А. А. Зенина, Э. В. Рахманов, А. А. Бобылева, Е. В. Луковская, Л. Г. Кузьмина^a, А. А. Абрамов, А. В. Анисимов

НОВЫЕ ФУНКЦИОНАЛИЗИРОВАННЫЕ ДИТИА-12(13)-КРАУН-4-ЭФИРЫ: СИНТЕЗ, КОМПЛЕКСООБРАЗОВАНИЕ И ЭКСТРАКЦИОННАЯ СПОСОБНОСТЬ

Синтезированы 1,4-диокса-7,10-дитиациклододекан-8-карбонитрил, 1,4-диокса-7,11дитиациклотридекан-9-он, его 2,4-динитрофенилгидразон, а также незамещенный 7,10-дитиа-12-краун-4. Методом ЯМР ¹Н оценена комплексообразующая способность четырех синтезированных диоксадитиакраун-соединений по отношению к ионам Ag(I), Pb(II), Hg(II), Cd(II). Изучена экстракционная способность трех диоксадитиакраунсоединений по отношению к иону Sn(II) из водных растворов. Оценена термическая стабильность 1,4-диокса-7,10-дитиациклододекана и соответствующего 8-карбонитрила.

Ключевые слова: дитиа-12(13)-краун-4-эфиры, ионы Ag(I), Pb(II), Hg(II), Sn(II), комплексообразование, PCA, синтез, спектроскопия $\text{ЯМР}^{-1}\text{H}$, термостабильность, экстракция.

Краун-эфиры и их гетероаналоги являются объектами интенсивного изучения в течение последних 30 лет [1]. Особое место в ряду таких веществ занимают сернистые макроциклы и их линейные аналоги, называемые подандами, из-за их уникальной способности служить в качестве лигандов для селективного комплексообразования с "мягкими" катионами, т. е. ионами низковалентных переходных и тяжелых металлов. Целью настоящей работы являлась разработка методов синтеза новых оксатиакраун-эфиров с различными функциональными группами, а также оценка комплексообразующих свойств этих соединений.

В качестве объектов исследования были выбраны следующие дитиа-12(13)-краун-4-эфиры: 1,4-диокса-7,10-дитиациклододекан-8-карбонитрил (2), 1,4-диокса-7,11-дитиациклотридекан-9-он (3) и 2,4динитрофенилгидразон 4. Для сравнения комплексообразующих свойств был синтезирован незаме- щенный 1,4-диокса-7,10-дитиациклододекан (5), описанный ранее [2].

Двенадцатичленный нитрил 2 был получен с выходом 15% циклизацией коммерческого 1,8-димеркапто-3,6-диоксаоктана и 2,3-дибромпропионитрила (1), синтезированного бромированием акрилонитрила бромом при 0 °С. Циклизацию проводили в ДМФА в условиях высокого разбавления и при использовании в качестве темплатного реагента карбоната цезия по методу [3].

Синтезированный макроцикл 2 – твердое вещество, кристаллизацией которого из ацетонитрила удалось получить монокристаллы, пригодные для РСА (рис. 1, табл. 1).

Длины связей и валентные углы в молекуле фактически не отличаются от стандартных значений. Нитрильная группа находится в псевдоаксиальной ориентации по отношению к макроциклической системе.

Рис. 1. Строение молекулы карбонитрила 2

Таблица 1

Отдельные длины связей (d) и валентные углы (w) в молекуле 2

Связь	d, Å	Связь	d, Å	Угол	ω, град.
S ₍₁₎ -C ₍₁₎	1.814(1)	O ₍₂₎ -C ₍₅₎	1.421(2)	$C_{(1)} - S_{(1)} - C_{(8)}$	103.87(6)
$S_{(1)} - C_{(8)}$	1.821(1)	N(1)-C(9)	1.142(2)	$C_{(2)} - S_{(2)} - C_{(3)}$	102.24(6)
S(2)-C(2)	1.831(1)	C(9)-C(2)	1.468(2)	$C_{(6)} - O_{(1)} - C_{(7)}$	113.3(1)
S(2)-C(3)	1.814(1)	$C_{(1)} - C_{(2)}$	1.530(2)	$C_{(4)} - O_{(2)} - C_{(5)}$	114.93(9)
$O_{(1)} - C_{(6)}$	1.425(2)	C(3)-C(4)	1.514(2)		
$O_{(1)} - C_{(7)}$	1.428(2)	C(5)-C(6)	1.502(2)		
$O_{(2)} - C_{(4)}$	1.426(1)	C(7)-C(8)	1.506(2)		

