В. И. Павловский, С. Ю. Бачинский, Н. А. Ткачук, С. Ю. Макан, С. А. Андронати, Ю. А. Симонов^а, И. Г. Филиппова^а, М. Гданец⁶

СИНТЕЗ, СТРУКТУРА И АФФИНИТЕТ К БЕНЗОДИАЗЕПИНОВЫМ РЕЦЕПТОРАМ ЦНС 3-АРИЛИДЕН(ГЕТАРИЛИДЕН)-1,2-ДИГИДРО-3Н-1,4-БЕНЗО-ДИАЗЕПИН-2-ОНОВ

Конденсацией 5-арил-7-бром-1,2-дигидро-3Н-1,4-бензодиазепин-2-онов с ароматическими альдегидами получены 5-арил-3-арилиден(гетарилиден)-7-бром-1,2-дигидро-3Н-1,4бензодиазепин-2-оны. Методом РСА установлена молекулярная и кристаллическая структура 7-бром-3-(4'-метоксибензилиден)-5-фенил-1,2-дигидро-3Н-1,4-бензодиазепин-2-она и показано, что оно имеет *цис*-конфигурацию. Методом радиолигандного анализа изучен аффинитет синтезированных соединений к центральным и периферическим бензодиазепиновым рецепторам ЦНС.

Ключевые слова: 3-арилиден(гетарилиден)-1,2-дигидро-3H-1,4-бензодиазепин-2-оны, аффинитет, центральные и периферические бензодиазепиновые рецепторы.

Производные 1,4-бензодиазепин-2-она связываются с двумя типами бензодиазепиновых рецепторов: центральными (ЦБДР) и периферическими (ПБДР). ЦБДР встречаются исключительно в центральной нервной системе (ЦНС). Лиганды этих рецепторов широко используются в медицинской практике как антиконвульсанты, анксиолитики, гипнотики, миорелаксанты, седативные средства и др. [1, 2].

ПБДР распространены преимущественно в тканях (почки, надпочечники, плацента, сердце), но обнаруживаются и в ЦНС (глиальные клетки) [3].

Эти сравнительно небольшие белки (м. м. 18 кДа) вызывают интерес благодаря своей связи с многочисленными биологическими функциями, включая регуляцию клеточной пролиферации, иммуномодуляцию (хемотаксис, апоптоз), транспорт холестерина и порфирина, биосинтез гема, стероидов и нейростероидов, митохондриальное окислительное фосфолирирование и др. [4, 5].

Исследования последних лет, направленные на оценку плотности ПБДР при нейродегенеративных и онкологических заболеваниях, подчер-кивают важность развития новых стратегий для диагностики и терапии упомянутых выше заболеваний с использованием лигандов ПБДР.

С целью поиска потенциальных селективных лигандов центральных и периферических бензодиазепиновых рецепторов ЦНС мы синтезировали ряд новых 3-арилиден(гетарилиден)производных 1,2-дигидро-3H-1,4-бензодиазепин-2-она и изучили способность синтезированных соединений конкурентно вытеснять радиолиганды [³H] РК 11195 и [³H] флунитразепам из мест их специфического связывания с ПБДР и ЦБДР соответственно.

Характеристики 3-арилиден(гетарилиден)-1,2-дигидро-3Н-1,4-бензодиазепин-2-онов 1–17 и их аффинитет к БДР ЦНС

