С. А. Ямашкин, Е. А. Орешкина, Н. В. Жукова СИНТЕЗ ПИРРОЛО[2,3-*h*]ХИНОЛИНОВ ИЗ 2,3-ДИМЕТИЛ- И 1,2,3-ТРИМЕТИЛ-4-АМИНОИНДОЛОВ

Изучены реакции 2,3-диметил-, 1,2,3-триметил-4-аминоиндолов с ацетилацетоном, дибензоилметаном, ацетоуксусным, трифторацетоуксусным и щавелевоуксусным эфирами. Разработаны методы синтеза ряда замещенных пирроло[2,3-*h*]хинолинов.

Ключевые слова: ацетилацетон, ацетоуксусный эфир, дибензоилметан, 2,3-диметили 1,2,3-триметил-4-аминоиндолы, замещенные пирроло[2,3-*h*]хинолины, трифторацетоуксусный эфир, щавелевоуксусный эфир.

В рамках проводимых исследований по разработке методов синтеза пирролохинолинов, соединений с потенциальной биологической активностью, до настоящего времени не изучались реакции 2,3-диметил- (1) и 1,2,3-триметил-4-аминоиндолов (2) с β-дикарбонильными соединениями.

1 R = H; **2** R = Me; **3** R = H, R¹ = MeCO, R² = Me; **4** R = R² = Me, R¹ = MeCO; **5** R = H, R¹ = PhCO, R² = Ph; **6** R = Me, R¹ = PhCO, R² = Ph; **7**, **7a** (смесь) R = H; **8** R = Me; **9** R = H, R¹ = R² = CO₂Et

Мы установили, что амины **1**, **2** при нагревании с ацетилацетоном (~139 1234

°С) и дибензоилметаном (~180 °С) образуют енаминокетоны 3-6.

В спектрах ЯМР ¹Н (табл. 1) енаминокетонов **3–6** имеются синглетные сигналы протонов двух (соединения **3**, **5**) или трех (соединения **4**, **6**) метильных групп индольного фрагмента, винильного протона (=CH), 4-NH, H-1 (соединения **3**, **5**), два дублетных сигнала протонов H-5,7 и триплет H-6 с J = 8 Гц. Для соединений **3**, **4** в спектрах присутствуют также синглетные сигналы протонов метильных групп COCH₃ и =CCH₃, а для соединений **5**, **6** – мультиплеты протонов двух фенильных заместителей. УФ спектры структур **3–6** типичны для индолиленаминокетонов [1].

Под действием электронного удара распад молекулярных ионов енаминов **3–6** осуществляется по двум основным направлениям: элиминирование из молекулярного иона Me(Ph)CO· или Me(Ph)COCH₂ с образованием фрагментных ионов [M–Me(Ph)CO]⁺, [M–Me(Ph)COCH₂]⁺ соответственно. Это свидетельствует о том, что изучаемые соединения в газовой фазе находятся, по крайней мере, в двух формах: иминнной и енаминокетонной (табл. 2).

При взаимодействии аминоиндола 1 и 4,4,4-трифторацетоуксусного эфира при нагревании в бензоле с каталитическими количествами уксусной кислоты образуется смесь соединений. Согласно данным спектра ЯМР ¹Н, в реакционной смеси имеются нециклический амид 7 (повидимому в различных таутомерных формах) и циклический амид 7а. Соединения 7 и 7а в индивидуальном виде не выделялись. Факт образования смеси 7, 7а подтверждается и масс-спектром. Самым интенсивным является пик иона $[M-69]^+$ (100%), что соответствует потере молекулярным ионом радикала CF₃. Это направление распада является основным, как отмечалось ранее для циклических амидов, полученных из 6-аминоиндолов [1]. Интенсивный пик $[M-138]^+$ (82%) соответствует потере молекулярным ионом амида молекулы трифтордикетена с образованием иона соответствующего аминоиндола. Такое направление распада наблюдалось для описанных нециклических амидов.

