В. И. Теренин, Е. В. Кабанова, Н. А. Целищева, А. С. Иванов, Н. В. Зык

ТРИФТОРАЦЕТИЛИРОВАНИЕ ПИРРОЛО[1,2-а]ПИРАЗИНОВ

Изучено взаимодействие с трифторуксусным ангидридом пирроло[1,2-*a*]пиразинов, содержащих в положении 1 алкильный, арильный или аралкильный заместители. Показано, что возможно образование продуктов трифторацетилирования как по пиррольному кольцу, так и по алкильной или аралкильной группам в положении 1. В случае трифтор-ацетилирования пирроло[1,2-*a*]пиразинов, содержащих в положении 1 заместитель, более объемный, чем метильный, и не содержащих заместителей в положении 6 (α-положение пиррольного кольца), преимущественно образуются продукты электрофильного замещения по положению 6.

Ключевые слова: пирроло[1,2-*а*]пиразин, трифторуксусный ангидрид, трифторацетилирование.

Бициклическая ароматическая система пирроло[1,2-а]пиразина является малоизученной, возможно, вследствие ее относительной труднодоступности и относительно малой реакционной способности. Об относительной устойчивости системы пирроло[1,2-а]пиразина к действию слабых электрофильных агентов говорит, например, тот факт, что 1,7-диметилпирроло[1,2-а]пиразин при кипячении с избытком уксусного ангидрида в течение 24 ч образует 6-ацетилпроизводное с выходом всего 16% [1]. Бромирование незамещенного пирроло[1,2-а]пиразина приводит к образованию смеси 8-бром- и 6,8-дибромзамещенных производных в соотношении 1:1 [2, 3], а формилирование данной модели, как утверждают авторы [2], приводит с выходом 60% к 8-формилпирроло[1,2-а]пиразину, однако приведенный спектр ЯМР ¹Н данного соединения заставляет сомневаться в правильности идентификации его структуры. В более ранней работе попытка формилирования по Вильсмайеру-Хааку незамещенного пирроло[1,2-а]пиразина не удалась [3]. Не удались также попытки получить нитрозо- или азопроизводные пирроло[1,2-а]пиразинов в реакциях с азотистой кислотой и хлоридом фенилдиазония [4].

В связи с изложенным выше представлялось интересным систематически исследовать поведение пирроло[1,2-*a*]пиразинов **1–10** в реакциях с электрофилами, например, в реакциях ацилирования более сильным, чем уксусный ангидрид, ацилирующим агентом – трифторуксусным ангидридом. Трифторацетильный катион является достаточно сильным электрофилом. Так, например, ацилирование пирролов трифторуксусным ангидридом быстро протекает при 0 °C [5]. Ранее нами было показано, что дипирроло[1,2-*a*;2',1'-*c*]пиразины образуют с избытком трифторуксусного ангидрида дитрифторацетильные производные в качестве основных продуктов реакции уже при комнатной температуре [6], в случае же 3,4-дигидропирроло[1,2-*a*]пиразинов ситуация значительно осложняется, и направление реакции зависит от строения исходных соединений и соотношения субстрат-реагент [7].

В молекуле 1-метилпирроло[1,2-*а*]пиразина (1) α -положение пиррольного кольца свободно и можно было ожидать, что при взаимодействии с трифторуксусным ангидридом наиболее вероятным продуктом реакции будет 6-трифторацетилпирроло[1,2-*a*]пиразин (аналогично реакции ацилирования уксусным ангидридом [1]). Однако в результате взаимодействия соединения 1 с 2,5-кратным избытком трифторуксусного ангидрида в бензоле (метод А) из реакционной смеси были выделены три вещества, которым по совокупности данных спектроскопии ЯМР и масс-спектрометрии было приписано строение 1,2-дигидро-1-(2-оксо-3,3,3-трифтор-пропилиден)пирроло[1,2-*a*]пиразина (11), 1,2-дигидро-6-(трифторацетил)-1-(2-оксо-3,3,3-трифторпропилиден)пирроло[1,2-*a*]-пиразина (13).

Аналогичные результаты трифторацетилирования – образование трифторацетонилзамещенных производных – были получены ранее для ряда метилзамещенных азинов [8], таких, например, как пиридин или пиримидин. Было показано, что пиридин промотирует данную реакцию.