Соеди- нение*	R^2	Брутто- формула	<u>Найдено, %</u> Вычислено, %			Т. пл., °С	Цвет	Выход,	Аффинитет (<i>I</i> , %)	
			С	Ν	Н			%0	ЦБДР	ПБДР
1	Ph	$C_{22}H_{15}BrN_2O$	<u>65.74</u> 65.63	<u>6.87</u> 6.98	<u>3.69</u> 3.74	250–252	Желтый	40	61.9±5.1	37.2±3.4
2	p-MeOC ₆ H ₄	$C_{23}H_{17}BrN_2O_2$	<u>63.85</u> 63.74	<u>6.56</u> 6.47	<u>3.89</u> 3.92	234–236	Оранжев.	75	13.8±1.5	42.7±3.8
3	$o ext{-} ext{BrC}_6 ext{H}_4$	$C_{22}H_{14}Br_2N_2O$	<u>54.76</u> 54.88	<u>5.89</u> 5.82	<u>2.98</u> 2.91	260–263	Желтый	71	57.9±5.9	39.8±4.0
4	$m ext{-} ext{BrC}_6 ext{H}_4$	$\mathrm{C}_{22}\mathrm{H}_{14}\mathrm{Br}_{2}\mathrm{N}_{2}\mathrm{O}$	<u>54.76</u> 54.88	<u>5.75</u> 5.82	<u>2.97</u> 2.91	191–194	Желтый	70	16.0±1.5	32.9±3.0
5	$p ext{-} ext{BrC}_6 ext{H}_4$	$\mathrm{C}_{22}\mathrm{H}_{14}\mathrm{Br}_{2}\mathrm{N}_{2}\mathrm{O}$	<u>54.94</u> 54.88	<u>5.79</u> 5.82	<u>2.87</u> 2.91	256–260	Желтый	67	17.0±1.8	67.6±6.2
6	Ph	C ₂₂ H ₁₄ BrClN ₂ O	<u>60.32</u> 60.41	<u>6.58</u> 6.64	<u>2.65</u> 2.72	242–245	Желтый	46	79.9±7.4	60.9±5.9
7	$o ext{-} ext{BrC}_6 ext{H}_4$	$C_{22}H_{13}Br_2ClN_2O$	<u>51.34</u> 51.26	<u>5.39</u> 5.44	<u>2.43</u> 2.52	249–252	Желтый	74	67.7±6.3	66.8±6.2
8	$m ext{-} ext{BrC}_6 ext{H}_4$	$C_{22}H_{13}Br_2ClN_2O$	<u>51.32</u> 51.26	<u>5.51</u> 5.44	<u>2.49</u> 2.52	218–220	Желтый	75	27.3±2.6	44.0±4.2
1214										

	1	1		l						
9	<i>p</i> -BrC ₆ H ₄	C ₂₂ H ₁₃ Br ₂ ClN ₂ O	<u>51.39</u> 51.26	<u>5.48</u> 5.44	<u>2.47</u> 2.52	274–276	Желтый	72	6.0±0.5	73.1±7.1
10	p-ClC ₆ H ₄	$C_{22}H_{13}BrCl_2N_2O$	<u>56.12</u> 56.05	<u>5.85</u> 5.94	<u>2.68</u> 2.76	265–267	Желтый	73	2.1±0.3	74.5±8.0
11	p-FC ₆ H ₄	C ₂₂ H ₁₃ BrClFN ₂ O	<u>58.16</u> 58.02	<u>6.19</u> 6.15	<u>2.77</u> 2.86	268–270	Желтый	71	1.2±0.1	12.5±1.1
12	$4-C_5H_4N$	C ₂₁ H ₁₃ BrClN ₃ O	<u>57.48</u> 57.53	<u>9.51</u> 9.59	<u>2.85</u> 2.97	240–242	Желтый	70	96.4±9.1	43.3±4.0
13	p-O ₂ NC ₆ H ₄	$C_{22}H_{13}BrClN_3O_3$	<u>54.68</u> 54.77	<u>8.65</u> 8.71	<u>2.65</u> 2.70	310–314	Оранжев.	70	0.0	30.0±2.9
14	p-O ₂ NC ₆ H ₄	$\mathrm{C}_{22}\mathrm{H}_{14}\mathrm{BrN}_{3}\mathrm{O}_{3}$	<u>58.87</u> 58.93	<u>9.31</u> 9.37	<u>3.21</u> 3.12	290–292	Оранжев.	75	20.9±2.0	65.2±6.3
15	p-NMe ₂ C ₆ H ₄	C24H19BrClN3O	<u>59.65</u> 59.75	<u>8.78</u> 8.71	<u>3.87</u> 3.94	205–212	Красный	70	74.4±7.3	36.6±3.5
16	<i>p</i> -OCHF ₂ , <i>m</i> -MeOC ₆ H ₃	$C_{24}H_{17}BrF_2N_2O_3$	<u>57.65</u> 57.71	<u>5.56</u> 5.61	<u>2.75</u> 2.80	193–196	Желтый	68	22.0±2.1	39.9±3.8
17	3,4,5-(MeO) ₃ C ₆ H ₂	$C_{25}H_{20}BrClN_2O_4$	<u>56.73</u> 56.81	<u>5.25</u> 5.30	<u>3.61</u> 3.78	165–170	Оранжев.	73	86.9±8.4	40.0±3.8