В отличие от соединения 1, продуктом реакции амина 2 с трифторацетоуксусным эфиром является циклическая структура 8. В спектре ЯМР¹Н амида 8 имеются сигналы протонов метильных групп в положениях 7, 8 и 9, сигнал протона 4-ОН, а также два дублета АВ системы протонов H-5,6. Протоны метиленовой группы проявляются также в виде двух дублетов (2.86 и 3.03 м. д.) с КССВ 15 Гц. Неравноценность протонов H-3 объясняется влиянием различно расположенных групп CF₃ и OH у асимметрического атома С(4). Самым интенсивным в масс-спектре соединения 8 является пик фрагментного иона с m/z 243, соответствующий потере молекулярным ионом радикала CF₃, приводящей к стабильной протонированной пирроло[2,3-h]хинолиндионовой системе, что также подтверждает циклическую структуру соединения 8. Образование циклических амидов наблюдалось и для других 1-Ме замещенных аминоиндолов в реакции с трифторацетоуксусным эфиром [1] и объяснялось некоторым повышением реакционной способности атомов углерода бензольного кольца индола из-за влияния группы N-Me.

Спектры ЯМР¹Н соединений 3–16

Соеди- нения	Химические сдвиги, δ, м. д. (Ј, Гц)
3	1.80 (3H, c, =C-CH ₃), 2.00 (3H, c, O=C-CH ₃), 2.13 (3H, c, 3-CH ₃), 2.28 (3H, c, 2-CH ₃), 5.22 (1H, c, =CH), 6.71 (1H, π , $J_{5,6} = 8$, H-5), 6.94 (1H, π , $J_{5,6,7} = 8$, H-6), 7.15 (1H, π , $J_{7,6} = 8$, H-7), 10.91 (1H c 4-NH) 12.51 (1H c H-1)
4	1.80 (3H, c, =C-CH ₃), 2.00 (3H, c, O=C-CH ₃), 2.18 (3H, c, 3-CH ₃), 2.31 (3H, c, 2-CH ₃), 3.65 (3H, c, 1-CH ₃), 5.23 (1H, c, =CH), 6.76 (1H, μ , $J_{5,6}$ = 8, H-5), 7.05 (1H, π , $J_{5,67}$ = 8, H-6), 7.30 (1H, μ , $J_{7,6}$ = 8, H-7), 12.51 (1H, c, 4-NH)
5	2.34 (3H, c, 3-CH ₃), 2.48 (3H, c, 2-CH ₃), 6.08 (1H, π , $J_{5,6} = 8$, H-5), 6.21 (1H, c, =CH), 6.64 (1H, π , $J_{5,6,7} = 8$, H-6), 6.97 (1H, π , $J_{7,6} = 8$, H-7), 7.29–7.60 (10H, M, 2C ₆ H ₅), 10.90 (1H, c, H-1), 13.25 (1H, c, 4-NH)
6	2.36 (3H, c, 3-CH ₃), 2.50 (3H, c, 2-CH ₃), 3.65 (3H, c, 1-CH ₃), 6.12 (1H, π , $J_{5,6} = 8$, H-5), 6.22 (1H, c, =CH), 6.70 (1H, π , $J_{5,6,7} = 8$, H-6), 7.10 (1H, π , $J_{6,7} = 8$, H-7), 7.37–7.55 (10H, M , 2C ₆ H ₅), 13.27 (1H, c, 4-NH)
8	2.29 (3H, c, 9-CH ₃), 2.42 (3H, c, 8-CH ₃), 2.86 (1H, π , $J_{3H,3H}$ = 15, H-3), 3.03 (1H, π , $J_{3H',3H}$ = 15, H'-3), 3.61 (3H, c, 7-CH ₃), 6.80 (1H, c, 4-OH), 7.12 (1H, π , $J_{5,6}$ = 7, H-5), 7.28 (1H, π , $J_{6,5}$ = 7, H-6), 9.05 (1H, c, NH)