Рис. 2. Ориентация неподеленных электронных пар (E1 – E8) гетероатомов макроцикла 2

Валентные углы при гетероатомах кислорода и серы отвечают их sp^3 гибридному состоянию, что позволяет нам судить об ориентации неподеленных электронных пар этих атомов по отношению к краунэфирному макроциклу. На рис. 2 показана молекула соединения **2** в двух разных проекциях, электронные пары атомов серы и кислорода изображены в виде отрезков длиной 0.8 Å, обозначенных буквой Е с номером. Атомы кислорода O₍₁₎ и O₍₂₎ несут неподеленные пары E1, E2 и E3, E4, атомы S₍₁₎ и S₍₂₎ – пары E5, E6 и E7, E8.

Видно, что неподеленные пары электронов E2 и E3 двух атомов кислорода ориентированы к центру макроцикла, а две оставшиеся – в разные стороны от средней плоскости макроцикла. Неподеленная пара электронов E6 при атоме $S_{(1)}$ направлена в ту же сторону от плоскости макроцикла, что и E4 атома $O_{(2)}$. Таким образом, при некотором небольшом изменении конформации макроцикла можно предполагать возникновение хелатного эффекта за счет участия во взаимодействии с катионом металла этих неподеленных электронных пар. То же самое

Рис. 3. Строение центросимметричного димера

можно предположить и в отношении неподеленных пар электронов Е1

атома $O_{(1)}$ и E8 атома $S_{(2)}$, ориентированных в противоположную сторону от средней плоскости краун-эфира. Оставшиеся неподеленные пары электронов при атомах серы E5 и E7 направлены от макроцикла, и для их участия в связывании с катионами металлов необходимо более радикальное изменение его конформации.

В кристалле молекулы объединены в центросимметричные димеры (рис. 3) за счет слабого взаимодействия (вторичной связи) типа $S_{(2)}...S_{(2A)}$. Расстояние, отвечающее этой вторичной связи 3.657(1) Å, заметно короче удвоенного ван-дер-ваальсова радиуса этого атома (~4 Å). Возможно, что это вторичное взаимодействие осуществляется по механизму $n \rightarrow \sigma^*$ при участии Е7 с антисвязывающей орбиталью связи $S_{(2)}-C_{(3)}$. Этот вывод не противоречит общей геометрии димера, так как вторичная связь $S_{(2)}...S_{(2A)}$ находится почти на продолжении связи $S_{(2)}-C_{(3)}$. Действительно, угол $C_{(3)}-S_{(2)}...S_{(2A)}$ составляет 157.51(2)°, а угол $C_{(2)}-S_{(2)}...S_{(2A)}-98.32°$.

Такая Т-образная конфигурация атомов серы типична для взаимодействия S...S. По-видимому, участие именно этого атома серы в слабом взаимодействии обусловлено его связью с атомом $C_{(2)}$, несущем электроноакцепторный заместитель – нитрильную группу.

1,4-Диокса-7,11-дитиациклотридекан-9-он (3) получали циклизацией 1,8-димеркапто-3,6-диоксаоктана и 1,3-дихлорацетона по методике [4].

Целевой краун-эфир 3 был выделен в виде бесцветных кристаллов с выходом 11%.

Из кетона 3 был получен соответствующий 2,4-динитрофенилгидразон 4 с выходом после перекристаллизации 75%.

1,4-Диокса-7,10-дитиациклододекан (5) получали циклизацией 1,8-димеркапто-3,6-диоксаоктана и 1,2-дибромэтана в смеси спирт – вода, 1:1, в условиях высокого разбавления и при использовании карбоната лития в качестве темплатного реагента:

Краун-эфир 5 был выделен в виде желтого масла с выходом 27%. Ранее этот макроцикл был получен из 1,2-этандитиола и 1,2-бис(2-хлорэтокси)этана с более низким выходом (19%) [2].