* **1–5**, **14**, **16** $R^1 = H$; **6–13**, **15**, **17** $R^1 = Cl$.

Таблица 2

Соеди-	ИК спектр (CHCl ₃), v, см ⁻¹			УФ спектр (этанол),				Спект	тр ЯМР ¹ Н (б, м. д.	Масс-спектр,	
нение	N–Н ас. N–Н неас.	C=O	C=C, C=N		λ _{max} , f	нм (lg ε)		NH (1H, c)	C=CH (1H, c)	Н аром.	<i>m/z</i> (I _{отн} , %)
1	3180, 3360	1660	1600	208 (4.45)	233 (4.47)	289 (4.26)	366 (3.72)	9.18	6.67	7.09–7.84	402 (100), 373 (23), 325 (32), 286 (40), 207 (21)
2	3170, 3360	1650	1590	206 (4.44)	230 (4.39)	297 (4.17)	383 (3.76)	9.17	6.67	7.47–7.60	432 (100), 403 (5), 389 (11), 355 (8), 286 (7), 207 (12)
3	3170, 3350	1650	1600	211 (4.67)	229 (4.66)	290 (4.40)	364 (3.92)	9.06	6.99	7.07–7.85	480 (18), 401 (100), 373 (5), 293 (25)
4	3170, 3350	1650	1600	214 (4.80)	233 (4.84)	291 (4.60)	371 (4.12)	9.18	6.58	7.09–7.94	480 (100), 451 (7), 401 (26), 373 (11), 293 (12), 286 (20), 207 (21)
5	3170, 3360	1660	1600		234 (4.77)	292 (4.43)	369 (3.93)	9.2	6.59	7.08–7.81	480 (100), 453 (6), 401 (15), 373 (8), 293 (11), 286 (19), 207 (18)
6	3170, 3350	1640	1600	209 (4.53)		282 (4.08)	355 (3.66)	9.15	6.81	7.06–7.77	436 (100), 407 (28), 401 (15), 325 (33), 293 (13), 285 (10)
7	3170, 3340	1650	1600	209 (4.60)		282 (4.15)	355 (3.73)	8.98	6.72	7.06–7.62	514 (8), 435 (100), 292 (11)
8	3180, 3350	1650	1600	209 (4.72)		284 (4.31)	357 (3.88)	8.12	6.72	7.12–7.85	514 (100), 435 (9), 405 (10), 322 (8), 292 (7), 285 (12)