9a	0.94 (3H, T, $J = 7$, COOCH ₂ CH ₃ xenat.), 1.24 (3H, T, $J = 7$, COOCH ₂ CH ₃), 2.30 (3H, c, 3-CH ₃), 2.34 (3H, c, 2-CH ₃), 4.05 (2H, κ , $J = 7$, COOCH ₂ CH ₃ xenat.), 4.15 (2H, κ , $J = 7$, COOCH ₂ CH ₃ Xenat.), 5.14 (1H, c, =CH), 6.30 (1H, π , $J_{5,6} = 8$, H-5), 6.85 (1H, T, $J_{5,6,7} = 8$, H-6), 7.04 (1H, π , $J_{7,6} = 7$, H-7), 10.05 (1H, c, 4-NH), 10.86 (1H, c, H-1)
9b	1.24 (3H, T, $J = 7$, 2-COOCH ₂ CH ₃), 2.20 (3H, c, 3-CH ₃), 2.34 (3H, c, 2-CH ₃), 4.15 (2H, κ , $J = 7$, 2-COO <u>CH₂CH₃</u>), 4.71 (2H, c, -CH ₂ -), 6.09 (1H, μ , $J_{5,6} = 8$, H-5), 6.48 (1H, μ , $J_{7,6} = 8$, H-7), 6.63 (1H, π , $J_{5,67} = 8$, H-6), 10.27 (1H, c, H-1)
10	2.35 (3H, c, 8-CH ₃), 2.60 (6H, c, 2-, 4-CH ₃), 2.65 (3H, c, 9-CH ₃), 7.08 (1H, c, H-3), 7.45 (1H, π , $J_{6,5} = 8$, H-6), 7.51 (1H, π , $J_{5,6} = 8$, H-5), 11.15 (1H, c, H-7)
11	2.38 (3H, c, 8-CH ₃), 2.62 (3H, c, 4-CH ₃), 2.64 (3H, c, 2-CH ₃), 2.72 (3H, c, 9-CH ₃), 3.76 (3H, c, 7-CH ₃), 7.10 (1H, c, H-3), 7.57 (1H, π , $J_{6,5} = 8$, H-6), 7.64 (1H, π , $J_{5,6} = 8$, H-5)
12	2.44 (3H, c, 8-CH ₃), 2.84 (3H, c, 9-CH ₃), 7.36 (1H, μ , $J_{5,6} = 8$, H-5), 7.48 (1H, π , $J = 7$, 4-H _{<i>p</i>-Ph}), 7.52 (1H, μ , $J_{6,5} = 8$, H-6), 7.55–7.65 (7H, μ , 4-H _{<i>o</i>-, m-Ph} , 6-H _{<i>m</i>-, <i>p</i>-Ph}), 7.88 (1H, c, H-3), 8.40 (1H, μ , $J = 7$, 2-H _{<i>o</i>-Ph}), 11.38 (1H, c, H-7)
13	2.45 (3H, c, 8-CH ₃), 2.85 (3H, c, 9-CH ₃), 3.80 (3H, c, 7-CH ₃), 7.42 (1H, π , $J_{5,6} = 8$, H-5), 7.48 (1H, π , $J = 7$, $4H_{p-Ph}$), 7.50–7.53 (7H, M, 4-H _{o-, m-Ph} , 2-H _{m-, p-Ph}), 7.70 (1H, π , $J_{6,5} = 8$, H-6), 7.87 (1H, c, H-3), 8.40 (2H, π , $J = 7$, 2-H _{o-Ph})
14	2.35 (3H, c, 8-CH ₃), 2.58 (3H, c, 9-CH ₃), 3.75 (3H, c, 7-CH ₃), 6.80 (1H, c, H-3), 7.38 (1H, μ , $J_{5,6} = 8$, H-5), 7.45 (1H, μ , $J_{6,5} = 8$, H-6), 10.10 (1H, c, H-1)
15	2.33 (3H, c, 8-CH ₃), 2.52 (3H, c, 9-CH ₃), 6.80 (1H, c, H-3), 7.30 (2H, уш. c, <i>J</i> _{5,6} = 8, H-5,6), 10.11 (1H, c, H-1), 11.44 (1H, c, H-7)
16A	1.29 (3H, τ , $J = 7$, 2-COOCH ₂ CH ₃), 2.19 (3H, c, 8-CH ₃), 2.70 (3H, c, 9-CH ₃), 4.38 (2H, κ , $J = 7$, 2-COO <u>CH₂CH₃</u>), 7.44 (1H, c, H-3), 7.55 (1H, π , $J_{5,6} = 8$, H-5), 7.70 (1H, π , $J_{6,5} = 8$, H-6), 11.24 (1H, c, H-7), 11.34 (1H, c, 4-OH)
16B	1.29 (3H, τ , $J = 7$, 2-COOCH ₂ CH ₃), 2.16 (3H, c , 8-CH ₃), 2.58 (3H, c , 9-CH ₃), 4.94 (2H, κ , $J = 7$, 2-COO <u>CH₂CH₃</u>), 6.64 (1H, c , H-3), 7.32 (1H, π , $J_{5,6} = 8$, H-5), 7.72 (1H, π , $J_{6,5} = 8$, H-6), 9.73 (1H, c , H-1), 11.50 (1H, c , H-7)