При ацилировании соединения 1 2.5-кратным избытком трифторуксусного ангидрида в присутствии пиридина (метод Б) выход продукта реакции 11 увеличивается, а выходы соединений 12 и 13 уменьшаются до следовых количеств. Увеличение количества реагента до 10-кратного избытка и времени реакции ацилирования до 3 сут (методы В и Г) приводит к образованию только дитрифторацетилпроизводных 12 и 13 (табл. 1–3).

Трифторацетилирование пирроло[1,2-*a*]пиразинов со свободным α-положением пиррольного кольца и с отличным от метильного заместителем в положении 1 протекает селективно с образованием трифторацетильных производных по α-положению пиррольного кольца. Так, соединения 2–7, дают, соответственно, 1-этил-, 1-пропил-, 1-(2-пропил)-, 1-фенил-, 1-(2-тиенил)- и 1-циклопентил-6-(трифторацетил)пирроло[1,2-*a*]пиразины **14–19**, причем проведение реакции в присутствии пиридина приводит к увеличению выходов продуктов реакции (табл. 1).

2, **14** R = Et, **3**, **15** R = Pr, **4**, **16** R = *i*-Pr, **5**, **17** R = Ph, **6**, **18** R = 2-Th, **7**, **19** R = c-C₅H₁₁

Таким образом, замена метильного заместителя в положении 1 пирроло[1,2-*a*]пиразинов на более объемный меняет направление реакции. Похожая закономерность наблюдается и при трифторацетилировании 3,4-дигидропирроло[1,2-*a*]пиразинов [7].

Таблица 1

Соеди-	Брутто- формула	<u>Найдено, %</u> Вычислено, %			Т. пл.,°С	Выход, %
нение		С	Н	N	т. шл., С	(метод)
11	$C_{10}H_7F_3N_2O$	<u>52.22</u> 52.64	<u>2.84</u> 3.09	<u>12.06</u> 12.28	145–146	32 (А), 44 (Б)
12	$C_{12}H_{6}F_{6}N_{2}O_{2}$	<u>44.52</u> 44.46	<u>1.65</u> 1.87	<u>8.84</u> 8.64	240–250 (с разл.)	11 (А), 2 (Б), 31 (В), 78 (Г)
13	$C_{12}H_{6}F_{6}N_{2}O_{2}$	<u>44.15</u> 44.46	<u>1.94</u> 1.87	<u>8.35</u> 8.64	230–240 (с разл.)	12 (А), 3 (Б), 34 (В), 14 (Г)
14	$C_{11}H_9F_3N_2O$	<u>53.97</u> 54.55	<u>3.67</u> 3.75	<u>11.89</u> 11.57	82-84	37 (А), 60 (Б)
15	$C_{12}H_{11}F_3N_2O$	<u>55.69</u> 56.25	$\frac{4.18}{4.33}$	$\frac{11.12}{10.93}$	108–110	51 (А), 59 (Б)
16	$C_{12}H_{11}F_3N_2O$	<u>55.89</u> 56.25	<u>4.27</u> 4.33	$\frac{10.54}{10.93}$	88–90	87 (А), 98 (Б)
17	$C_{15}H_9F_3N_2O$	<u>61.87</u> 62.07	<u>3.25</u> 3.13	<u>9.59</u> 9.65	112–114	94 (А), 64 (Б)
18	$C_{13}H_7F_3N_2OS$	<u>52.58</u> 52.70	<u>2.45</u> 2.38	<u>9.38</u> 9.46	116–117	50 (А), 70 (Б)
19	$C_{14}H_{13}F_3N_2O$	<u>59.65</u> 59.57	<u>4.50</u> 4.64	<u>9.85</u> 9.92	40-42	63 (Б)
20	$C_{16}H_{11}F_3N_2O$	<u>63.57</u> 63.16	$\frac{3.46}{3.64}$	<u>9.26</u> 9.21	86–88	69 (Б)
21	$C_{18}H_{10}F_6N_2O_2$	<u>52.54</u> 54.01	<u>2.58</u> 2.52	<u>6.72</u> 7.00	176–180 (с разл.)	9 (Б)
22	$C_{11}H_9F_3N_2O$	<u>54.19</u> 54.55	<u>3.63</u> 3.75	<u>11.62</u> 11.57	214–215	4 (А), 46 (Б)
23	$C_{13}H_8F_6N_2O_2$	<u>47.25</u> 46.17	<u>3.10</u> 2.38	<u>7.06</u> 8.28	212–214 (с разл.)	6 (А), следы (Б), 67 (В), 66 (Г)
24	$C_{11}H_{11}F_3N_2O_2$	<u>49.25</u> 50.77	<u>4.09</u> 4.64	<u>10.55</u> 10.77	144–146	64 (A)
25	$C_{12}H_{11}F_3N_2O$	<u>55.89</u> 56.25	$\frac{4.44}{4.33}$	$\frac{10.74}{10.93}$	126–128	5 (Б)