Спектральные характеристики соединений 1–17

1216

9	3170, 3350	1650	1600	208 (4.69)		290 (4.42)	360 (3.00)	8.87	6.72	7.02–7.68	514 (100), 489 (4), 435 (12), 405 (12), 322 (11), 292 (12), 287 (9)
10	3180, 3350	1650	1600	208 (4.74)		288 (4.42)	359 (3.98)	9.08	6.75	7.04–7.70	470 (100), 441 (8), 435 (20), 407 (5), 359 (12), 322 (6), 285 (12)
11	3170, 3350	1650	1590	208 (4.70)		283 (4.36)	359 (3.98)	8.92	6.78	7.03–7.76	454 (100), 425 (20), 419 (6), 343 (13), 322 (14), 285 (11)
12	3170, 3340	1650	1580	211 (4.63)		289 (4.26)	356 (3.77)	9.13	6.62	7.06–7.70	437 (100), 408 (15), 402 (15), 373 (5), 326 (28), 322 (4), 285 (7)
13	3160, 3360	1670	1580	205 (4.52)		329 (4.06)	368 (4.06)	11.07	6.71	7.12-8.34	481 (100), 407 (5), 372 (16), 322 (8), 292 (15), 285 (14)
14	3180, 3370	1670	1600	203 (4.66)		329 (4.16)	372 (4.15)	9.02	6.65	7.50–7.83	447 (100), 373 (18), 368 (15), 293 (18), 286 (13), 207 (19)
15	3170, 3360	1650	1600	203 (4.71)		334 (4.24)	415 (4.20)	8.01	6.70	7.42–7.50	481 (100)
16	3190, 3370	1670	1600	204 (4.67)		291 (4.28)	369 (3.84)	9.02	6.83	7.45–7.59	498 (100), 469 (5), 431 (7), 421 (13), 349 (4), 286 (12), 213 (10)
17	3180, 3350	1650	1600		233 (4.47)	301 (4.25)	372 (3.94)	8.84	6.74	7.00–7.76	526 (100), 511 (32)

* Спектр ЯМР ¹Н, б, м. д.: **2** –3.85 (3H, c); **15** – 302 (6H, c); **16** – 390 (3H, c); **17** – 3.87–3.88 (9H, c).

1217

Ранее было описано получение 3-арилиден(гетарилиден)-1,2-дигидро-3H-1,4-бензодиазепин-2-онов в условиях реакции Перкина (уксусный ангидрид, ацетат натрия) [6–9]. Известны методы образования связи C=C при взаимодействии 1,4-бензодиазепин-2-онов с альдегидами в присутствии бутилата натрия в тетрагидрофуране [10], либо в присутствии гидроксида калия в этаноле [11].

В настоящей работе синтез 3-арилиден(гетарилиден)-1,2-дигидро-3H-1,4-бензодиазепин-2-онов 1–17 (табл. 1) осуществлен конденсацией дигидробензодиазепинов 1 с ароматическими альдегидами при кипячении в бензоле в присутствии гидроксида калия.

Строение соединений 1–17 подтверждено методами ИК, У Φ и ЯМР ¹Н спектроскопии, масс-спектрометрии (табл. 2), а также данными РСА для соединения 2.

ИК спектры соединений 1–17 содержат узкие полосы поглощения, соответствующие колебаниям неассоциированной ($3370-3340 \text{ см}^{-1}$) и ассоциированной ($3190-3160 \text{ см}^{-1}$) связи группы N–H, интенсивные полосы карбонильной группы при 1670–1640 и полосы в области 1600–1580 см⁻¹, соответствующие колебаниям азометиновой связи и связей C=C бензольных колец.

В УФ спектрах соединений 1–17 наблюдаются характерные для 1,2-дигидро-3H-1,4-бензодиазепин-2-онов максимумы поглощения, соответствующие $\pi \rightarrow \pi^*$ -переходам электронов бензольных колец и $\pi \rightarrow \pi^*$ - и $n \rightarrow \pi^*$ -переходам азометиновой связи, сопряженной с ароматическими заместителями и гетарилиденовым фрагментом [12].

В спектрах ЯМР ¹Н соединений **1–17** (табл. 2) присутствуют сигналы всех типов протонов: синглет протона группы NH в интервале 8.01–11.07, мультиплет ароматических протонов 7.02–7.94 и синглет протона С–Н у связи С=С 6.58–6.99 м. д.

В масс-спектрах соединений 1–17, за исключением соединений 3 и 7, присутствует пик молекулярного иона с интенсивностью 100%. Для соединений 3 и 7, содержащих *о*-бромфенильный заместитель, пик молекулярного иона мало интенсивен (~ 8%), основным пиком является пик катиона [M–Br]⁺. Дальнейшая фрагментация сходна с фрагментацией, характерной для 1,2-дигидро-3H-1,4-бензодиазепин-2-онов [12].