УФ и масс-спектры соединений 3-16

Caarry	УФ спектр					
нения	λ _{max} , HM	lg ε	(<i>I</i> _{OTH} , %)			
3	227 314	4.45 4.21	242 [M] ⁺ (100), 227 (31), 225 (55), 212 (11), 211 (11), 200 (13), 199 (72), 197 (11), 186 (13), 185 (99), 184 (79), 183 (33), 182 (13), 170 (48), 169 (13), 159 (20), 158 (19), 144 (23), 143 (20), 115 (14), 114 (14)			
4	229 318	4.46 4.23	256 [M] ⁺ (61), 241 (11), 213 (40), 199 (60), 198 (62), 184 (48), 183 (18), 173 (19), 158 (22), 157 (12), 143 (12), 128 (14), 120 (24), 116 (13), 115 (26), 99 (27), 98 (25), 84 (31), 43 (100)			
5	224 344	4.54 4.18	366 [M] ⁺ (25), 261 (39), 247 (34), 246 (23), 159 (11), 158 (11), 145 (11), 144 (11), 115 (14), 105 (77), 77 (100), 51 (16)			
6	226 345	4.45 4.09	380 [M] ⁺ (9), 275 (27), 261 (34), 260 (30), 173 (11), 158 (11), 105 (57), 77 (100)			
7, 7a			298 [M] ⁺ (33), 279 (13), 257 (13), 229 (100), 187 (67), 160 (82), 159 (93), 69 (82)			
8	232 305	4.53 3.93	312 [M] ⁺ (27), 244 (15), 243 (100), 225 (10), 173 (30)			
9a	223 280 345	4.47 4.08 3.90	330 [M] ⁺ (48), 284 (9), 257 (63), 256 (20). 211 (54), 210 (41), 209 (26), 183 (100), 170 (57), 143 (33), 115 (33), 77 (20), 57 (20), 43 (30)			
10	227 265 339	4.45 4.35 3.90	224 [M] ⁺ (100), 223 (70), 209 (24), 112 (21)			
11	236 266 342	4.45 4.36 3.96	238 [M] ⁺ (89), 237 (49), 223 (100), 224 (17), 181 (13), 119 (44)			
12	224 245 295 360	4.45 4.56 4.33 3.97	348 [M] ⁺ (100), 347 (35), 174 (37), 77 (33)			
13	225 248 270 365	4.55 4.68 4.54 4.11	362 [M] ⁺ (100), 361 (26), 348 (11), 347 (48), 181 (87), 180 (26), 173 (39), 77 (54)			
14	218 240 281 345	4.52 4.42 4.33 3.83	294 [M] ⁺ (100), 293 (87), 279 (48), 147 (26), 69 (25)			
15	215 234 281 340	4.48 4.31 4.27 3.78	280 [M] ⁺ (100), 279 (83), 265 (37), 69 (45)			
16	240 284 380	4.72 4.17 3.85	284 [M] ⁺ (50), 211 (22), 210 (100), 182 (70), 181 (48), 167 (12), 154 (28), 127 (20), 115 (14), 77 (27), 63 (20), 45 (28)			

1237

Аналогичная реакция в тех же условиях аминоиндола 1 с щавелевоуксусным эфиром, в отличие от трифторацетоуксусного, протекает с образованием диэтилового эфира (4-амино-2,3-диметилиндолил)фумаровой кислоты (9). По данным спектра ЯМР ¹Н, в ДМСО-d₆ помимо енаминной (~80%) (наличие синглетов протонов =СН и 4-NH) обнаруживается иминная (~20%) форма соединения 9 (отсутствие сигналов винильного и аминного протонов и присутствие сигнала протонов метиленовой группы). Два триплета и два квадруплета протонов двух этоксикарбонильных групп в спектре также свидетельствуют о реализации конденсации 2,3-диметил-4-аминоиндола за счет кетонной группы щавелевоуксусного эфира с образованием енамина 9. Строение и состав соединения 9 подтверждаются и масс-спектром, в котором пик максимальной интенсивности с m/z 183 (100%) соответствует последовательному элиминированию из молекулярного иона этоксикарбонильного радикала, молекул EtOH и CO.

