Н. Н. Полыгалова, А. Г. Михайловский, В. В. Удодов, А. И. Михалев, М. И. Вахрин

СИНТЕЗ ПРОИЗВОДНЫХ 3,3-ДИАЛКИЛ-1-(3-ПИРИДИЛ)-3,4-ДИГИДРОИЗОХИНОЛИНА

Показано, что реакция диалкилбензилкарбинолов с 3-циано-2-пиридонами и 2-хлор-3-цианопиридинами приводит к соответствующим производным 3,3-диалкил-1-(3-пиридил)-3,4-дигидроизохинолина.

Ключевые слова: диалкилбензилкарбинолы, 3,3-диалкил-1-(3-пиридил)-3,4-дигидроизохинолины, 2-хлор-3-цианопиридины, 3-циано-2-пиридоны, циклоконденсация Риттера.

Реакция циклоконденсации нитрилов с диалкилбензилкарбинолами по Риттеру с образованием производных 3,4-дигидроизохинолина хорошо известна [1–4]. Показаны возможности синтеза этим способом производных изохинолина, содержащих в положении 1 гетероциклические фрагменты [5, 6].

Целью данной работы является получение производных 3,4-дигидроизохинолина, содержащих в положении 1 остаток 2-пиридона или 2-хлорпиридина. Сочетание в одной молекуле двух гетероциклических систем - изохинолина и пиридина - открывает новые возможности в области химических и фармакологичеких исследований. Поставленная цель осуществляется с помощью реакции карбинолов общей формулы 1а-d с 3-циано-2-пиридонами в присутствии концентрированной серной кислоты с образованием производных 3,3-диалкил-1-(2-пиридон-3-ил)-3,4дигидроизохинолина 2a-f. Реакция тех же карбинолов с 2-хлор-3-цианопиридинами при 20 °C протекает с сохранением остатка галогена и образованием соединений За-с. Использование в качестве карбинольной составляющей 2-метил-3-(1-нафтил)-2-пропанола приводит к соответствующему производному бензо[/]изохинолина 4. Азометиновая группа в изохинолиновом цикле легко восстанавливается LiAlH₄, например, при гидрировании азометина 2b образуется соединение 5. Основания синтезированных соединений (табл. 1) представляют собой бесцветные кристаллические вещества.

Спектры ЯМР ¹Н синтезированных соединений (табл. 2) содержат сигналы протонов заместителей $R^{1}-R^{4}$, группы 4-CH₂ дигидроизохинолинового ядра и ароматических протонов изохинолинового и пиридинового циклов. Протоны двух метильных групп в положении 3 изохинолинового цикла магнитно-неэквивалентны и проявляются в виде двух синглетов, каждый из которых соответствует одной метильной группе. Это отличает их от ранее полученных производных 3,4-дигидроизохинолина, в спектрах которых шесть протонов этих двух групп проявляются

1a-d, **2a-e**, **3a-c** R = H, **2f** R = MeO; **2a-c**,**f**, **3a**,**b** $R^1 = Me$, **2d** $R^1+R^1=(CH_2)_4$, **2e**, **3c** $R^1+R^1=(CH_2)_5$; **2a**, **3a** $R^2 = H$, **2b-f**, **3b**,**c** $R^2 = Me$; **2a**,**b**,**d**-f, **3b**,**c** $R^3 = Me$, **2c** $R^3 = OH$, **3a** $R^3 = H$