Молекулярная и кристаллическая структура соединения 2 изучена методом РСА (рис. 1 и 2, табл. 3 и 4).

В кристалле молекулы соединения 2 за счет водородной связи N(1)-1218 Н...О(2) (с параметрами N(1)...O(2) 2.824, Н...O(2) 2.044 Å, угол при Н 178.71°) организованы в димерные ассоциаты. По своим параметрам эта связь подобна водородной связи, характерной для незамещенных по первому положению бензодиазепинов [13–15].

В семичленном гетероцикле основные расстояния близки к найденным для других бензодиазепинов. Его конформация – *псевдолодка* с двугранными углами между плоскостью, ограниченной атомами C(2)C(3)N(4), и плоскостями N(1)C(2)N(4)C(5) и C(10)N(1)C(5)C(11) равными 135.6 и 98.2° соответственно.

Заместитель R^2 находится в *цис*-положении по отношению к связи C=C.

Бромфенильная группа составляет с метоксифенильным заместителем угол 56.6°.

Следует отметить, что в цепочке C(5)–N(4)–C(3)–C(31)–C(32) (табл. 3) наблюдается отклонение длин связей от стандартных, свидетельствующее о наличии сопряжения в этом фрагменте молекулы.

На рис. 2 представлен фрагмент кристаллической упаковки соединения **2**. Кроме водородной связи N(1)–H...O(2) в кристалле можно выделить слабое взаимодействие С–H...Br с расстояниями С...Br = 3.777, H...Br = 2.996 Å и диполь-дипольное взаимодействие между фрагментами O(38)–C(39) с расстоянием О...C = 3.216 Å. Остальные контакты носят ван-дер-ваальсовый характер.

Данные радиолигандного анализа (табл. 1) свидетельствуют, что все исследованные соединения способны конкурировать с коммерческими радиолигандами за места их специфического связывания как с ЦБДР, так и с ПБДР головного мозга крыс, но проявляют при этом разное сродство.

3-Бензилиден-7-бром-5-фенил-1,2-дигидро-3Н-1,4-бензодиазепин-2-он (1) проявляет невысокий аффинитет к обоим типам рецепторов. Это соединение в концентрации 1 мкМ ингибирует специфическое связывание радиолигандов [³H] РК 11195 и [³H] флунитразепама с ПБДР и ЦБДР на 37.2 и 61.9% соответственно (табл. 1).

Варьирование положения атома брома в 3-бензилиденовом фрагменте молекулы 3-(бром)бензилиден-7-бром-5-(2'-хлор)фенил-1,2-дигидро-3H-1,4-бензодиазепин-2-онов позволило установить следующую тенденцию изменения аффинитета этих соединений к БДР ЦНС. Соединения, содержащие в положении 3 бензодиазепинового цикла *n*-бромбензилиденовый заместитель, активнее связываются с ПБДР ЦНС, чем с *o*- и *м*-бромбензилиденпроизводные.

В случае ЦБДР наблюдается иная картина: более высокое сродство проявляют соединения, содержащие *о*-бромбензилиденовый заместитель в положении 3 молекулы 7-бром-5-(2'-хлор)фенил-1,2-дигидро-3H-1,4-бен-зодиазепин-2-она.

Таким образом, можно отметить, что в ряду исследованных 5-фенил- и 7-бром-5-(2'-хлор)фенил-1,2-дигидро-3H-1,4-бензодиазепин-2-онов прослеживается следующая тенденция влияния положения атома брома в бензилиденовом радикале на аффинитет к БДР:

p-Br >> o-Br > m-Br (аффинитет к ПБДР) o-Br >> m-Br $\geq p$ -Br (аффинитет к ЦБДР)

Рис. 1. Общий вид молекулы соединения **2** в кристалле с нумерацией независимых атомов. Показано образование димерного ассоциата

Рис. 2. Кристаллическая упаковка соединения 2 (штриховыми линиями показаны межмолекулярные водородные связи N(1)–H...O(2))