Далее соединения **3–8** были исследованы в условиях кислотной циклизации. При этом енаминокетоны **3–6** в трифторуксусной кислоте образуют ожидаемые пирролохинолины **10–13**.

10 R = H, $R^1 = Me$; **11** $R = R^1 = Me$; **12** R = H, $R^1 = Ph$; **13** R = Me, $R^1 = Ph$

В спектрах ЯМР ¹Н соединений **10**, **11** имеются синглетные сигналы протонов групп 2-, 4-, 8-, 9-СН₃, H-3,7 (для **10**), 7-СН₃ (для **11**), а также дублеты протонов H-5 и H-6. Спектры соединений **12**, **13** отличаются отсутствием сигналов протонов групп 2- и 4-СН₃, характерных для пирролохинолинов **10**, **11**, и наличием мультиплетов протонов фенильных заместителей.

Поведение амидов (7, 7а), 8 в условиях кислотной циклизации различно. Так, если метилированный амид 8 в течение 3.5 ч превращается в соответствующий пирролохинолин 14, то кипячение в течение 30 ч смеси соединений 7, 7а в CF₃COOH к полной циклизации не приводит. И только применение более жестких условий (ZnCl₂, 140 °C) позволяет получить индивидуальный пирролохинолин 15.

В спектрах ЯМР ¹Н соединений 14 и 15 наблюдаются два (для соеди-1238 нения 15) и три сигнала протонов метильных групп (для соединения 14), сигнал ароматического протона H-3, а также синглеты протонов H-7 (для соединения 15), H-1 и двух дублетов протонов H-5,6. В масс-спектре пирролохинолинов 14, 15 кроме пиков молекулярных ионов, соответственно, с m/z 294 (100) и 280 (100%) имеются лишь пики ионов [M–H]⁺ (83 и 87%) и [M–CH₃]⁺ (37 и 48%), что говорит об устойчивости молекул к электронному удару.

Продукт конденсации 4-амино-2,3-диметилиндола с щавелевоуксусным эфиром 9 превращается в пирролохинолин 16 в термических условиях (в кипящем дифениле).

Согласно данным спектра ЯМР ¹Н, в ДМСО-d₆ соединение **16** находится в двух таутомерных формах: гидроксихинолиновой (**A**) и хинолоновой (**B**) в соотношении 3:1 (по интегральной интенсивности протонов). В спектре имеются для обеих форм триплет и квадруплет протонов группы 2-CO₂Et, сигналы протонов 8-, 9-CH₃, H-3,7, два дублета протонов H-5,6, а также синглеты протонов группы 4-OH (для формы **A**) и протона H-1 (для формы **B**). Кроме того, различия в спектрах таутомеров **A**, **B** заключается и в различных химических сдвигах сигналов однотипных протонов. Так, сигнал протона H-3 для формы **A** проявляется в более слабых полях, чем аналогичный сигнал для формы **B** ($\Delta \delta = 1$ м. д.). Отнесение сигналов протонов к той или иной форме осуществляли сравнительным анализом расчетных спектров ЯМР ¹Н таутомеров **A**, **B**, а также экспериментальных спектральных характеристик соединений **10–15**.

В масс-спектре пирролохинолина **16** наблюдается пик молекулярного иона $[M]^+$ (55%), наиболее интенсивными являются пики ионов с m/z 210 (100) и 182 (70%), что соответствует последовательному элиминированию из молекулярного иона HCOOEt и CO.