одним синглетом [1-6]. Как видно из табл. 1 и 2, неэквивалентность метильных групп изохинолина возможна в случае наличия в пиридиновом цикле заместителя в орто-положении, что увеличивает энергетический барьер вращения вокруг простой связи между пиридиновым и изохинолиновым циклами. При этом имеет место диастереотопное расщепление протонов группы 4-CH₂, проявляющееся в виде дублета ($^{2}J = 15.4-15.9$ Гц). В спектрах остальных веществ соответствующее расщепление проявляется в меньшей степени: для соединения 4 и хлорпиридина 3b видна лишь неэквивалентность групп 3-CH₃, в спектрах производных 3-спироциклогексилизохинолина (соединения 2е, 3с) расщепления сигналов протонов группы 4-CH₂ также не наблюдается, что может быть следствием устойчивости конфигурации, стабилизированной отталкиванием большого по объему циклогексильного заместителя. В спектрах соединений 2а и 3а, не содержащих заместителей в положении 4 пиридинового цикла, названного расщепления не наблюдается и сигналы соответствующих метильной и метиленовой групп проявляются в виде синглетов.

В спектре тетрагидроизохинолина 5 также имеет место расщепление 1209

сигналов протонов группы 4-CH₂ (д, ${}^{2}J = 11$ Гц). В спектре основания этого соединения содержатся также уширенный синглет протона группы 1-CHN (δ 5.1) и синглет протона группы NH изохинолинового цикла (δ 6.7 м. д.).

В ИК спектрах оснований пиридонов **2а–f**, **4** наиболее интенсивной является полоса валентных колебаний карбонильной группы фрагмента пиридона в области 1690–1700 см⁻¹. Спектры содержат также полосы поглощения групп NH пиридона (3320–3340) и группы C=N (1620), в спектре соединения **2с** имеется полоса в области 3500 см⁻¹ (OH). Спектр тетрагидроизохинолина **5** содержит полосы валентных колебаний групп C=O и NH пиридона (1690 и 3320), а также группы NH изохинолинового цикла (3380 см⁻¹).

Таблица 1

Соеди-	Брутто- формула	<u>Найдено, % *</u> Вычислено, %			т пл °С	Выход,	
нение		С	Н	Ν	1. ibi., C	%	
2a	$C_{17}H_{18}N_2O$	<u>76.6</u> 76.7	<u>6.7</u> 6.8	$\frac{10.6}{10.5}$	233–235	72	
2b	$C_{18}H_{20}N_2O$	<u>77.0</u> 77.1	<u>7.1</u> 7.2	<u>10.1</u> 10.0	199–200	74	
2c	$C_{17}H_{18}N_2O_2$	<u>72.2</u> 72.3	<u>6.3</u> 6.4	<u>10.0</u> 9.9	208–210	68	
2d	$C_{20}H_{22}N_2O$	<u>78.3</u> 78.4	<u>7.1</u> 7.2	<u>9.2</u> 9.1	118–120	57	
2e	$C_{21}H_{24}N_2O$	<u>78.6</u> 78.7	<u>7.5</u> 7.6	<u>8.8</u> 8.7	228–230	56	
2f	$C_{20}H_{24}N_2O_3$	<u>70.4</u> 70.6	<u>7.0</u> 7.1	<u>8.2</u> 8.2	230–232	71	
3a	$C_{16}H_{15}ClN_2$	<u>70.8</u> 71.0	<u>5.5</u> 5.6	<u>10.5</u> 10.4	146–148	67	
3b	$C_{18}H_{19}ClN_2$	<u>72.3</u> 72.4	<u>6.3</u> 6.4	<u>9.5</u> 9.4	86–88	58	
3c	$C_{21}H_{23}ClN_2$	<u>74.3</u> 74.4	<u>6.7</u> 6.8	<u>8.4</u> 8.3	68–70	56	
4	$C_{22}H_{22}N_2O$	<u>79.8</u> 80.0	<u>6.6</u> 6.7	<u>8.6</u> 8.5	158–160	73	
5	$C_{18}H_{22}N_2O$	<u>76.5</u> 76.6	<u>7.8</u> 7.9	<u>10.0</u> 9.9	218–220	63	

Характеристики синтезированных соединений

* Соединение **3a** – найдено, %: Cl 13.0, вычислено, %: Cl 13.1; **3b** – найдено, %: Cl 11.8, вычислено, %: Cl 11.9; **3c** – найдено, %: Cl 10.4, вычислено, %: Cl 10.5.