Таблица З

Некоторые длины связи (d) и валентные углы (w) соединения 2

N(1)–C(2) 1.360(2) N(1)–C(2)–C(3) 117.6	(2) (2)
	(2)
C(2)–C(3) 1.496(2) C(2)–N(1)–C(10) 125.8	
C(2)–O(2) 1.235(2) O(2)–C(2)–N(1) 120.8	(2)
C(3)–N(4) 1.407(2) O(2)–C(2)–C(3) 121.6	(2)
N(4)–C(5) 1.286(2) N(4)–C(3)–C(2) 117.4	(2)
C(5)–C(11) 1.488(2) N(4)–C(3)–C(31) 124.5	(2)
C(10)–C(11) 1.398(2) C(31)–C(3)–C(2) 117.6	(2)
N(1)–C(10) 1.409(2) C(3)–N(4)–C(5) 122.7	(2)
C(3)–C(31) 1.344(3) N(4)–C(5)–C(11) 124.1	(2)
C(31)–C(32) 1.469(2) N(4)–C(5)–C(51) 117.5	(2)
C(10)–C(11)–C(5) 121.3	(2)
C(11)–C(10)–N(1) 122.4	(2)

Таблица 4

Некоторые торсионные углы (т) соединения 2

Угол	τ, град.	Угол	τ, град.
N(1)C(2)C(3)N(4)	46.0	N(4)C(5)C(11)C(10)	44.4
C(10)N(1)C(2)C(3)	25.8	C(3)N(4)C(5)C(11)	-0.7
C(11)N(1)C(10)C(2)	-48.5	C(2)C(3)N(4)C(5)	-62.0
C(5)C(11)C(10)N(1)	-6.0		

Наиболее высокая способность образовывать молекулярный комплекс лиганд–ЦБДР обнаружена у соединений **12**, **17** и **6**. Эти соединения в концентрации 1 мкМ ингибируют специфическое связывание [³H] флунитразепама с ЦБДР на 96.4, 86.9 и 79.9% соответственно.

Линеаризацией кривых ингибирования специфического связывания [³H] флунитразепама с ЦБДР ЦНС соединениями **12** и **6** (рис. 3) были получены значения *IC*₅₀, равные 45.7 и 575.4 нМ соответственно.

В ряду синтезированных производных 7-бром-5-(2'-хлор)фенил-1,2-дигидро-3H-1,4-бензодиазепин-2-она, содержащих различные заместители в *n*-положениии 3-бензилиденового фрагмента, выявлены селективные лиганды ПБДР (соединения 9 и 10), аффинитет которых на два порядка выше к ПБДР, чем к ЦБДР (рис. 4).

Рис. 3. Зависимость ингибирования (I, %) специфического связывания радиолиганда [³H] флунитразепама с ЦБДР синаптической фракции мембран коры головного мозга крыс от концентраций соединений 12 (а) и 6 (б) соответственно. log C – логарифм концентраций соединений 12 (а) и 6 (б); I, % – ингибирование специфического связывания радиолиганда [³H] флунитразепама с ЦБДР ЦНС

В ряду исследованных соединений выявлены вещества 12, 17 связывающиеся преимущественно с ЦБДР, и соединения 9, 5, 10 – с ПБДР, соединения 3 и 6 проявляют одинаковое сродство к обоим типам рецепторов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Контроль за ходом реакции и чистотой полученных соединений осуществляли методом TCX на пластинках Silufol UV-254 в системе метанол–хлороформ, 1 : 10, с проявлением в УФ свете ($\lambda = 254$ нм). ИК спектры записывали на приборе Specord IR-75 (растворы в CHCl₃), УФ спектры – на спектрометре СФ-56 (растворы в этаноле). Спектры ЯМР ¹Н регистрировали для ~2% растворов соединений в CDCl₃ на приборе Bruker (300 МГц), внутренний стандарт TMC. Масс-спектры соединений получали на масс-спектрометре MX-1321, ионизирующее напряжение 70 эВ, температура камеры ионизации 220 °C.