Таким образом, нами изучено поведение 4-аминоиндолов 1, 2 в реакциях с ацетилацетоном, дибензоилметаном, трифторацетоуксусным и цавелевоуксусным эфирами. На основе этих исследований разработаны методы синтеза соответствующих пирроло[2,3-h]хинолинов. Оценивая реакционную способность изученных аминов на первичной стадии взаимодействия с дикарбонильным компонентом, следует отметить их относительную инертность по сравнению со всеми замещенными 5-, 6-амино-индолами и 7-амино-2,3-диметилиндолом [2, 3], конденсация которых с ацетилацетоном и дибензоилметаном протекает при нагревании (139–180 °C)

Соеди- нение	Брутто- формула	H	<u>Найдено</u> Зычислено		R_f^*	Т. пл., °С **	Выход, %
		С, %	Н, %	М			
3	$C_{15}H_{18}N_2O$	<u>74.23</u> 74.35	<u>7.65</u> 7.49	<u>242</u> 242	0.48	96–97	53
4	$C_{16}H_{20}N_2O$	<u>74.88</u> 74.97	<u>7.98</u> 7.86	<u>256</u> 256	0.61	100–101	39
5	$C_{25}H_{22}N_2O$	<u>81.72</u> 81.94	<u>6.29</u> 6.05	<u>366</u> 366	0.61	152–153	45
6	$C_{26}H_{24}N_2O$	<u>81.71</u> 82.07	<u>6.80</u> 6.36	<u>380</u> 380	0.68	150–51	41
8	$C_{15}H_{15}F_{3}N_{2}O_{2}$	<u>57.51</u> 57.69	<u>4.96</u> 4.84	<u>312</u> 312	0.76	206–207	50
9	$C_{18}H_{22}N_2O_4$	<u>65.21</u> 65.44	<u>6.92</u> 6.71	<u>330</u> 330	0.48	113	27
10	$C_{15}H_{16}N_2$	<u>80.20</u> 80.32	<u>7.34</u> 7.19	<u>224</u> 224	0.56	158	67
11	$C_{16}H_{18}N_2$	<u>80.44</u> 80.63	<u>7.72</u> 7.61	<u>238</u> 238	0.42	196–197	77
12	$C_{25}H_{22}N_2$	<u>86.00</u> 86.17	<u>5.91</u> 5.79	<u>348</u> 348	0.77	274–275	79
13	$C_{26}H_{22}N_2$	-	-	<u>362</u> 362	0.83	204–205	91
14	$C_{15}H_{13}F_{3}N_{2}O$	<u>61.03</u> 61.22	<u>4.67</u> 4.45	<u>294</u> 294	0.54	237–238	95
15	$C_{14}H_{11}F_3N_2O$	<u>59.54</u> 60.00	<u>4.46</u> 3.96	<u>280</u> 280	0.47	266–267	76
16	$C_{16}H_{16}N_2O_3$	<u>67.49</u> 67.59	<u>5.69</u> 5.67	<u>284</u> 284	0.43	273	47

Физико-химические характеристики соединений 3-6, 8-16

в течение 0.5–1.5 ч. Для завершения этих же реакций в тех же условиях в случае 4-аминоиндолов требуется 2–7 ч. По-видимому, в соединениях 1, 2 метильная группа в положении 3 экранирует аминный атом азота, аналогично тому, как действует группа N–CH₃ в 7-амино-1,2,3-триметилиндоле. Так, известно, что из этого аминоиндола енамин образуется труднее, чем из 7-амино-2,3-диметилиндола [3]. Поскольку согласно квантово-химическим расчетам заряды на атомах азота аминогрупп 1240

^{*} Системы: бензол-этилацетат, 3:1 (соединения **3**, **4**, **10**, **11**), 1:1 (соединения **8**, **15**), 10:1 (соединение **9**), 1:2 (соединение **14**); хлороформ-следы метанола (соединения **5**, **6**, **12**, **13**, **16**).

^{**} Растворители: петролейный эфир (соединения 3, 4, 9), хлороформ (соединения 5, 6), бензол-петролейный эфир (соединения 8, 10, 14, 15), этанол (соединения 11, 12), гексан (соединение 13), спирт (соединение 16).

соединений **1**, **2** близки (0.066, 0.059 соответственно), то меньшую активность 4-амино-1,2,3-триметилиндола (**2**) по сравнению с 4-амино-2,3-диметилиндолом (**1**) следует объяснять взаимным пространственным влиянием трех метильных групп друг на друга.