Таблица 2

Соеди- нение	Химические сдвиги, δ, м. д. (J, Гц)								
	$R^1 + R^1$	CH ₂	протоны пиридинового цикла	R ² , R ³ (3H, c, CH ₃ и c, OH)	ароматические протоны	NH, c			
2a	1.3 (6H, c, 2-CH ₃)	2.8 (c)	6.1 (д, <i>J</i> = 6.5, H-5'); 7.5 (д, <i>J</i> = 6.5, H-4')	2.2	7.1–7.3 (4Н, м)	12.5			
2b	1.2 (3H, c, CH ₃); 1.4 (3H, c, CH ₃)	2.7 (д, <i>J</i> = 15.8); 2.9 (д, <i>J</i> = 15.8)	5.9 (c)	2.0; 2.1	6.9–7.3 (4Н, м)	12.3			
2c	1.3 (6Н, уш. с, 2-СН ₃)	2.9 (c)	5.4 (c)	1.8; 10.4	7.1–7.4 (4Н, м)	11.8			
2d	1.6–2.1 (8Н, м, 4-СН ₂)	2.8 (д, <i>J</i> = 15.9); 3.0 (д, <i>J</i> = 15.9)	6.0 (c)	2.0; 2.1	7.0–7.3 (4Н, м)	12.4			
2e	1.5–1.8 (10Н, м, 5-СН ₂)	2.9 (c)	5.9 (c)	2.0; 2.1	6.8-7.3 (4Н, м)	12.4			
2f*	1.2 (3H, c, CH ₃); 1.4 (3H, c, CH ₃)	2.7 (д, <i>J</i> = 15.4); 2.9 (д, <i>J</i> = 15.4)	5.9 (c)	1.9; 2.1	6.5 (c, H-5); 6.6 (c, H-8)	12.3			
3a	1.3 (6H, c, 2-CH ₃)	2.8 (c)	_**	-	6.8-8.4 (7Н, м)	-			
3b	1.3 (3H, c, CH ₃); 1.4 (3H, c, CH ₃)	2.8 (c)	_**	2.1; 2.4	6.7-7.3 (4Н, м)	-			
3c	1.3–1.7 (10Н, м, 5-СН ₂)	2.9 (c)	_**	2.2; 2.5	6.7-7.3 (4Н, м)	-			
4	1.3 (3H, c, CH ₃); 1.5 (3H, c, CH ₃)	3.2 (c)	5.9 (1H, c)	2.0; 2.1	7.1–8.1 (6Н, м)	12.6			
5***	1.1 (3H, c, CH ₃); 1.2 (3H, c, CH ₃)	2.7 (д, <i>J</i> = 11); 2.8 (д, <i>J</i> = 11)	5.8 (1H, c)	1.9; 2.2	6.8-7.2 (4Н, м)	6.7, 12.5			

Спектры ЯМР ¹Н синтезированных соединений

* 3.6, с и 3.9, с (2-CH₃O).
** Сигналы протонов пиридинового цикла находятся в составе ароматического мультиплета.
*** 5.1 м. д. (уш. с, 1-CHN).

Спектры ЯМР ¹Н зарегистрированы на приборе Tesla BS-567A (100 МГц) в CDCl₃, внутренний стандарт ГМДС (δ , 0.05 м. д.), ИК спектры – на спектрометре Specord M-80 в вазелиновом масле.

Проверку чистоты полученных веществ осуществляли методом TCX на пластинах Silufol UV-254 в системе ацетон–этанол–хлороформ, 1:3:6, проявление 0.5% раствором хлоранила в бензоле.

Полученные соединения перекристаллизованы из бензола (2b), ацетонитрила (2c), гексана (2d,f, 3d-c), все остальные из изопропилового спирта.

Исходные карбинолы известны из работ [1–6]. Соответствующие нитрилы получены по методикам [7–9].