Комплексы оксатиакраун-эфиров **2** и **5** с катионами Ag(I), Pb(II), Cd(II) были приготовлены с использованием соответствующих перхлоратов при молярном соотношении металл–лиганд, 1:1. Комплексы анализировали методом спектроскопии ЯМР ¹Н, для оценки комплексообразующей способности полученные спектры сравнивались со спектрами ЯМР ¹Н исходных оксатиакраун-эфиров (табл. 2, 3). Для наглядности сравнения рассчитывался параметр $\Delta \delta = \delta_{компл}-\delta_{лиг}$.

Для комплексов макроциклов 2 и 5 с катионами Ag(I) и Pb(II) наблюдались изменения химических сдвигов протонов метиленовых групп, связанных как с атомами серы, так и кислорода. Однако для первых они заметно больше, причем комплексообразование с ионом свинца оказывает большее влияние на значение $\Delta\delta$, что свидетельствует о возникновении более прочных комплексов. При сравнении изменений химических сдвигов протонов ($\Delta\delta$) комплексов краун-эфиров 2 и 5 с Ag(I), Pb(II) видно, что эти величины для незамещенного лиганда 5 больше, чем для лиганда 2, содержащего электроноакцепторную нитрильную группу. Это свидетельствует о том, что макроцикл 5 образует с изученными катионами более стабильные комплексы, чем карбонитрил 2.

Поскольку радиусы катионов серебра (1.13) и свинца (1.32 Å) велики для размера полости 12- и 13-членных оксатиакраун-эфиров, комплексообразование протекает, вероятно, через образование "сэндвичевых" структур состава 2 лиганда – 1 катион металла. Следует отметить, что при комплексообразовании краун-эфира 2 наиболее заметное изменение химических сдвигов проявляется у протонов третичного атома углерода, связанного с нитрильной группой: $\Delta \delta = -0.25$ для Ag(I), $\Delta \delta = -0.42$ м. д. для Рb(II). Отрицательные значения Δδ подтверждают образование сэндвичевой структуры, в которой протоны при третичном атоме углерода одного из лигандов располагаются вблизи нитрильной группы второго макроцикла, что и приводит к анизотропному эффекту и смещению в область более сильного поля. Отметим, что и в исследованных ранее комплексах замещенных дитиа-13-краун-4-эфиров также наблюдался сходный анизотропный эффект для протонов у третичных атомов углерода [5]. Очень незначительные изменения химических сдвигов протонов в комплексе оксатиакраун-эфира 2-Cd(II) свидетельствуют о слабом комплексообразовании с этим катионом.

При комплексообразовании лиганда 2 с Ag(I) происходит также и сдвиг полосы поглощения группы CN в ИК спектре комплекса. Так, для исходного карбонитрила 2 v_{CN} 2246, тогда как в комплексе 2·Ag(I) v_{CN} 2256 см⁻¹. Подобное смещение наблюдали ранее [6] для комплексов 996

дитиа-12-краун-4 с фрагментом дитиамалеонитрила с катионом серебра, при этом в комплексе частоты v_{CN} 2229, 2216, а в свободном лиганде – 2222, 2208 см⁻¹.

Для кетона **3** были получены комплексы с ионами Ag(I), Pb(II), Hg(II). Как и для нитрила **2**, наибольшие изменения химических сдвигов наблюдались для протонов метиленовых групп, связанных с атомами серы, причем эти изменения наиболее значительны для катионов ртути и свинца (табл. 2). Вместе с тем для ионов свинца и ртути изменяются химические сдвиги протонов метиленовых групп, связанных с атомами кислорода.

Для соединения 4 был исследован комплекс с ионом Ag(I). Следует отметить, что в полученном комплексе, наряду со значительным изменением химических сдвигов протонов метиленовых групп, связанных с атомами серы, также заметно изменяются химические сдвиги протонов во фрагментах CH₂—O в цикле и NH в заместителе.