Характеристики синтезированных соединений

Масс-спектры соединений 11-25

Соеди-	m/z (I, %)			
нение				
11	228 [M] ⁺ (79.55), 160 (10.79), 159 (100), 132 (7.95), 131 (59.66), 104			
	(27.84), 103 (9.09), 78 (14.77), 77 (18.18)			
12	324 [M] ⁺ (71.40), 255 (100), 227 (19.28), 158 (27.64), 130 (17.22)			
13	324 [M] ⁺ (86.07), 255 (100), 227 (77.27), 177 (53.98), 158 (48.57), 130			
	(19.99), 103 (19.95), 79 (19.62)			
14	242 [M] ⁺ (94.34), 241 (59.82), 173 (100), 145 (24.53), 144 (22.37), 117			
	(17.65), 91 (24.15), 86 (21.76), 69 (12.26), 64 (14.77), 63 (17.94)			
15	256 [M] ⁺ (33.14), 255 (16.51), 241 (42.69), 229 (18.91), 228 (100), 187			
	(15.87), 159 (29.26), 158 (19.92), 144 (17.48), 131 (28.17), 117 (10.49),			
	103 (10.93), 90 (12.03), 77 (19.19)			
16	256 [M] ⁺ (100), 241 (77.63), 228 (53.22), 214 (12.04), 187 (31.79), 158			
	(6.00), 144 (15.16), 89 (5.62)			
17	290 [M] ⁺ (74.50), 221 (100), 193 (32.15), 192 (29.28), 168 (36.44), 140			
	(20.29), 139 (20.27), 70 (21.36), 63 (25.93), 51 (18.52)			
18	297 (14.06), 296 [M] ⁺ (73.05), 227 (100), 199 (21.88), 159 (18.72), 155			
	(10.59), 114 (12.56), 69 (19.39), 64 (18.37), 57 (18.28), 44 (91.90)			
19	282 [M] ⁺ (26.30), 253 (25.49), 242 (19.75), 241 (100), 156 (31.45), 144			
	(25.48), 58 (22.77), 44 (24.34), 43 (51.08)			
20	304 [M] ⁺ (43.48), 303 (100), 235 (13.66), 207 (25.13), 206 (35.25), 205			
	(21.45)			
21	400 [M] ⁺ (83.19), 331 (100), 303 (43.69), 206 (60.60), 205 (78.90), 117			
	(21.88)			
22	242 [M] ⁺ (72.17), 173 (100), 145 (64.88), 118 (31.86), 91 (12.57), 77			
	(14.14), 73 (16.52), 72 (20.40), 63 (18.19), 51 (18.07)			
23	338 [M] ⁺ (46.69), 269 (100), 241 (75.72), 191 (39.20), 172 (54.41), 171			
	(26.75), 86 (29.65), 69 (30.80), 63 (41.70)			
24	147 (32.64), 146 (96.11), 145 (100), 104 (16.58), 69 (44.95), 51 (19.33),			
	45 (25.15)			
25	256 [M] ⁺ (27.88), 188 (15.20), 187 (100), 159 (15.49), 93 (20.22), 78			
	(25.17), 63 (30.01)			

Следует отметить, что ацилирование 1-бензилпирроло[1,2-*a*]пиразина (8) трифторуксусным ангидридом протекает не столь однозначно и приводит к образованию как преобладающего 6-трифторацетильного производного – 1-(фенилметил)-6-(трифторацетил)пирроло[1,2-*a*]пиразина (20) (с выходом 69%), так и дитрифторацетильного производного – 6-(трифторацетил)-1-(2-оксо-1-фенил-3,3,3-трифторпропилиден)пирроло[1,2-*a*]-пиразина (21) (выход 9%).

