Н. Е. Сидорина, В. А. Осянин^а

1Н-АЗОЛЫ В РЕАКЦИИ С 2-ГИДРОКСИБЕНЗИЛОВЫМИ СПИРТАМИ

Конденсацией 1Н-азолов с 2-гидроксибензиловыми спиртами получен ряд 2-(1Назол-1-илметил)фенолов. Из 2-метилмеркаптобензимидазола и 2-гидроксибензилового спирта синтезирован 12Н-бензимидазо[2,1-*b*][1,3]бензоксазин. Обсуждаются данные РСА 7-нитро-2,3-дифенил-5Н-имидазо[2,1-*b*][1,3]бензоксазина.

Ключевые слова: 1Н-азолы, 2-(1Н-азол-1-илметил)фенолы, (бенз)имидазо[2,1-*b*]-[1,3]бензоксазины, 2-гидроксиметилфенолы, *о*-метиленхиноны, РСА.

В последнее время *о*-метиленхиноны (*о*-хинонметиды) все чаще используются для построения новых кислородсодержащих гетероциклических систем [1–3] и модификации уже существующих [4, 5]. В продолжение работы по изучению взаимодействия азотсодержащих нуклеофилов с *о*-метиленхинонами нами исследована реакция между 2-гидроксибензиловыми спиртами и 1H-азолами.

1b, **3c** R = H; **1a**, **3a**, **b**, **f** R = NO₂; **1c**, **3d**, **e** R = Br; **2**, **3 b** X = Me; **c** X = CF₃

В качестве азолов выбран ряд соединений, значительно различающихся по основности. Значение рКа варьируется в пределах от 2.20 (для 1,2,4-триазола) до 6.95 (для имидазола) [6]. Несмотря на существенное различие в значениях рКа, все перечисленные гетероциклы легко реагируют с 2-гидроксибензиловыми спиртами. *о*-Метиленхинон генерируется *in situ* термически, при этом молекула азола выступает и в качестве нуклеофила, атакующего *о*-метиленхинон, и в роли основания, облегчающего дегидратацию спирта. Во время реакции молекулы азолов обеспечивают лишь незначительную концентрацию *о*-метиленхинона, что препятствует его олигомеризации и приводит к высокому выходу продуктов N-бензилирования.

Соединение **3a** было получено также встречным синтезом из бис-(имидазол-1-ил)сульфоксида и 2-гидрокси-5-нитробензилового спирта (**1a**) в среде ТГФ. В работах [7, 8] имеются указания на проведение такой реакции, но конкретных экспериментальных данных авторы не приводят [9]. Процесс, по-видимому, протекает через образование *о*-метиленхинона, который в данном случае генерируется при значительно более низкой температуре.

Образцы 2-(1Н-имидазол-1-илметил)-4-нитрофенола (**3a**), полученные двумя способами, имеют идентичные спектральные данные и не дают депрессии температуры плавления.

При наличии подходящего заместителя в молекуле азола в β-положении к группе NH возможно протекание последующей внутримолекулярной гетероциклизации промежуточно образовавшегося 2-(1H-азол-1илметил)фенола.

Так, в работе [10] нами показано, что при взаимодействии 2-бром-4,5дифенилимидазола (2f) и 2-гидрокси-5-нитробензилового спирта (1a) образуется 7-нитро-2,3-дифенил-5Н-имидазо[2,1-*b*][1,3]бензоксазин (4).

1257

Аналогичного рода гетероциклическая система может быть построена и из 2-метилмеркаптобензимидазола (2g). При его термической конденсации с салициловым спиртом 1b образуется 12H-бензимидазо[2,1-*b*]-[1,3]бензоксазин (5). Процесс его образования можно представить следующим образом

В то время, как моноциклические продукты **За–е** легко алкилируются по основному атому азота алкил- и бензилгалогенидами, в случае полициклического соединения **4** процесс протекает только под действием сильных алкилирующих агентов, в частности, Et₃O·BF₄.