Трудности при циклизации енаминов 4, 6, по-видимому, обусловлены (в силу их большой основности) наличием в CF₃COOH протонированных (по атому $C_{(3)}$) форм. Это приводит к снижению реакционной способности положения 5 индола для электрофильного замыкания пиридинового кольца. Аналогично, жесткие условия необходимы и для циклизации нециклического амида 7. Ароматизация же циклических амидов 7а и 8 протекает гладко в кипящей CF₃COOH. Успешно протекает и термическая циклизация енамина 9 без участия кислоты, что свидетельствует в пользу высказанных предположений.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н записаны на приборе Bruker DRX 500 (500 МГц) в ДМСО-d₆ относительно ТМС. Масс-спектры получены на масс-спектрометре Finnigan MAT Incos-50 с прямым вводом образца в ионный источник при энергии ионизации 70 эВ. Электронные спектры зарегистрированы на спектрофотометре Specord в этаноле. Очистка продуктов реакции проводилась методом колоночной хроматографии и методом препаративной хроматографии в толстом незакрепленном слое оксида алюминия (нейтральный, I и II ст. акт. по Брокману). Контроль за ходом реакций и чистотой полученных соединений осуществлялся TCX на пластинках Silufol UV-254 в системах бензол–этилацетат.

Физико-химические характеристики соединений 3-6 и 8-16 приведены в табл. 3.

Квантово-химический расчет молекул аминоиндолов 1, 2 проведен полуэмпирическим методом PM3 (RHF; algorithm: Polak Ribiere; RMS gradient: $0.01 \text{ ккал/A} \cdot \text{моль}$) с использованием пакета программ *Hyper Chem* 7.0.

(Z)-4-[(2,3-Диметил-1Н-индол-4-ил)амино]пент-3-ен-2-он (3). Смесь 0.40 г (2.50 ммоль) 4-амино-2,3-диметилиндола (1) и 3 мл ацетилацетона кипятят 2 ч, избыток ацетилацетона отгоняют в вакууме. Остаток растворяют в смеси бензола с петролейным эфиром и фильтруют горячий раствор через слой (2 см) Al₂O₃. Фильтрат охлаждают. Выпавший осадок енамина **3** отфильтровывают. Перекристаллизовывают из петролейного эфира. Выход 0.32 г.

(*Z*)-4-[(1,2,3-Триметил-1Н-индол-4-ил)амино]пент-3-ен-2-он (4) получают аналогично из 0.30 г (1.72 ммоль) 4-амино-1,2,3-триметилиндола (2), кипятят 2.5 ч. Перекристаллизовывают из петролейного эфира. Выход 0.17 г.

(Z)-3-[(2,3-Диметил-1Н-индол-4-ил)амино]-1,3-дифенилпроп-2-ен-1-он (5). Смесь 0.16 г (0.99 ммоль) аминоиндола 1 и 0.33 г (1.48 ммоль) дибензоилметана выдерживают 2.5 ч при 180–185 °C. По окончании реакции (хроматографический контроль) соединение 5 выделяют препаративной хроматографией в толстом слое Al₂O₃ в хлороформе. Выход 0.16 г.

(Z)-3-[(1,2,3-Триметил-1Н-индол-4-ил)амино]-1,3-дифенилпроп-2-ен-1-он (6) получают аналогично из смеси 0.45 г (2.59 ммоль) аминоиндола 2 и 1.16 г (5.17 ммоль) дибензоилметана, выдерживают 7 ч при 180–185 °С. Выход 0.35 г.

4-Гидрокси-7,8,9-триметил-4-(трифторметил)-1,2,3,4-тетрагидро-2H-пирроло[2,3-*h***]хинолин-2-он (8). Смесь 0.40 г (2.29 ммоль) аминоиндола 2 и 0.45 г (2.44 ммоль) этилового эфира 4,4,4-трифторацетоуксусной кислоты в 200 мл абсолютного бензола в присутствии каталитического количества ледяной АсОН кипятят 21 ч с насадкой Дина–Старка. После того как весь аминоиндол вступил в реакцию (хроматографический контроль), объем реакционной смеси доводят отгонкой бензола до 50 мл. Выпавший осадок амида отфильтровывают, промывают бензолом. Очищают перекристаллизацией из петролейного эфира. Выход 0.36 г.**

Диэтиловый эфир [(2,3-диметил-1Н-индол-4-ил)амино]фумаровой кислоты (9) получают аналогично из 0.595 г (3.72 ммоль) аминоиндола 1 и 0.7 г (3.72 ммоль) 1241 цавелевоуксусного эфира, нагревают 44 ч. Перекристаллизовывают из смеси бензолпетролейный эфир, 3 : 1. Выход 0.334 г.