1-(4- \mathbb{R}^2 -6- \mathbb{R}^3 -2-Пиридон-3-ил)-6,7-(\mathbb{R})₂-3,3-(\mathbb{R}^1)₂-3,4-дигидроизохинолины 2a-f, 1-(4- \mathbb{R}^2 -6- \mathbb{R}^3 -2-хлор-3-пиридил)-3,3-(\mathbb{R}^1)₂-3,4-дигидроизохинолины 3a-с и 2,2-диметил-4-(4,6-диметил-2-пиридон-3-ил)-1,2-дигидробензо[f]изохинолин (4) (общая методика). Смешивают 10 ммоль соответствующего карбинола с 11 ммоль нитрила в 30 мл бензола. В случае соединения 2f добавляют 2 мл ледяной уксусной кислоты. К полученной смеси при температуре не выше 5 °С прибавляют по каплям 5 мл конц. H₂SO₄. Реакционную смесь интенсивно перемешивают 30 мин при 60–70 °С, охлаждают до 20 °С, выливают в 100 мл ледяной воды (0 °С), отделяют бензольный слой. Водную фазу нейтрализуют NaHCO₃. Выпавший осадок отфильтровывают, сушат и перекристаллизовывают.

1-(4,6-Диметил-2-пиридон-3-ил)-3,3-диметил-1,2,3,4-тетрагидроизохинолин (5). К суспензии 0.2 г (5 ммоль) LiAlH₄ в 70 мл абсолютного эфира прибавляют суспензию 1.4 г (5 ммоль) основания **2b** в 70 мл того же растворителя. Полученную смесь кипятят 2 ч при интенсивном перемешивании, охлаждают до 20 °C, разлагают комплекс 2 мл воды, а затем 2 мл 25% аммиака. Образующийся осадок Al(OH)₃ отфильтровывают, промывают эфиром (3 × 50 мл). Эфирный раствор сушат NaOH, растворитель отгоняют, образовавшийся осадок отфильтровывают, сушат и перекристаллизовывают.

СПИСОК ЛИТЕРАТУРЫ

- В. С. Шкляев, Б. Б. Александров, Г. И. Леготкина, М. И. Вахрин, М. С. Гаврилов, А. Г. Михайловский, XTC, 1560 (1983). [Chem. Heterocycl. Comp., 19, 1242 (1983)].
- 2. А. Г. Михайловский, XTC, 264 (2000). [Chem. Heterocycl. Comp., 36, 223 (2000)].
- 3. В. С. Шкляев, Б. Б. Александров, А. Г. Михайловский, М. И. Вахрин, *XГС*, 1239 (1989). [*Chem. Heterocycl. Comp.*, **25**, 1038 (1989)].
- А. Г. Михайловский, Б. Б. Александров, М. И. Вахрин, XTC, 1144 (1992). [Chem. Heterocycl. Comp., 28, 966 (1992)].
- 5. Б. Б. Александров, А. Г. Михайловский, в кн. Енамины в органическом синтезе. Тез. докл. 1 региональной конф., ИОХ УНЦ АН СССР, Пермь, 1986, с. 50.
- 6. А. Г. Михайловский, М. И. Вахрин, XГС, 1198 (2004). [Chem. Heterocycl. Comp., 40, 1036 (2004)].
- 7. Р. Мариелла, в кн. *Синтезы органических препаратов*, Изд-во иностр. лит., Москва, 1953, т. 4, с. 553.
- Э. Тейлор, А. Кроветти, в кн. Синтезы органических препаратов, Изд-во иностр. лит., Москва, 1959, т. 9, с. 45.
- 9. T. Kametani, M. Sato, J. Pharm. Chem., 34, 117 (1962); PWXum, 23W (1963).

Пермская государственная фармацевтическая академия, Пермь 614990, Россия e-mail: perm@pfa.ru Поступило 02.02.2006