1229

В пирроло[1,2-*a*]пиразинах, замещенных по α-положению пиррольного кольца, наблюдается аналогичная зависимость результата трифторацетилирования от строения заместителя в положении 1 исходного пирроло[1,2-*a*]пиразина.

Так, при взаимодействии 1,6-диметилпирроло[1,2-*а*]пиразина (9) с трифторуксусным ангидридом (метод А) нами было получено два продукта трифторацилирования, аналогичных соединениям 12 и 13, с небольшими выходами: 1,2-дигидро-6-метил-1-(2-оксо-3,3,3-трифторпропилиден)пирроло-[1,2-*а*]пиразин (22) с выходом 4% и 1,2-дигидро-6-метил-8-(трифторацетил)-1-(2-оксо-3,3,3-трифторпропилиден)пирроло[1,2-*а*]пиразин (23) с выходом 6%.

Кроме соединений 22 и 23 из реакционной смеси был выделен трифторацетат 1,6-диметилпирроло[1,2-*a*]пиразиния (24), являющийся, повидимому, результатом взаимодействия исходного пирролопиразина 9 и образующейся в процессе реакции трифторуксусной кислоты. Образование аналогичного побочного продукта – трифторацетата 2-метил-3H-индолизиния – ранее наблюдалось при трифторацетилировании 2-метилиндолизина [9]. При проведении реакции в присутствии пиридина, связывающего кислоту, образования соединения 24 не наблюдается.

Ацилирование пирроло[1,2-*a*]пиразина **9** трифторуксусным ангидридом в присутствии пиридина (метод Б) приводит преимущественно (с выходом 46%) к монотрифторацетильному производному **22**, а значительное увеличение избытка реагента и времени реакции (методы В и Г) приводит к образованию соединения **23** с хорошими выходами (66–67%).

При взаимодействии 1-этил-6-метилпирроло[1,2-*a*]пиразина (10) с трифторуксусным ангидридом образуется смесь продуктов ацилирования, из которой в индивидуальном виде с небольшим выходом удалось выделить только одно вещество. На основании данных спектров ЯМР ¹Н и масс-спектрометрии ему приписано строение 6-метил-8-(трифторацетил)-1-этилпирроло[1,2-*a*]пиразина (25).