Рентгеноструктурный анализ. Монокристалл 7-бром-3-(4'-метоксибензилиден)-5фенил- 1,2-дигидро-3H-1,4-бензодиазепин-2-она (2) получен кристаллизацией из этилового спирта. Кристалл моноклинный, пространственная группа $P2_1/n$, a = 11.0595(5), b = 9.4768(8), c = 19.2114(9) Å, $\gamma = 105.33(1)^\circ$, V = 1941.8(4) Å³, M = 433.3, Z = 4, $d_{\text{выч}} = 1.482$ г/см³.

Рис. 4. Ингибирование соединениями **9** и **10** в C = 1 мкМ специфического связывания [³H] флунитразепама с ЦБДР (1) и [³H] РК11195 с ПБДР (2) коры головного мозга крыс

Рентгеноструктурное исследование монокристалла (с линейными размерами $0.4 \times 0.3 \times 0.1$ мм) проведено на дифрактометре КUMA-4CCD (МоКа-излучение, ω -сканирование при 123 К). Всего зарегистрировано 11 214 отражений, из которых 3938 являются симметрически независимыми ($R_{int} = 0.0211$). Поправка на поглощение не вводилась ($\mu = 1.666$ мм⁻¹). Структура расшифрована прямым методом с использованием программы SHELXS-97 [16] и уточнена МНК в полноматричном анизотропном приближении для

неводородных атомов. Все атомы водорода выявлены из разностного синтеза электронной плотности и уточнены изотропно. Окончательные значения факторов достоверности *R* по отражениям с $I>2\sigma(I)$ 0.0264, по всем данным – 0.0349. Остаточная электронная плотность из разностного ряда Фурье в диапазоне от +0.435 до – 0.302 *e*/Å³. Координаты атомов депонированы в Кембриджском банке структурных данных, ССDC 643684.

цис-7-Бром-3-(4'-метоксибензилиден)-5-фенил-1,2-дигидро-3H-1,4-бензодиазепин-2-он (2). Смесь 2 г (6.4 ммоль) 7-бром-5-фенил-1,2-дигидро-3H-1,4-бензодиазепин-2-она, 1.3 мл (10.7 ммоль) *п*-метоксибензальдегида, 0.2 г (3.6 ммоль) гидроксида калия и 15 мл бензола кипятят в течение 24 ч. Контроль за ходом реакции осуществляют методом TCX. Горячую реакционную смесь фильтруют и упаривают в вакууме досуха. Твердый остаток кристаллизуют из этанола. После перекристаллизации из этого же растворителя получают 1.92 г (70%) соединения **2**, *R*_f = 0.43.

Соединения 1–17 получают аналогично. При получении соединений 1 и 6 наблюдается осмоление реакционной смеси.

Аффинитет к центральным и периферическим бензодиазепиновым рецепторам ЦНС определяли методом радиолигандного анализа *in vitro*. В качестве радиолигандов использовали флунитразепам (2960 ТБк/моль, "Amersham") для ЦБДР и [³H]PK 11195 (2775 ТБк/моль, "NEN, Du Pont") для ПБДР.

Все эксперименты проводили на белых беспородных крысах-самцах массой 180–220 г, содержащихся в стандартных условиях вивария при свободном доступе к корму и воде. Предварительно анестезированных животных декапитировали, быстро на холоду извлекали кору головного мозга, характеризующуюся высоким содержанием БДР. Анализ взаимодействия соединений 1–17 с ЦБДР и ПБДР проводили согласно описанным ранее методикам [17, 18]. Аффинитет оценивали по способности соединений в концентрации 1 мкМ вытеснять радиолиганды из мест их специфического связывания с рецепторами. Для наиболее активных соединений были определены значения *IC*₅₀ (концентрация, в которой тестируемое соединение на 50% ингибирует специфическое связывание радиолиганда с рецептором).

Для определения IC_{50} использовали 8 концентраций в интервале $10^{-9} - 10^{-5}$ М. Каждая экспериментальная точка была получена в секстетах. Данные представлены в виде M ± m, где M – среднее значение трех независимых экспериментов, m – стандартная ошибка среднего значения.