2,4,8,9-Тетраметил-7Н-пирроло[2,3-*h***]хинолин (10)**. В течение 4 ч кипятят 0.14 г (0.58 ммоль) енамина **3** в 10-кратном избытке трифторуксусной кислоты. По окончании реакции (хроматографический контроль) реакционную смесь выливают в 12% водный аммиак со льдом. Выпавший осадок отфильтровывают, многократно промывают водой. Сушат на воздухе. Перекристаллизовывают из смеси бензол–петролейный эфир. Выход 0.086 г.

2,4,7,8,9-Пентаметил-7Н-пирроло[2,3-*h***]хинолин (11)** получают аналогично из 0.16 г (0.63 ммоль) енамина **4**, нагревают 6 ч. Перекристаллизовывают из водного этанола. Выход 0.114 г.

8,9-Диметил-2,4-дифенил-7Н-пирроло[2,3-*h***]хинолин (12)** получают аналогично из 0.067 г (0.18 ммоль) енамина **5**, нагревают 5 ч. Перекристаллизовывают из этанола. Выход 0.05 г.

2,4-Дифенил-7,8,9-триметил-7Н-пирроло[2,3-*h***]хинолин (13) получают аналогично из 0.120 г (0.32 ммоль) енамина 6, нагревают 10 ч. Выход 0.1 г.**

7,8,9-Триметил-4-(трифторметил)-1,7-дигидро-2Н-пирроло[2,3-*h***]хинолин-2-он (14) получают аналогично из 0.067 г (0.21 ммоль) амида 8**, нагревают 3.5 ч. Очищают перекристаллизацией из этанола. Выход 0.06 г.

8,9-Диметил-4-(трифторметил)-1,7-дигидро-2Н-пирроло[2,3-*h***]хинолин-2-он (15). Смесь 0.22 г (1.38 ммоль) аминоиндола 1 и 0.26 г (1.39 ммоль) этилового эфира 4,4,4трифторацетоуксусной кислоты в 200 мл абсолютного бензола в присутствии каталитического количества ледяной АсОН кипятят 17 ч с насадкой Дина–Старка. После того как весь аминоиндол вступил в реакцию (хроматографический контроль), объем реакционной смеси доводят отгонкой бензола до 50 мл. Выпавший осадок отфильтровывают, промывают бензолом. Полученную смесь соединений 7, 7а и 10-кратного избытка ZnCl₂ нагревают 2 ч при 140–145 °C. По окончании реакции (хроматографический контроль) реакционную массу обрабатывают разбавленным (10–12%) водным аммиаком, выпавший осадок отфильтровывают, промывают многократно теплой водой, сушат на воздухе. Очищают перекристаллизацией из бензола. Выход 0.203 г.**

4-Гидрокси-8,9-диметил-2-этоксикарбонил-7Н-пирроло[2,3-*h***]хинолин (А) и 8,9-диметил-4-оксо-2-этоксикарбонил-4,7-дигидро-7Н-пирроло[2,3-***h***]хинолин (В) (16). В 5 мл кипящего дифенила добавляют 0.15 г (0.45 ммоль) енамина 9** и нагревают 15 мин. По окончании реакции (хроматографический контроль) еще теплую реакционную массу выливают в петролейный эфир. Выпавший осадок отфильтровывают и многократно промывают горячим петролейным эфиром от дифенила. Очищают перекристаллизацией из этанола. Выход 0.06 г.

СПИСОК ЛИТЕРАТУРЫ

- 1. С. А. Ямашкин, Е. А. Орешкина, И. С. Романова, М. А. Юровская, *XГС*, 1529 (2005). [*Chem. Heterocycl. Comp.*, **41**, 1280 (2005)].
- А. Н. Кост, С. А. Ямашкин, Л. Г. Юдин, ХГС, 770 (1977). [Chem. Heterocycl. Comp., 13, 624 (1977)].
- 3. С. А. Ямашкин, И. А. Батанов, XГС, 58 (1995). [Chem. Heterocycl. Comp., 31, 50 (1995)].

Мордовский государственный университет им. Н. П. Огарева, Саранск 430000, Россия e-mail: biotech@moris.ru Поступило 13.03.2006