Спектры ЯМР ¹Н синтезированных соединений

Соеди- нение	Раство- ритель	Химические сдвиги, δ, м. д. (<i>J</i> , Гц)	
1	2	3	
11	CDCl ₃	5.99 (1H, c, C <u>H</u> COCF ₃); 6.80 (1H, \exists , $J_{34} = 5.4$, H-3); 6.82 (1H, \exists , \exists , $J_{76} = 2.6$, $J_{78} = 4.3$, H-7); 7.10 (1H, \exists , $J_{87} = 4.3$, H-8); 7.34 (1H, \exists , $J_{43} = 5.4$, H-4); 7.38 (1H, \exists . \exists , $J_{67} = 2.6$, $J_{68} = 1.0$, H-6)	
	Ацетон-d ₆	6.04 (1H, c, C <u>H</u> COCF ₃); 6.86 (1H, \exists , \exists , $J_{76} = 2.6, J_{78} = 4.2, H-7$); 7.24 (1H, \exists , $J_{34} = 5.6, H-3$); 7.33 (1H, \exists , $J_{87} = 4.2, H-8$); 7.74 (1H, \exists , \exists , $J_{67} = 2.6, J_{68} = 1.3, H-6$); 7.84 (1H, \exists , $J_{43} = 5.6, H-4$)	
12	Ацетон-d ₆	6.31 (1H, c, C <u>H</u> COCF ₃); 7.57 (1H, д. д, $J_{78} = 4.8$, $J_{84} = 0.55$, H-8); 7.64 (1H, д, $J_{34} = 5.6$, H-3); 7.77 (1H, д. к, $J_{78} = 4.8$, $J_{H-F} = 2.1$, H-7); 8.83 (1H, д. д, $J_{43} = 5.6$, $J_{48} = 0.6$, H-4)	
13	Ацетон-d ₆	7.51 (1H, м, H-7), 7.52 (1H, с, <u>CH</u> COCF ₃); 7.63 (1H, д, $J_{34} = 5.4$, H-3); 7.93 (1H, д, $J_{67} = 3.2$, H-6); 8.06 (1H, д, $J_{43} = 5.4$, H-4)	
	ДМСО-d ₆	7.35 (1H, c, C <u>H</u> COCF ₃); 7.46 (1H, м, H-7); 7.56 (1H, д, <i>J</i> ₃₄ = = 5.4, H-3); 7.95 (1H, д, <i>J</i> ₆₇ = 3.3, H-6); 8.03 (1H, д, <i>J</i> ₄₃ = 5.4, H- 4)	
14	CDCl ₃	1.44 (3H, τ , $J = 7.5$, CH ₂ C <u>H₃</u>); 3.14 (2H, κ , $J = 7.5$, C <u>H₂</u> CH ₃); 6.91 (1H, π , $J_{87} = 5.2$, H-8); 7.70 (1H, μ , H-7); 8.05 (1H, π , $J_{34} = 5.0$, H-3); 9.40 (1H, π , $J_{43} = 5.0$, H-4)	
	Ацетон-d ₆	1.40 (3H, τ , $J = 7.4$, CH ₂ C <u>H₃</u>); 3.16 (2H, κ , $J = 7.5$, C <u>H₂</u> CH ₃); 7.16 (1H, π , $J_{87} = 5.0$, H-8); 7.78 (1H, μ , H-7); 8.12 (1H, π , $J_{34} = 4.7$, H-3); 9.36 (1H, π , $J_{43} = 4.7$, H-4)	
15	Ацетон-d ₆	1.01 (3H, τ , $J = 7.5$, CH ₃); 1.88 (2H, M, CH ₂ CH ₂ CH ₃); 3.08 (2H, τ , $J = 7.5$, CH ₂ CH ₂ CH ₃); 7.16 (1H, π . π , $J_{87} = 5.0$, $J_{84} = 0.8$, H-8); 7.77 (1H, π . κ , $J_{78} = 5.0$, $J_{H-F} = 2.10$, H-7); 8.09 (1H, π , $J_{34} = 4.7$, H-3); 9.34 (1H, π , $J_{43} = 4.7$, H-4)	
16	CDCl ₃	1.43 (6H, π , $J = 6.8$, CH(C <u>H</u> ₃) ₂); 3.55 (1H, M, $J = 6.8$, C <u>H</u> (CH ₃) ₂); 6.96 (1H, π . π , $J_{87} = 5.0$, $J_{84} = 0.8$, H-8); 7.71 (1H, π . κ , $J_{78} = 5.0$, $J_{H-F} = 1.9$, H-7); 8.03 (1H, π , $J_{34} = 4.8$, H-3); 9.42 (1H, π , $J_{43} = 4.8$, H-4)	
17*	CDCl ₃	7.08 (1H, д. д, $J_{87} = 5.0$, $J_{84} = 0.8$, H-8); 7.55–7.58 (3H, м, H- <i>p</i> , <i>m</i> Ph); 7.74 (1H, д. к, $J_{78} = 5.0$, $J_{H-F} = 2.0$, H-7); 7.92 (2H, м, H- <i>o</i> Ph), 8.21 (1H, д, $J_{34} = 4.7$, H-3); 9.53 (1H, д. д, $J_{43} = 4.7$, $J_{48} = 0.8$, H-4)	
18	Ацетон-d ₆	7.30 (1H, \exists , \exists , $d_{\alpha\beta} = 5.1$, $d_{\beta\beta'} = 3.9$, H- β Th); 7.54 (1H, \exists , \exists , $J_{87} = 5.0$, $J_{84} = 0.9$, H- 8); 7.81 (1H, \exists , \exists , $J_{\alpha\beta} = 5.0$, $J_{\alpha\beta'} = 1.0$, H- α Th); 7.91 (1H, \exists , κ , $J_{78} = 5.0$, $J_{H-F} = 2.0$, H-7); 8.09 (1H, \exists , \exists , $J_{\beta\beta'} = 3.9$, $J_{\alpha\beta'} = 1.0$, H- β' Th); 8.20 (1H, \exists , $J_{34} = 4.7$, H-3); 9.49 (1H, \exists , \exists , $J_{43} = 4.7$, $J_{48} = 0.9$, H-4)	
19	CDCl ₃	1.74–2.19 (8Н, м, –(СН ₂) ₄); 3.67 (1Н, кв, <i>J</i> = 8.4, –С <u>Н</u> (цикло- пентил); 6.96 (1Н, д, <i>J</i> ₈₇ = 5.1, H-8); 7.70 (1Н, м, H-7); 8.06 (1Н, д, <i>J</i> ₃₄ = 4.7, H-3); 9.40 (1Н, д, <i>J</i> ₄₃ = 4.7, H-4)	
20	CDCl ₃	4.44 (2H, c, $-C\underline{H}_2$ Ph); 6.86 (1H, д. д, $J_{87} = 4.8$, $J_{84} = 0.5$, H-8); 7.23–7.36 (5H, м, Ph); 7.65 (1H, д. κ , $J_{78} = 4.8$, $J_{H-F} = 1.9$, H-7); 8.07 (1H, д, $J_{34} = 4.7$, H-3); 9.43 (1H, д. μ , $J_{43} = 4.7$, H-4)	