Таблица2

Изменения химических сдвигов протонов соединения 2 при комплексообразовании с AgClO₄, Pb(ClO₄)₂ и Cd(ClO₄)₂*

Vortuou	Δδ, м. д.					
Катион	H-6,9,11	H-2,3,12	H-5	H-8		
Ag(I)	0.07-0.24	0.03-0.06	0.09	-0.25		
Pb(II)	0.12-0.35	0.18	0.04	-0.42		
Cd(II)	0.04-0.13	0.05-0.06	0	0		

* В растворе CD₃CN, 30 °C, $c_{\pi\mu\tau} = c_{M} = 7.13 \cdot 10^{-2}$ моль/л (здесь и табл. 3 и 4).

Таблица З

Изменения химических сдвигов протонов соединения 5 при комплексообразовании с AgClO₄, Pb(ClO₄)₂

Катион	Δδ, м. д.					
	H-5,12	H-8,9	H-2,3	H-6,11		
Ag(I)	0.11	0.04	0.12	0.26		
Pb(II)	0.58	0.63	0.39	0.33		

Таблица 4

Изменения химических сдвигов протонов соединений 3 и 4 при комплексообразовании с AgClO₄, Pb(ClO₄)₂ и Hg(ClO₄)₂

Соеди-	Varman	Δδ, м. д.							
нение	Катион	H-2,3	H-5,13	H-6,12	H-8,10	H-3'	H-5'	H-6'	NH
3	Ag(I)	0.04	0.03	0.20	0.06	-	-	-	-
	Pb(II)	0.17	0.25	0.34	0.2	-	-	-	-
	Hg(II)	0.24	0.18	0.57	0.21	-	-	-	-
4	Ag(I)	0.11	0.01	0.24	0.11	0	0.05	0.01	0.11

Таблица 5

997

Экстрагент	<i>С</i> _{экстраг} , моль∕л	D
2	$4 \cdot 10^{-3}$	0.008
3	$1.3 \cdot 10^{-2}$	0.013
5	$5.9 \cdot 10^{-3}$	0.100

Коэффициенты распределения олова(II) (D) при экстракции Sn(NO₃)₂* соединениями 2, 3, 5 в дихлорэтане

* $c_{\text{Sn(NO3)2}} = 10^{-5}$ моль/л, $c_{\text{LiPi}} = 3.8 \cdot 10^{-3}$ моль/л.

Синтезированные оксатиакраун-соединения 2, 3 и 5 содержат в макроцикле атомы кислорода и атомы серы, поэтому следует ожидать, что они могут занимать, в соответствии с концепцией Пирсона, промежуточное положение между "мягкими" и "жесткими" лигандами. Для изучения их экстракционной способности был выбран "промежуточный" катион Sn(II). Экстракцию проводили из растворов пикрата лития (LiPi).

Коэффициент распределения определяли радиометрическим методом как отношение регистрируемой активности в органической фазе к таковой в водной фазе (за вычетом фона): $D = I_{opr} / I_{вод}$.

Согласно данным табл. 5, экстракционная способность краун-эфира с нитрильной группой 2 и кетона 3 меньше, чем экстракционная способность незамещенного краун-эфира 5. На примере синтезированных оксатиакраун-соединений можно заключить, что введение электроноакцепторной группы отрицательно сказывается на экстракционных свойствах макроциклов. Полученные значения коэффициентов распределения D для Sn(II) при экстракции макроциклами 2, 3 и 5 коррелируют с изменениями химических сдвигов $\Delta\delta$ в спектрах ЯМР комплексов тех же соединений с изоэлектронным катионом Pb(II).

