(14)}$ — $C_{(15)}$ прак-тически перпендикулярна связи $C_{(13)}$ — $O_{(4)}$ (торсионные углы $C_{(8)}$ — $C_{(13)}$ — $O_{(4)}$ — $C_{(14)}$ 172.6(5), $C_{(13)}$ — $O_{(4)}$ — $C_{(15)}$ —97.7(8)°). При этом возникает укороченный контакт $H_{(14a)}$... $O_{(3)}$ 2.37 Å (2.46 Å).

В кристалле эфира **6** между молекулами обнаружены укороченные межмолекулярные контакты $H_{(12a)}...O_{(2)'}$ (-*x*, -0.5+*y*, 1.5-*z*) 2.40 (2.46), $H_{(12d)}...O_{(2)'}$ (-*x*, -0.5+*y*, 1.5-*z*) 2.25 (2.46) и $Br_{(1)}...H_{(3bb)'}$ (1+*x*, *y*, *z*) 3.03 Å (3.23 Å).

Несомненный интерес эфир 6 представляет и для спектроскопии ЯМР. Очевидно, что однозначное решение такой структуры без применения специальных приемов ЯМР невозможно, поэтому нами предпринято исследование строения этого соединения методом гетероядерной $^{13}C^{-1}H$ спектроскопии. С одной стороны, это позволило сделать надежные отнесения сигналов в углеродном спектре, а с другой – подтвердить устойчивость структуры изучаемого вещества при его растворении. Для отнесения протонированных атомов углерода послужили спектры HMQC, позволяющие выявить спин-спиновые взаимодействия $^{13}C^{-1}H$ через одну связь. Для интерпретации сигналов четвертичных атомов углерода использована методика HMBC, позволяющая выявить спин-спиновые взаимодействия $^{13}C^{-1}H$ через 2–3 химических связи. Важнейшие корреляции HMBC и сделанные на их основе отнесения сигналов в углеродном спектре эфира 6 приведены на схеме.

Прежде всего, обращают на себя внимание многочисленные корре-

ляции сигналов протонов циклогексенового цикла с близлежащими атомами углерода. Это дает возможность надежно отнести сигналы всех алифатических атомов углерода, несмотря на их близкое расположение в спектре. Кроме того, корреляция между сигналом протонов группы 6-CH₂ и сигналом атома углерода при 175.59 м. д. позволяет отнести последний сигнал к карбонильному атому $C_{(5)}$. Аналогично, корреляция сигнала про-тонов 9-CH₂ с химическим сдвигом 2.51 м. д. с сигналом атома углерода при 140.76 м. д. позволяет отнести его к узловому атому $C_{(9a)}$. Еще один узловой атом $C_{(5a)}$ также относится на основании корреляции с протонным сигналом группы 6-CH₂.

Наличие оксазолидинового цикла подтверждается корреляциями сигналов протонов 1-CH₂ и H-2 с атомом C_(3a), поглощающим при 158.36 м. д. Единственным сигналом атома углерода, для которого не найдены корреляции с протонными сигналами, является пик при 97.91 м. д. Методом исключения мы отнесли его к атому C₍₄₎. Следует отметить, что для данного атома углерода характерен химический сдвиг в более сильном поле, чем у других олефиновых атомов углерода. Это связано с локализацией на нем отрицательного заряда из-за эффекта сопряжения двух близлежащих карбонильных групп. Полный список найденных корреляций приведен в табл. 3.

Таблица З

δ, м. д.	HMQC	HMBC
5.32	79.76	158.36
4.42	49.45	34.75; 158.36; 79.76
4.11	60.40	164.60; 14.86
4.02	49.45	34.75; 79.76; 158.36
3.90	34.75	79.76; 49.45
3.85	34.75	79.76; 49.45
2.51	25.51	140.76; 121.99; 21.78
2.20	22.50	140.76; 121.99; 21.97; 175.59
1.68	21.97	140.76; 21.97
1.56	21.78	121.99; 21.97; 25.51
5.32	14.86	60.40

Полный перечень гетероядерных корреляций, найденных для эфира 6

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектр ЯМР ¹Н эфира **5** записан на приборе Varian Mercury-VX-200 (200 МГц). Спектры ЯМР ¹Н и ¹³С оксазолохинолина **6**, эксперименты по гетероядерной корреляции НМQС и НМВС зарегистрированы на спектрометре Varian Mercury-400 (400 и 100 МГц соответственно). Все двумерные эксперименты проводились с градиентной

селекцией полезных сигналов. Время смешивания в импульсных последовательностях, соответствовало, ${}^{1}J_{\rm CH} = 140$ и ${}^{2.3}J_{\rm CH} = 8$ Гц. Количество инкрементов в спектрах HMQC составило 128, а в спектрах HMBC – 400. Во всех случаях растворитель ДМСО-d₆, внутренний стандарт ТМС. В работе использованы коммерческие этиловый эфир циклогексанон-2-карбоновой кислоты и аллиламин фирмы Fluka.