СПИСОК ЛИТЕРАТУРЫ

- 1. С. А. Андронати, С. Ю. Макан, Укр. хим. журн., 65, № 9–10, 5 (1999).
- E. A. Barnard, P. Skolnick, R. W. Olsen, H. Mohler, W. Sieghart, G. Biggio, C. Braestrup, A. N. Bateson, S. Z. Langer, *Pharmacol. Rev.*, 50, 291 (1998).
- 3. M. Gavish, I. Bachman, R. Shoukrun, Y. Katz, L. Veenman, G. Weisinger, A. Weizman, *Pharmacol. Rev.*, **51**, 629 (1999).
- 4. P. Casellas, S. Galiegue, A. S. Basile, Neurochem. Int., 40, 475 (2002).
- 5. V. Papadopoulos, L. Lecanu, R. C. Brown, Z. Han, Z. X. Yao, *Neuroscience*, **138**, 749 (2006).
- А. В. Богатский, С. А. Андронати, З. И. Жилина, О. В. Кобзарева, П. А. Шарбатян, Р. Ю. Иванова, *ЖОХ*, 45, 396 (1975).
- 7. З. И. Жилина, А. В. Богатский, Е. Д. Сыч, Т. К. Чумаченко, С. А. Андронати, *XTC*, 992 (1971). [*Chem. Heterocycl. Comp.*, **7**, (1971)].
- 8. А. В. Богатский, С. А. Андронати, Т. А. Клыгуль, З. И. Жилина, Ю. И. Вихляев, Р. Ю. Иванова, *Хим.-фарм. журн.*, **11**, 37 (1977).
- А. В. Богатский, З. И. Жилина, С. А. Андронати, С. Д. Исаев, А. Г. Юрченко, Ю. И. Вихляев, Т. А. Клыгуль, Н. Я. Головенко, С. С. Исаева, в кн. Физиологически активные вещества, Республиканский межведомственный сб. науч. трудов, Наукова думка, Киев, 1979, вып. 11, с. 52.

- 10. B. E. Evans, K. E. Rittle, M. G. Bock, R. M. DiPardo, R. M. Freidinger, W. L. Whitter, N. P. Gould, G. F. Lundell, C. F. Homnick, D. F. Veber, *J. Med. Chem.*, **30**, 1229 (1987).
- 11. M. A. Berghot, Arch. Pharm. (Weinheim), 325, 285 (1992).
- 12. А. В. Богатский, С. А. Андронати, Н. Я. Головенко, *Транквилизаторы*. *1,4-Бенздиазепины и родственные структуры*, Наукова думка, Киев, 1980.
- 13. G. Gilli, V. Bertolasi, M. Sacerdoti, P. A. Borea, Acta Crystallogr., 33, 2664 (1977).
- J. Rambaud, J. L. Delarbre, B. Pauvert, L. Maury, A. Dubourg, J.-P. Declercq, Acta Crystallogr., 43, 2195 (1987).
- А. А. Карапетян, В. Г. Андрианов, Ю. Т. Стручков, А. В. Богатский, С. А. Андронати, Т. И. Коротенко, *Биоорганическая химия*, 5, 1684 (1979).
- 16. G. M. Sheldrick, SHELX-97, Release 97-2, Univ. of Göttingen, Göttingen, Germany, 1998.
- 17. Н. А. Ткачук, С. Ю. Макан, С. В. Власюк, В. И. Павловский, С. А. Андронати, *Весн. ОНУ*, **10**, 97 (2005).
- G. Trapani, M. Franco, A. Latrofa, L. Ricciardi, A. Carotti, M. Serra, E. Sanna, G. Biggio, G. Liso, J. Med. Chem., 42, 3934 (1999).

Физико-химический институт им. А. В. Богатского НАН Украины, отдел медицинской химии, Одесса 65080 e-mail: phychem@paco.net Поступило 17.04.2007

^аИнститут прикладной физики АН Молдовы, Кишинев 2028

⁶Химический факультет Университета им. А. Мицкевича, 60-780 Познань, Польша