Следует отметить, что при наличии сильных акцепторных заместителей в молекулах галогензамещенных азолов при высокой температуре (160–170 °C) алкилирование 2-гидроксибензиловыми спиртами не удается провести селективно. При взаимодействии 2,4,5-трибромимидазола, 5,6-динитро-2-хлорбензимидазола или 5(4)-иод-2-метил-4(5)-нитроимидазола с салициловым спиртом образуется сложная смесь продуктов, выделить из которой индивидуальные компоненты не удалось.

Реакция образования 2-(азол-1-илметил)фенолов носит общий характер, природа азола не оказывает существенного влияния на выход целевого продукта.

Полученные продукты **3a-f** представляют собой кристаллические термостабильные высокоплавкие вещества, плохо растворимые в воде и большинстве органических растворителей. В отличие от моноциклических соединений **3a-f** полициклические имидазо[2,1-*b*][1,3]бензоксазины

		•			1	
Соединение	Брутто- формула	<u>Найдено, %</u> Вычислено, %			Т. пл., °С	Выход, %
		С	Н	Ν		(метод)
3 a	$C_{10}H_9N_3O_3$	<u>54.65</u> 54.79	<u>4.16</u> 4.11	<u>18.77</u> 19.18	248–250	79 (А), 65 (Б)
3b	$C_{15}H_{13}N_3O_3$	<u>63.44</u> 63.60	<u>4.65</u> 4.59	<u>14.53</u> 14.84	255–257	71
3c	$C_{15}H_{11}F_3N_2O$	<u>61.48</u> 61.64	<u>3.82</u> 3.77	<u>9.59</u> 9.39	216–217	69
3d	$C_{15}H_{10}BrF_3N_2O$	<u>48.40</u> 48.52	<u>2.73</u> 2.70	<u>7.39</u> 7.55	240–242	73
3e	C ₉ H ₈ BrN ₃ O	<u>42.41</u> 42.52	<u>3.19</u> 3.15	<u>16.19</u> 16.54	173–174	75
3f	$C_{13}H_{10}N_4O_3$	<u>57.63</u> 57.78	$\frac{3.74}{3.70}$	$\frac{20.30}{20.74}$	241–242	70
4*	$C_{22}H_{15}N_3O_3$	<u>75.35</u> 75.54	<u>4.12</u> 4.07	<u>11.14</u> 11.38	234–235	80
5	$C_{14}H_{10}N_2O$	<u>75.49</u> 75.68	<u>4.55</u> 4.50	<u>12.34</u> 12.61	233–235	65

Характеристики синтезированных соединений За–f, 4 и 5

Таблица 1

* По данным работы [10].

легко растворимы в дихлорметане, диоксане, ацетоне. Следует отметить растворимость 2-(азол-1-илметил)фенолов в разбавленных растворах кислот и щелочей, что связано с протеканием процессов солеобразования. В то же время (бенз)имидазо[2,1-*b*][1,3]бензоксазины 4 и 5 практически не растворимы в водных растворах кислот, несмотря на наличие основного атома азота.

Для всех синтезированных соединений в спектрах ЯМР ¹Н присутствуют сигналы протонов метиленовой группы в области 5.12–5.95 м. д. Кроме того, для соединений **За-f** имеется сигнал при 8.9–10.4 м. д., отвечающий протону группы OH.

В ИК спектрах имеются полосы поглощения, отвечающие колебаниям связей в ароматических кольцах (C=C/C=N) при 1600 и связей CH_{аром} при 760–741 см⁻¹. В спектрах соединений **4** и **5** присутствуют полосы поглощения средней интенсивности при 1269–1270 см⁻¹, соответствующие колебаниям фрагмента С–О–С, а для соединенией **3а–f** характерно наличие широкой полосы поглощения при 3400–2500 см⁻¹ гидроксильной группы, ассоциированной водородными связями. В случае соединений **3а,b,f** и **4** имеются характеристические полосы поглощения нитрогруппы в области 1562–1520 и 1342–1327 см⁻¹.