Для отработки методики нанесения оксатиакраун-соединений на поверхность твердых минеральных носителей, таких как SnO₂, с последующим получением мультисенсорных систем, была оценена термическая стабильность оксатиакраун-эфиров **2** и **5**. Термогравиметрические измерения показали, что введение нитрильной группы в макроцикл увеличивает его термостабильность. Так, интенсивная потеря массы нитрила **2** происходит при 130–440 °C, а его незамещенного аналога **5** – при 75–260 °C.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н регистрировали на спектрометре Varian XR-400 (400 МГц) в 25% растворах CDCl₃ или CD₃CN, внутренний стандарт ГМДС (δ 0.05 м. д.). Спектры ЯМР ¹³С для 30–50% образцов в дейтерированных растворителях регистрировали на спектрометре Varian XR-400 (100 МГц). Масс-спектры получали на приборе Finnigan MAT-112S в режиме ЭУ, энергия ионизирующих электронов 70 эВ. Анализ методом TCX проводили на пластинах Silufol в различных системах элюентов. В качестве сорбентов применяли силикагель марки Merk и силикагель марки Acros, состав элюентов подбирали отдельно для каждой анализируемой смеси.

Определение коэффициентов распределения (D) Sn(II) проводили радиометрически на жидкостном сцинтилляционном счетчике Canberra-Packard-2700, используя изотоп

¹¹⁷Sn по методике [8]. Термостабильность оксатиакраун-соединений **2** и **5** определяли на дериватографе Q-1500.

Рентгеноструктурный анализ. Монокристалл соединения 2, покрытый перфторированным маслом, помещался в дифрактометр Bruker SMART CCD. Набор экспериментальных отражений измерен при температуре -150 °C. Структура расшифрована прямым методом и уточнена в полноматричном анизотропном приближении по F² для всех неводородных атомов. Атомы водорода выявлены из разностного синтеза Фурье и уточнены в изотропном приближении. Все расчеты проведены по программам SHELXTL Plus [7]. Кристаллографические данные, детали эксперимента и уточнения структуры соединения 2: М 233.34, сингония моноклинная, пространственная группа $P2_1$ /с, a = 8.2429(7), b = 13.860(1), c = 10.8154(9) Å, V = 1165.3(2)Å³ $β = 109.430(2)^\circ, Z = 4, ρ_{\text{bey}} = 1.330 \text{ г/cm}^3, F(000) 496, θ = 2.48 - 28.00, ρ(MoKα) = 0.433 \text{ mm}^{-1}$ размер кристалла $0.52 \times 0.48 \times 0.44$ мм, интервалы индексов отражений $-9 \le h \le 10; -7 \le k \le 18;$ $-13 \le l \le 10$, измерено отражений 4808, независимых отражений 2536 ($R_{int} = 0.0171$), отражений с $I > \sigma 2(I)$ 2507, учет поглощения SADABS, пропускание min/max 0.8062/0.8323, переменных уточнения 187, *R*-факторы по $I > \sigma 2(I) R_1 = 0.0240, wR_2 =$ = 0.0629; по всем отражениям R_1 = 0.0275, wR_2 = 0.0650, добротность по F^2 1.024, остаточная электронная плотность min/max, e/Å³ -0.150/0.292.

Кристаллоструктурные данные для этого соединения депонированы в Кэмбриджском кристаллографическом центре (CCDC-609525)*.

2,3-Дибромпропионитрил (1). К 10 г (180 ммоль) охлажденного до 0 °С акрилонитрила добавляют по каплям 30 г (180 ммоль) брома при 0 °С и перемешивании в течение 4 ч. Оставляют смесь на 2 ч при 40 °С. Затем перегоняют в вакууме. Выделяют 31.6 г дибромида 1. Выход 78%, т. кип. 90–95 °С (20 мм рт. ст.), n_D^{20} 1.5450 (т. кип. 92–93 °С (14 мм рт. ст.) [9]). Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (*J*, Гц): 3.78 (2H, м, H-3); 4.55 (1H, д. д, $J_1 = 9.1, J_2 = 6.3, H-2$). Спектр ЯМР ¹³С (CDCl₃): δ , м. д.: 29.75 (C₍₃₎), 40.84 (C₍₂₎), 115.3 (C₍₁₎).

Синтез 1,4-диокса-7,10-дитиациклододекан-8-карбонитрила (2) и 1,4-диокса-7,11дитиациклотридекан-9-она (3) (общая методика). К перемешиваемому раствору 50 ммоль карбоната цезия или карбоната лития в 500 мл безводного ДМФА и при 55– 60 °С в токе аргона прибавлют по каплям 10 ммоль дибромида 1 или 1,3-дихлорацетона и 10 ммоль 1,8-димеркапто-3,6-диоксаоктана, растворенных в 200 мл ДМФА каждый, затем перемешивают 25 ч при той же температуре. Растворитель отгоняют, остаток экстрагируют эфиром. Экстракт сушат MgSO₄. Растворитель отгоняют, остаток хроматографируют на колонке с силикагелем. Элюент этилацетат–гексан, 1:3.