Окончание таблицы 3

1	2	3
21	CDCl ₃	5.01 (1H, д, J_{87} = 5.2, H-8); 7.22 (1H, д, J_{34} = 5.7, H-3); 7.27 (1H, д. к, J_{78} = 5.2, J_{H-F} = 2.0, H-7); 7.35–7.53 (5H, м, C ₆ H ₅); 9.00 (1H, д. д, J_{43} = 5.7, H-4)
22	CDCl ₃	2.49 (3H, c, 6-CH ₃); 5.95 (1H, c, C <u>H</u> COCF ₃); 6.61 (1H, π , $J_{78} =$ = 4.3, H-7); 6.85 (1H, π , $J_{34} =$ 5.5, H-3); 7.05 (1H, π , $J_{87} =$ 4.3, H-8); 7.20 (1H, π , $J_{43} =$ 5.5, H-4)
	Ацетон-d ₆	2.54 (3H, с, 6-CH ₃); 5.98 (1H, с, C <u>H</u> COCF ₃); 6.69 (1H, д. д, $J_{87} = 4.3, J_{84} = 0.5, H-7$); 7.26 (1H, д. $J_{34} = 5.8, H-3$); 7.28 (1H, д. $J_{78} = 4.3, H-8$); 7.62 (1H, д. $J_{43} = 5.8, H-4$)
23	Ацетон-d ₆	2.61 (3H, д, <i>J</i> = 0.8, 6-CH ₃); 7.32 (1H, м, H-7); 7.44 (1H, с, C <u>H</u> COCF ₃); 7.64 (1H, д, <i>J</i> ₃₄ = 5.5, H-3); 7.80 (1H, д, <i>J</i> ₄₃ = 5.5, H-4)
24	Aцетон-d ₆	2.70 (3H, c, 6-CH ₃); 2.93 (3H, c, 1-CH ₃); 7.15 (1H, π , J_{78} = 4.3, H-7); 7.64 (1H, π , J_{87} = 4.3, H-8); 7.68 (1H, π , J_{43} = 5.5, H-4); 8.26 (1H, π , J_{34} = 5.5, H-3)
25	CDCl ₃	1.30 (3H, T, J = 7.4, CH ₂ CH ₃); 2.52 (3H, c, 6-CH ₃); 3.46 (2H, κ , J = 7.4, CH ₂ CH ₃); 7.22 (1H, κ , H-7); 7.68 (1H, π , J_{34} = 4.4, H-3); 8.00 (1H, π , J_{43} = 4.4, H-4)

* $\mathcal{MMP}^{13}C$ (CDCl₃), δ , M. \mathcal{A} .: 107.56, 119.06, 132.84 (C-3,4,8); 116.90 (K, J = 289, CF₃); 125.28 (K, J = 3.9, C-7); 128.65, 128.86 (o,m-C₆H₅); 130.33 (p-C₆H₅); 136.91 (C-9); 154.06 (C-1); 170.14 (K, J = 35.8, C=O)

Таким образом, трифторацетилирование пирроло[1,2-*а*]пиразинов с различными заместителями в положении 1 протекает неоднозначно. Строение продуктов реакции определяется природой заместителя: в случае алкильных заместителей в положении 1 возможно образование продуктов замещения по алкильной (аралкильной) группе.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С всех полученных соединений зарегистрированы на приборе Varian VXR-400 (400 МГц), внутренний стандарт ТМС. Масс-спектры записаны на приборе MS Kratos с энергией ионизации 70 эВ. Контроль за ходом реакций осуществлялся методом TCX на пластинах Silufol UV-254. Исходные пирроло[1,2-*a*]пиразины 1–10 синтезированы по методике [10].