Распад молекулярных ионов соединений 4 и 5, образующихся при их ионизации электронами протекает неселективно; интенсивность пика молекулярного иона соединения 4 максимальна, а для соединения 5 максимальную интенсивность имеет ион $[M-H]^+$ за счет отщепления циклического атома водорода оксазинового кольца, что объясняется образованием единой цепи сопряжения.

В спектрах ЯМР ¹Н соединений 4 и 5 отсутствуют сигналы в области ~9.0 м. д., а в ИК спектре не наблюдается широкой интенсивной полосы поглощения в области $3400-2500 \text{ см}^{-1}$, что подтверждает циклическое строение молекул этих соединений (табл. 2).

Структура соединения **4** подтверждается также данными РСА монокристалла. Геометрия молекулы, нумерация атомов, основные длины связей, основные валентные и торсионные углы приведены на рис. 1 и в табл. 3.

Т	а	б	Л	И	Ц	а	2
---	---	---	---	---	---	---	---

Соеди- нение	ИК спектр, v, см ⁻¹	Спектр ЯМР ¹ Н, б, м. д. (<i>J</i> , Гц)		
3a	3394, 3136–3086, 2372, 1597, 1558, 1477, 1339, 1296, 1145, 1088, 837, 748	5.40 (2H, c, CH ₂), 6.93 (1H, μ , $J = 8.0$, H_{Az} -4); 7.23 (1H, μ , $J = 7.2$, H-6); 7.53 (1H, μ , $J = 8.0$, H_{Az} -5); 7.97 (1H, c, H_{Az} -2); 8.05 (1H, μ , $J = 7.2$, H-5); 8.20 (1H, c, H-3); 9.25 (1H, c, OH)		
3b	3250–2400, 1616, 1593, 1524, 1497, 1427, 1327, 1285, 741	2.49 (3H, c, CH ₃); 5.31 (2H, c, CH ₂); 7.23 (1H, д, <i>J</i> = 8, H-6); 7.27–7.39 (4H, м, H _{Az} -4-7); 7.91 (1H, c, H-3); 7.94 (1H, д, <i>J</i> = 8, H-5); 9.51 (1H, c, OH)		
3c	3148–3086, 1601, 1520, 1458, 1277, 1180, 1153, 1122, 1095, 744	5.62 (2H, c, CH ₂); 6.89 (1H, τ , $J = 7.8$, H-4); 6.96–7.01 (2H, μ , H-3, 6); 7.28–7.49 (4H, μ , H _{Az} -5,6,7, H-5); 7.98 (1H, μ , $J = 8.6$, H _{Az} -4); 9.75 (1H, c, OH)		
3d	3063–2955, 1593, 1520, 1477, 1423, 1265, 1195, 1138, 1095, 818, 748	5.61 (2H, c, CH ₂); 6.91–7.37 (4H, M, H _{Az} -5, H- 3,5,6); 7.49 (1H, t, $J = 7$, H _{Az} -6); 7.78 (1H, д, J = 8, H _{Az} -7); 7.89 (1H, д, $J = 8.5$, H _{Az} -4); 9.71 (1H, c, OH)		
3e	3105–2604, 1589, 1497, 1435, 1346, 1277, 1142, 1107, 1018, 818, 760, 671, 656	5.31 (2H, c, CH ₂); 6.82 (1H, π , $J = 8$, H-5); 7.18 (1H, c, H-3); 7.31 (1H, π , $J = 8$, H-6); 7.94 (1H, c, H _{Az} -3); 8.51 (1H, c, H _{Az} -5); 10.08 (1H, c, OH)		
3f	3300-2500, 1620, 1593, 1527, 1497, 1447, 1339, 1300, 1273, 1088,748	5.95 (2H, c, CH ₂); 7.03 (1H, π , J = 8.3, H-6); 7.41 (1H, π , J = 8.4, H _{Az} -6); 7.55 (1H, π , J = 8.4, H _{Az} -5); 7.83 (2H, M , H _{Az} -7, H-5); 7.92 (1H, c, H-3); 8.02 (1H, π , J = 8.2, H _{Az} -4); 11.05 (1H, c, OH)		
3g*	3047, 2916, 1597, 1551, 1508, 1485, 1443, 1342, 1296, 1258, 775, 744, 706	5.12 (2H, c, CH ₂); 7.15 (2H, T, $J = 1.2$, C ₆ H ₅); 7.21–7.25 (3H, M, C ₆ H ₅); 7.42 (1H, π , $J = 8$, H-9); 7.48–7.56 (5H, M, C ₆ H ₅); 8.24 (1H, π , J = 8, H-8); 8.38 (1H, c, H-6)		
3h*	3421, 3383, 3047, 2924, 1631, 1547, 1458, 1288, 1188, 756, 736, 439	5.40 (2H, c, CH ₂); 7.20–7.26 (5H, м, H-1,2,3,4, 10); 7.42–7.49 (3H, м, H-7,8,9)		