Этиловый эфир 1-аллил-4-гидрокси-2-оксо-1,2,5,6,7,8-гексагидрохинолин-3-карбоновой кислоты (5). Смешивают 13.8 мл (0.1 моль) этилового эфира циклогексанон-2-карбоновой кислоты (2) и 11.3 мл (0.15 моль) аллиламина. Реакционная смесь при этом заметно разогревается и начинает мутнеть от выделяющейся воды. Перемешивание продолжают 5 ч при 45 °C, добавляют 30 мл гексана, переносят в делительную воронку и оставляют при комнатной температуре на 8-10 ч. Водный слой отделяют, гексан с избытком аллиламина удаляют в вакууме. Остаток (технический енамин 3) растворяют в 100 мл CH₂Cl₂, прибавляют 15.4 мл (0.11 моль) триэтиламина, а затем при охлаждении и перемешивании по каплям 16.6 г (0.11 моль) этоксималонилхлорида и оставляют при комнатной температуре на 4-5 ч, разбавляют водой, органический слой отделяют, сушат безводным CaCl₂. Растворитель отгоняют (в конце в вакууме). К остатку (диэфир 4) прибавляют раствор этилата натрия (из 3.45 г (0.15 моль) металлического натрия и 100 мл абсолютного этилового спирта), кипятят 30 мин на водяной бане, после чего нагревание прекращают и оставляют на 7-8 ч при комнатной температуре. Разбавляют реакционную смесь водой и подкисляют разбавленной (1:1) HCl до pH 4.5-5. Выделившийся осадок эфира 5 отфильтровывают, промывают холодной водой, сушат. Выход 21.6 г (78%). Т. пл. 107-109 °С (из эфира). Спектр ЯМР ¹Н, б, м. д. (J, Гц): 13.43 (1Н, с, ОН); 5.85 (1Н, м, С<u>H</u>=CH₂); 5.08 (1H, д. д, J = 10.0 и J = 1.5, NCH₂CH=C<u>H</u>-cis); 4.90 (1H, д. д, J = 17.0 и J = 1.5, NCH₂CH=C<u>H</u>-trans); 4.56 (2H, д, J = 4.5, NCH₂); 4.28 (2H, к, J = 7.2, OCH₂); 2.65 (2Н, м, 8-СН₂); 2.37 (2Н, м, 5-СН₂); 1.64 (4Н, м, 6,7-СН₂); 1.27 (3Н, т, J = 7.1, СН₃). Найдено, %: С 64.85; Н 6.77; N 5.01. С₁₅Н₁₉NO₄. Вычислено, %: С 64.97; Н 6.91; N 5.05.

Этиловый эфир 2-бромметил-5-оксо-1,2,6,7,8,9-гексагидро-5H-оксазоло[3,2-*a*]хинолин-4-карбоновой кислоты (6). К раствору 2.77 г (0.01 моль) соединения 5 в 15 мл уксусной кислоты при интенсивном перемешивании прибавляют 0.52 мл (0.01 моль) брома. Разбавляют реакционную смесь водой. Выпавший осадок отфильтровывают, промывают холодной водой, сушат. Выход 3.20 г (90%). Т. пл. 241–243 °C (из этанола). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 5.32 (1H, м, С<u>H</u>CH₂–Br); 4.42 (1H, т, *J* = 9.4, NCH); 4.11 (2H, к, *J* = 7.1, COOCH₂); 4.02 (1H, д. д, *J* = 10.3 и *J* = 6.7, NCH); 3.92 (1H, д. д, *J* = 11.2 и *J* = 4.4, CH–Br); 3.84 (1H, д. д, *J* = 11.2 и *J* = 4.9, CH–Br); 2.51 (2H, м, 6-CH₂); 2.20 (2H, м, 9-CH₂); 1.68 (2H, м, 7-CH₂); 1.56 (2H, м, 8-CH₂); 1.19 (3H, т, *J* = 7.5, COOCH₂C<u>H₃</u>). Спектр ЯМР ¹³С, δ , м. д.: 175.59 (C₍₅₎); 164.60 (COO); 158.36 (C_{(3a})); 140.76 (C_{(9a})); 121.99 (C_{(5a})); 97.91 (C₍₄₎); 79.76 (C₍₂₎); 60.40 (OCH₂); 49.45 (C₍₁₎); 34.75 (CH₂Br); 25.51 (C₍₆₎); 22.50 (C₍₉)); 21.97 (C₍₇₎); 21.78 (C₍₈₎); 14.86 (CH₃). Найдено, %: C 50.67; H 5.20; N 3.85. C₁₅H₁₈BrNO₄. Вычислено, %: C 50.58; H 5.09; N 3.93.