Трифторацетилирование пирроло[1,2-а]пиразинов (общая методика). А. Раствор 3 ммоль пирроло[1,2-а]пиразина в 10 мл сухого эфира охлаждают льдом, затем добавляют по каплям при перемешивании раствор 7.5 ммоль трифторуксусного ангидрида в 10 мл эфира. Реакционную смесь перемешивают 5–7 ч при комнатной температуре, после чего выливают в холодную воду, экстрагируют хлороформом, экстракт сушат ситами 3 Å, упаривают в вакууме. Остаток хроматографируют на колонке с силикагелем (100/160), элюируя бензолом или смесью этилацетат–петролейный эфир, 1:3. Соединение перекристаллизовывают из гептана.

Б. Смесь 3 ммоль пирроло[1,2-*a*]пиразина, 7.5 ммоль пиридина в 10 мл сухого эфира охлаждают льдом и прибавляют по каплям раствор 7.5 ммоль трифторуксусного ангидрида в 10 мл эфира. Реакционную смесь перемешивают 5–7 ч, далее обрабатывают аналогично методу А.

В. К 3 ммоль пирроло[1,2-*a*]пиразина в 10 мл сухого эфира при охлаждении льдом прибавляют по каплям раствор 30 ммоль трифторуксусного ангидрида в 15 мл эфира. Реакционную смесь перемешивают при комнатной температуре 3 сут. Далее обрабатывают аналогично методу А.

Г. К смеси 3 ммоль пирроло[1,2-*a*]пиразина, 30 ммоль пиридина в 15 мл сухого эфира при охлаждении льдом прибавляют по каплям раствор 30 ммоль трифторуксусного ангидрида в 15 мл эфира. Реакционную смесь перемешивают при комнатной температуре 3 сут. Далее обрабатывают аналогично методу А.

СПИСОК ЛИТЕРАТУРЫ

- 1. R. Buchan, M. Fraser, P. Kong Thoo Lin, J. Org. Chem., 54, 1074 (1989).
- 2. J. M. Minguez, M. I. Castellote, J. J. Vaquero, J. L. García-Navio, J. Alvarez-Builla, O. Castaño, J. Org. Chem., 61, 4655 (1996).
- 3. W. Paudler, D. Dunham, J. Heterocycl. Chem., 2, 410 (1965).
- 4. G. Maury, Chem. Heterocycl. Comp., 30, 223 (1977).
- 5. W. Cooper, J. Org. Chem, 23, 1382 (1958).
- 6. В. И. Теренин, Е. Л. Ручкина, К. В. Карапетян, В. М. Мамаев, Ю. Г. Бундель, *XTC*, 1566 (1995). [*Chem. Heterocycl. Comp.*, **31**, 1360 (1995)].
- 7. В. И. Теренин, Е. В. Кабанова, Н. А. Целищева, М. А. Ковалкина, А. П. Плешкова, Н. В. Зык, *XIC*, 431 (2004). [*Chem. Heterocycl. Comp.*, **40**, 351 (2004)].
- 8. M. Kawase, M. Teshima, S. Saito, S. Tani, Heterocycles, 48, 2103 (1998).
- 9. С. И. Бобровский, Д. Е. Лушников, Ю. Г. Бундель, *XГС*, 1634 (1989). [*Chem. Heterocycl. Comp.*, **25**, 1360 (1989)].
- В. И. Теренин, Е. В. Кабанова, Ю. Г. Бундель, ХГС, 763 (1991). [Chem. Heterocycl. Comp., 27, 597 (1991)].

Московский государственный университет им. М. В. Ломоносова, Химический факультет, Москва 119899, Россия e-mail: vter@org.chem.msu.ru Поступило 16.03.2005