Спектральные характеристики соединений За-h

^{*} По данным работы [10], масс-спектр, m/z (I_{0TH} ,%): соединения **3g** – 369 [M]⁺ (100), 323 [M–NO₂]⁺ (29), 165 (23), 89 (33), 77 [C₆H₅]⁺ (16), 63 (20); соединения **3h** – 222 [M]⁺ (94), 221 [M–H]⁺ (100), 166 (12), 97 (13), 90 (41), 89 (36), 83 (16), 77 [C₆H₅]⁺ (23), 64 (18), 63 (32), 51 (24).

Общий вид молекулы 3g с нумерацией атомов

Имидазо[2,1-*b*][1,3]бензоксазиновый цикл имеет практически плоское строение несмотря на то, что в цикл включен атом углерода в sp^3 -гибридном состоянии; максимальное отклонение значения торсионного угла от значения для идеально плоской структуры составляет 3.87°.

Фенильная группа С₍₁₁₎...С₍₁₆₎ практически компланарна с имидазо[2,1-*b*]-[1,3]бензоксазином, торсионный угол С₍₃₎С₍₂₎С₍₁₁₎С₍₁₆₎ 178.71°. Плоскость фенильной группы С₍₁₇₎...С₍₂₂₎ составляет с плоскостью имидазо[2,1-*b*]-[1,3]бензоксазинового цикла двугранный угол 112.28°.

Молекулы в кристалле соединения **4** образуют стопки вдоль кристаллографического направления (0 0 1), а внутри каждой стопки молекулы ориентированы между собой "голова к хвосту".

Таблица З

Связь	<i>d</i> , Å	Угол	ω, град.	Угол	τ, град.
N ₍₂₎ -C ₍₁₎	1.334(3)	$C_{(4)}N_{(2)}C_{(1)}$	126.5(2)	$C_{(4)}N_{(2)}C_{(1)}O_{(1)}$	0.25
C ₍₁₎ -O ₍₁₎	1.361(3)	N ₍₂₎ C ₍₁₎ O ₍₁₎	122.4(2)	$N_{(2)}C_{(1)}O_{(1)}C_{(6)}$	-3.54
O ₍₁₎ -C ₍₆₎	1.391(3)	$C_{(1)}O_{(1)}C_{(6)}$	117.2(2)	$C_{(1)}O_{(1)}C_{(6)}C_{(5)}$	3.87
C ₍₆₎ -C ₍₅₎	1.375(3)	O(1)C(6)C(5)	122.2(2)	$O_{(1)}C_{(6)}C_{(5)}C_{(10)}$	178.66
C(5)-C(4)	1.493(3)	C(6)C(5)C(4)	122.7(2)	$C_{(6)}C_{(5)}C_{(4)}N_{(2)}$	-2.01
C ₍₄₎ -N ₍₂₎	1.447(3)	$C_{(5)}C_{(4)}N_{(2)}$	108.9(2)	$C_{(17)}C_{(3)}N_{(2)}C_{(1)}$	-176.31

Длины связей (d), значения валентных (ω) и торсионных (т) углов в молекуле 7-нитро-2,3-дифенил-5Н-имидазо[2,1-b][1,3]бензоксазина*

^{*} Полный список координат атомов и значения температурных параметров можно получить у авторов.