1,4-Диокса-7,10-дитиациклододскан-8-карбонитрил **(2**). Выход 15%, т. пл. 93 °С. ИК спектр, v, см⁻¹: 2246 (С=N). Спектр ЯМР ¹Н (СD₃CN), δ , м. д. (*J*, Гц): 2.75–2.84 (6H, м, H-6,9,11); 3.53–3.77 (6H, м, H-2,3,12); 3.83 (1H, д. д. д. *J*₁ = 9.9, *J*₂ = 4.9, *J*₃ = 2.2, H-5); 4.08 (1H, д. т, *J*₁ = 10.1, *J*₂ = 3.0, H-5); 5.23 (1H, д. д. д. *J*₁ = 9.5, *J*₂ = 7.0, H-8). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 32.23 (С₆), 34.52 (С₁₁), 35.91 (С₉), 36.71 (С₈), 70.02, 70.94 (С₂₂, С₃), 73.80, 74.84 (С₍₅₎, С₍₁₂)). Масс-спектр, *m/z* (*I*_{отн}, %): 233 [М]⁺ (44), 200 (4), 173 (17), 145 (8), 112 (86), 99 (30), 61 (98), 45 (92). Найдено, %: С 46.38; Н 6.42; N 6.10; S 27.56. С₉H₁₅NO₂S₂. Вычислено, %: С 46.32; Н 6.48; N 6.00; S 27.48.

1,4-Диокса-7,11-дитиациклотридекан-9-он (3). Расплывающиеся бесцветные кристаллы. Выход 11%. Спектр ЯМР ¹Н (CD₃CN), δ , м. д. (*J*, Гц): 2.73 (4H, т, *J* = 5.1, H-6,12); 3.53 (4H, с, H-8,10); 3.69 (4H, т, *J* = 5.1, H-5,13); 3.78 (4H, с, H-2,3). Спектр ЯМР ¹³С (CDCl₃): 32.60 (С₍₆₎, С₍₁₁₎), 42.38 (С₍₈₎, С₍₉₎), 70.13 (С₍₅₎, С₍₁₂₎), 72.48 (С₍₂₎, С₍₃₎), 192.72 (С=О).

1,4-Диокса-7,10-дитиациклододекан (5). К перемешиваемому раствору 3.7 г (50 ммоль) карбоната лития в 500 мл смеси спирт–вода, 1:1, при 55–60 °C в токе аргона прибавляют по каплям 1.87 г (10 ммоль) дибромэтана и 1.82 г (10 ммоль) 1,8-димеркапто-3,6-окса-октана, растворенных в 200 мл спирта каждый. Реакционную смесь перемешивают еще 25 ч при той же температуре. Растворитель отгоняют, остаток экстрагируют эфиром.

^{*} Копия этих данных может быть бесплатно получена при обращении по адресу CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: int.code + 44(1223)336-033; e-mail: deposit@ccdc.cam.ac.uk.

Экстракт сушат MgSO₄. Растворитель отгоняют, остаток хроматографируют на колонке с

силикагелем. Элюент этилацетат–гексан, 1:1. Получают 0.58 г (27%)соединения **5** в виде желтого масла. Спектр ЯМР ¹H (CD₃CN), δ , м. д. (*J*, Гц): 2.65 (4H, т, *J* = 5.1, H-6,11); 2.92 (4H, c, H-8,9); 3.54 (4H, c, H-2,3); 3.73 (4H, т, *J* = 4.8, H-5,12). Спектр ЯМР ¹³С (CDCl₃): 31.08 (C₍₆₎, C₍₁₁₎), 32.96 (C₍₈₎, C₍₉₎), 70.45 (C₍₅₎, C₍₁₂₎), 74.19 (C₍₂₎, C₍₃₎).