Рентгеноструктурное исследование. Кристаллы эфира **6** моноклинные (из этанола), при 20 °C: a = 11.553(1), b = 16.443(1), c = 8.185(1) Å, $\beta = 101.30(1)^{\circ}$, V = 1524.7(3) Å³, $M_r = 356.21$, Z = 4, пространственная группа $P2_1/c$, $d_{\rm выч} = 1.552$ г/см³, μ (Мо $K\alpha$) = 2.711 мм⁻¹, F(000) = 728. Параметры элементарной ячейки и интенсивности 12058 отражений (2685 независимых, $R_{\rm int} = 0.070$) измерены на дифрактометре Xcalibur-3 (Мо $K\alpha$ -излучение, CCD-детектор, графитовый монохроматор, ω -сканирование, $2\theta_{\rm max} = 50^{\circ}$). Поглощение учтено аналитически ($T_{\rm min} = 0.452$, $T_{\rm max} = 0.806$).

Структура расшифрована прямым методом по комплексу программ SHELXTL [12]. При уточнении структуры налагались ограничения на длины связей в разупорядоченном фрагменте О–С_{*sp*3} 1.44 и С_{*sp*3}–С_{*sp*3} 1.54 Å. Положения атомов водорода выявлены из разностного синтеза электронной плотности, а для разупорядоченных фрагментов рассчитаны геометрически и уточнены по модели "наездника" с $U_{iso} = nU_{eq}$ неводородного атома, связанного с данным атомов водорода (n = 1.5 для метильной группы и n = 1.2 для

остальных атомов водорода). Структура уточнена по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов до $wR_2 = 0.168$ по 2633 отражениям 1187

 $(R_1 = 0.069$ по 1855 отражениям с *F*>4 σ (*F*), *S* = 1.118). Полная кристаллографическая информация депонирована в Кембриджском банке структурных данных – депонент № ССDС 604005.

СПИСОК ЛИТЕРАТУРЫ

- 1. И. В. Украинец, Е. В. Моспанова, Л. В. Сидоренко, ХГС, 1034 (2007).
- Shingo Matsumura, Masahiro Kise, Masakuni Ozaki, Shinichi Tada, Kenji Kazuno, Hisao Watanabe, Katsutoshi Kunimoto, Masami Tsuda, US Pat. 4426381 (1984). http://ep.espacenet.com.
- 3. D. T. W. Chu, A. K. Claiborne, J. Heterocycl. Chem., 24, 1537 (1987).
- 4. Hirosato Kondo, Masahiro Taguchi, Yoshimasa Inoue, Fumio Sakamoto, Goro Tsukamoto, *J. Med. Chem.*, **33**, 2012 (1990).
- 5. И. В. Украинец, Л. В. Сидоренко, О. В. Горохова, С. В. Шишкина, А. В. Туров, *XГС*, 736 (2007).
- И. В. Украинец, Е. В. Колесник, Л. В. Сидоренко, О. В. Горохова, А. В. Туров, XTC, 874 (2006). [Chem. Heterocycl. Comp., 42, 765 (2006)].
- 7. І. В. Українець, Л. В. Сидоренко, О. В. Горохова, В. Б. Рибаков, В. В. Чернишев, О. В. Колесник, *Вісник фармації*, № 2 (38), 7 (2004).
- 8. W. L. B. Hutcheon, M. N. G. James, Acta Crystallogr., B33, 2228 (1977).
- 9. H.-B. Burgi, J. D. Dunitz, Structure Correlation, VCH, Weinheim, 1994, vol. 2, p. 741.
- 10. N. S. Zefirov, V. A. Palyulin, E. E. Dashevskaya, J. Phys. Org. Chem., 3, 147 (1990).
- 11. Ю. В. Зефиров, Кристаллография, 42, 936 (1997).
- G. M. Sheldrick, SHELXTL PLUS. PC Version. A System of Computer Programs for the Determination of Crystal Structure from X-ray Diffraction Data. Rev. 5.1 (1998).

Национальный фармацевтический университет, Харьков 61002, Украина e-mail: uiv@kharkov.ua

^аКиевский национальный университет им. Тараса Шевченко, Киев 01033, Украина e-mail: nmrlab@univ.kiev.ua

⁶НТК "Институт монокристаллов" НАН Украины, Харьков 61001 e-mail: sveta@xray.isc.kharkov.com Поступило 27.03.2006