Таким образом, нами показано, что 1Н-азолы достаточно легко алкилируются 2-гидроксибензиловыми спиртами в условиях термической конденсации с образованием 2-(1Н-азол-1-илметил)фенолов, которые при наличии в положении 2 1Н-азола группы, способной к нуклеофильному замещению, могут подвергаться внутримолекулярной гетероциклизации с образованием конденсированной системы имидазо[2,1*b*][1,3]бензоксазина.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на спектрофотометре Shimadzu FTIR-8400S в таблетках КВг. Спектры ЯМР ¹Н сняты на приборе Brucker AM-400 (400 МГц) в растворе ДМСО-d₆, внутренний стандарт ТМС. Масс-спектры получены на приборе JMS-D300 с прямым вводом вещества при энергии ионизации 70 эВ. Чистота продуктов контролировалась методом TCX (Silufol UV-254, элюент хлороформ-метанол, 20:1, проявление в УФ свете).

2-Трифторметилбензимидазол (2c) получен по методике по [11], а 2-бром-4,5дифенилимидазол (2f) и 2-метилмеркаптобензимидазол (2g) по методике [12].

Синтез 2-(1H-азол-1-илметил)фенолов 3а-f. А. Эквимолярную смесь азола 2а-f и 2-гидроксибензилового спирта 1а-с нагревают при 160–170 °С при интенсивном перемешивании в течение 20 мин. Продукт реакции промывают холодным дихлорметаном и кристаллизуют из этанола.

Б. К раствору 2.72 г (40 ммоль) имидазола **2а** в сухом ТГФ добавляют 1.19 г (10 ммоль) SOCl₂, выпавший осадок гидрохлорида имидазола отфильтровывают, а полученный раствор бис(имидазол-1-ил)сульфоксида быстро прибавляют к раствору 1.69 г (10 ммоль) бензилового спирта **1а** в ТГФ. Реакционную массу кипятят в течение 2 ч, растворитель отгоняют, а остаток кристаллизуют из смеси этанол–ДМФА.

12Н-Бензимидазо[2,1-*b*][1,3]бензоксазин (5). Смесь 1.64 г (10 ммоль) соединения 2g и 1.30 г (10.5 ммоль) 2-гидроксибензилового спирта 1b нагревают 30 мин при 160–165 °C при интенсивном перемешивании до прекращения выделения паров воды. Полученный продукт дважды кристаллизуют из метанола.

Тетрафторборат 7-нитро-2,3-дифенил-1-этил-5Н-имидазо[2,1-*b*][1,3]бензоксазиния (6) [10]. К раствору 3.69 г (10 ммоль) соединения 4 в 50 мл абсолютного дихлорметана прибавляют раствор 1.9 г (10 ммоль) тетрафторбората триэтилоксония в 10 мл дихлорметана и реакционную массу перемешивают при комнатной температуре в течение 25 мин. Образовавшийся осадок отфильтровывают и последовательно промывают дихлорметаном и этанолом. Получают соединение 6 в виде желтых кристаллов с выходом 2.91 г (60%), т. пл. 273–274 °C (из ДМФА). ИК спектр, v, см⁻¹: 2962, 2854 (CH_{аром}), 1655, 1628, 1585 (C=C/C=N), 1528 (NO₂), 1485 (C=C), 1346 (NO₂), 1092 (B–F), 771, 702 (CH_{аром}).