2,4-Динитрофенилгидразон 1,4-диокса-7,11-дитиациклотридекан-9-она (4). Растворяют при нагревании 0.167 г (2.8 ммоль) 2,4-динитрофенилгидразина в 5 мл диглима и добавляют охлажденный раствор 0.1 г (0.4 ммоль) краун-эфира **3** в 1 мл толуола. Нагревают 30 мин при 100 °C и добавляют 3 капли соляной кислоты. Растворитель отгоняют. Получают после перекристаллизации из хлороформа 0.119 г соединения **4**. Выход 75%, т. пл. 290 °C (разл., из CHCl₃). Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (*J*, Гц): 2.73–2.78 (4H, м, H-6,12); 3.62 (4H, с, H-2,3); 3.77–3.81 (4H, м, H-5,13); 3.90, 4.03 (4H, 2c, H-8,10); 7.88 (2H, д. *J* = 9.6, H-6'); 8.29 (2H, д. д. д. *J* = 9.6, *J* = 2.5, *J* = 0.8, H-5'); 8.95 (2H, д. *J* = 2.5, H-3'); 11.48 (1H, с, NH). Найдено, %: С 43.26; H 4.84; N 13.45; S 15.40. С₁₅H₂₀N₄O₆S₂. Вычислено, %: С 43.31; H 4.80; N 13.49; S 15.46.

Получение комплексов краун-эфиров. Для исследования спектров ЯМР ¹Н в колбу емкостью 5 мл помещают $4.28 \cdot 10^{-5}$ моль краун-эфира и $4.28 \cdot 10^{-5}$ моль перхлората соответствующего металла и добавляют 0.6 мл CD₃CN. Помещают раствор в ампулу и регистрируют спектр ЯМР ¹Н.

Комплекс 2·Ag(I). Раствор 0.05 г (8 ммоль) карбонитрила 2 и 0.044 г (8 ммоль) AgClO₄·H₂O в 3 мл метанола оставляют охлаждаться при 0 °C. Через 1 сут выделяют бесцветные кристаллы комплекса 2· Ag(I). ИК спектр, v, см⁻¹: 2256 (C=N).

Работа выполнена при финансовой поддержке РФФИ (грант № 05-03-33201).

СПИСОК ЛИТЕРАТУРЫ

- 1. Ю. А. Золотов, А. А. Формановский, И. В. Плетнев, *Макроциклические соединения* в аналитической химии, Наука, Москва, 1993.
- J. S. Bradshaw, J. Y. Hui, B. L. Haymore, J. J. Christensen, R. M. Izatt, J. Heterocycl. Chem., 10, 1 (1973).
- 3. J. Buter, R. M. Kellog, J. Org. Chem., 46, 4481 (1981).
- J. J. H. Edema, J. Buter, F. S. Schoonbeek, R. M. Kellog, F. van Bolhuis, A. L. Spek, *Inorg. Chem.*, 33, 2448 (1994).
- 5. Е. В. Тулякова, Э. В. Рахманов, Е. В. Луковская, О. В. Федорова, А. А. Абрамов, А. В. Хорошутин, А. А. Бобылева, А. В. Анисимов, *XГС*, 233 (2006). [*Chem. Heterocycl. Comp.*, **42**, 206 (2006)].
- 6. H.-J. Drexler, H. Reinke, H.-J. Holdt, Chem. Ber., 129, 807 (1996).
- 7. SHELXTL-Plus. Release 6.10. Bruker AXS Inc., Madison, Wisconsin, USA., 2000.
- Э. В. Рахманов, А. В. Хорошутин, А. А. Бобылева, Е. В. Луковская, А. В. Анисимов, А. А. Абрамов, Вестн. МГУ, Сер. 2. Химия, 46, 421 (2006).
- 9. H. Drockman, H. Musso, Chem. Ber., 87, 581 (1954).

Московский государственный университет им. М. В. Ломоносова, Москва 119992, Россия e-mail: bobylyova@petrol.chem.msu.ru Поступило 31.05.2006

^аИнститут общей и неорганической химии им. Н. С. Курнакова РАН, Москва 117071 e-mail: kuzmina@igic.ras.ru