Рентгеноструктурное исследование соединения 4. Кристаллы выращены из смеси растворителей ДМФА-этанол (1:2) путем медленного испарения при комнатной температуре: для исследования был выбран монокристалл с линейными размерами 0.2×0.25×0.3 мм. Желтые игольчатые кристаллы принадлежат к моноклинной сингонии: a = 19.112(4), b = 11.207(2), c = 8.092(2) Å, $\beta = 94.69(3)^\circ$, V = 1727.4(6) Å³, M = 369.36, $d_{\text{выч}} = 1.420$ г/см³, Z = 4, пространственная группа $P2_1/n$. Параметры ячейки и набор экспериментальных отражений измерены в автоматическом 4-кружном дифрактометре КМ-4 (KUMA DIFFRACTION) с χ-геометрией методом ω/2θ сканирования на монохрома- тизированном Мо $K\alpha$ -излучении (2 $\theta \le 50.1^{\circ}$); сегмент сферы: $-22 \le h \le 22$. $0 \le k \le 13.0 \le l \le 9$. Всего измерено 3493 отражения, из которых 3071 являются симметрически независимыми [R(int) = 0.0223, $R(\sigma) = 0.0683$]. Поскольку кристаллы исследованного соединения имеют низкие коэффициенты поглощения и малые размеры, поправка на поглощение не вводилась ($\mu = 0.098 \text{ мm}^{-1}$). Структура определена прямым методом по программе SIR92 [13] с последующей серией расчетов карт электронной плотности. Все атомы водорода выявлены из разностного синтеза электронной плотности и уточнены в изотропном приближении. Полноматричное 1262

анизотропное (для неводородных атомов) уточнение МНК по программе SHELXL 97 [14] завершено при $R_1 = 0.0444$, $wR_2 = 0.1119$ по 1488 отражениям с $I \ge 2\sigma(I)$, GooF 0.856.

СПИСОК ЛИТЕРАТУРЫ

- 1. C. Botteghi, S. Paganelli, F. Moratti, M. Marchetti, R. Lazzaroni, R. Settambolo, O. Piccolo, J. Mol. Catal. A : Chem., 200, 147 (2003).
- 2. K. Wojciechowski, K. Dolatowska, Tetrahedron, 61, 8419 (2005).
- 3. C. C. Lindsey, T. R. R. Pettus, Tetrahedron Lett., 47, 201 (2006).
- 4. S. L. Crawley, R. L. Funk, Org. Lett., 5, 3169 (2003).
- 5. J. E. Ezcurra, K. Karabelas, H. W. Moore, Tetrahedron, 61, 275 (2005).
- 6. *Общая органическая химия*, под ред. Д. Бартона, У. Д. Оллиса, Химия, Москва, 1985, т. 8, с. 437.
- 7. R. W. Van De Water, T. R. R. Pettus, Tetrahedron, 58, 5367 (2002).
- 8. M. Ogata, Ann. N. Y. Acad. Sci., 544, 12 (1988).
- 9. H. A. Staab, H. Bauer, K. M. Schneider, *Azolides in Organic Synthesis and Biochemistry*, Wiley-VCH Verlag GmbH, &Co. KGaA, 2002, p. 456.
- 10. В. А. Осянин, Н. Е. Сидорина, Изв. вузов. Химия и хим. технология, **48**, № 10, 83 (2005).
- 11. G. Crank, A. Mursyidi, Aust. J. Chem., 35, 775 (1982).
- 12. А. Ф. Пожарский, В. А. Анисимова, Е. Б. Цупак, *Практические работы по химии гетероциклов*, Изд-во Рост. ун-та, Ростов-на-Дону, 1988.
- 13. A. Altomare, G. Cascarano, C. Giacovazzo, A. Gualardi, J. Appl. Crystallogr., 26, 343 (1993).
- G. M. Sheldrick, SHELX-97. Programs for Crystal Structure Analysis, Univ. of Göttingen, Göttingen, Germany, 2332 (1998).

Самарский государственный университет, Самара 443011, Россия e-mail: sidorinan@inbox.ru Поступило 21.03.2006

^аСамарский государственный технический университет, Самара 443100, Россия e-mail: vosyanin@mail.ru