И. В. Украинец, Н. Л. Березнякова, Е. В. Моспанова

4-ГИДРОКСИХИНОЛОНЫ-2 121.* СИНТЕЗ И БИОЛОГИЧЕСКИЕ СВОЙСТВА АЛКИЛАМИДОВ 1-ГИДРОКСИ-3-ОКСО-5,6-ДИГИДРО-3Н-ПИРРОЛО-[3,2,1-*ij*]ХИНОЛИН-2-КАРБОНОВОЙ КИСЛОТЫ

Предложен простой метод получения алкиламидов 1-гидрокси-3-оксо-5,6-дигидро-3Нпирроло[3,2,1-*ij*]хинолин-2-карбоновой кислоты. На примере *втор*-бутиламида обсуждаются особенности пространственного строения синтезированных соединений. Приведены результаты изучения их противовоспалительной и диуретической активности.

Ключевые слова: алкиламиды, 4-гидрокси-2-оксохинолин-3-карбоновые кислоты, диуретическое действие, противовоспалительная активность, РСА.

Для трансформации этилового эфира 1-гидрокси-3-оксо-5,6-дигидро-3H-пирроло[3,2,1-*ij*]хинолин-2-карбоновой кислоты (1) в алкил-, арил- или гетариламиды, представляющие интерес в качестве потенциально биологически активных веществ, предложена ее обработка 40% избытком соответствующего амина в кипящем бромбензоле в течение 20 ч с последующей отгонкой растворителя при пониженном давлении и очисткой конечных продуктов реакции [2]. В то же время, ранее мы неоднократно отмечали высокую реакционную способность 1-R-4-гидрокси-2-оксо-3этоксикарбонил-1,2-дигидрохинолинов, позволяющую амидировать их гораздо эффективнее [3–5]. Очевидное структурное сходство эфира 1 с такими соединениями позволяет предположить, что и он будет взаимодействовать с аминами (по крайней мере, с алифатическими) в более мягких условиях.

2 а R = Me, b R = Et, c R = All, d R = Pr, e R = *i*-Pr, f R = Bu, g R = *i*-Bu, h R = *s*-Bu, i R = C₅H₁₁, j R = *i*-C₅H₁₁, k R = 2-гидроксиэтил, l R = 3-гидроксипропил, m R = *cyclo*-C₃H₅, n R = *cyclo*-C₅H₉, o R = *cyclo*-C₆H₁₁, p R = *cyclo*-C₇H₁₃, q R = адамантан-1-ил

* Сообщение 120 см. [1].

Проведенные нами эксперименты полностью подтвердили высказанное предположение. Как оказалось, превращение эфира **1** в алкиламиды 1-гидрокси-3-оксо-5,6-дигидро-3H-пирроло[3,2,1-*ij*]хинолин-2-карбоновой кислоты **2а–q** легко осуществимо в кипящем этаноле, а с газообразными аминами даже и при комнатной температуре, причем хроматографический мониторинг свидетельствует о том, что в большинстве случаев реакция заканчивается через 2–3 ч. Неоправданным следует признать также и применение 40% избытка амина, поскольку полное амидирование обеспечивают обычные для подобных реакций 10% избытки.

Таким образом, данная методика позволяет не только существенно упростить выделение целевых соединений при их высоких выходах, но и значительно сократить продолжительность реакции, а также расход аминов, что дает основания рекомендовать ее в качестве препаративной.

Все полученные амиды 2а-q (табл. 1) представляют собой бесцветные кристаллические вещества, растворимые в ДМФА и ДМСО, практически нерастворимые в воде. Их строение подтверждено спектрами ЯМР ¹Н (табл. 2), а на примере втор-бутиламида 2h – еще и РСА (рисунок, табл. 3,4), из которого следует, что трициклический фрагмент и атомы O₍₂₎, C₍₁₂₎, O₍₃₎, N₍₂₎, O₍₁₎ этого соединения лежат в одной плоскости с точностью 0.01 Å. Вероятно, это обусловлено наличием двух внутримолекулярных водородных связей O₍₂₎-H₍₂₀₎...O₍₃₎ (H...O 1.70 Å, О-Н...О 149°) и N₍₂₎-H_(2NA)...О₍₁₎ (Н...О 1.96 Å, N-H...О 135°), образование которых приводит к значительному удлинению связей O₍₁₎-C₍₉₎ 1.242(2) и O₍₃₎-C₍₁₂₎ 1.262(2) Å по сравнению с их средним значением 1.210 Å [6]. Связь С(7)-С(8) 1.382(3) Å также удлинена по сравнению с ее средним значением 1.326 Å, что характерно для хинолоновых соединений. Вторичный бутильный заместитель при атоме N₍₂₎ разупорядочен по двум положениям (А и В) вследствие вращения вокруг связи $C_{(12)}$ - $N_{(2)}$ с заселенностью A:B = 59:41%И имеет конформацию,

Строение молекулы *втор*-бутиламида 2h с нумерацией атомов.

Таблица 1

Со- еди-	Брутто-	<u>Найдено</u> /тто- Вычислен		<u>%</u> , % Т. пл., °С		Вы-	ПА,**	ДА,***
не- ние	формула	С	Н	Ν	(этанол)	ход, %	%	%
2a	$C_{13}H_{12}N_2O_3$	<u>63.93</u> 63.81	<u>4.95</u> 4.86	<u>11.47</u> 11.55	187–189	94	+1.6	63
2b	$C_{14}H_{14}N_2O_3$	<u>65.11</u> 65.20	<u>5.46</u> 5.58	<u>10.85</u> 10.77	143–145	95	+51.6	125
2c	$C_{15}H_{14}N_2O_3$	<u>66.66</u> 66.53	<u>5.22</u> 5.14	<u>10.36</u> 10.42	116–118	93	0	88
2d	$C_{15}H_{16}N_2O_3$	<u>66.16</u> 66.29	<u>5.92</u> 5.84	<u>10.29</u> 10.19	88–90	88	+13.3	63
2e	$C_{15}H_{16}N_2O_3$	<u>66.16</u> 66.11	<u>5.92</u> 5.96	<u>10.29</u> 10.20	161–163	76	+20.0	100
2f	$C_{16}H_{18}N_2O_3$	<u>67.12</u> 67.25	<u>6.34</u> 6.46	<u>9.78</u> 9.86	84–86	85	-7.5	113
2g	$C_{16}H_{18}N_2O_3$	<u>67.12</u> 67.27	<u>6.34</u> 6.45	<u>9.78</u> 9.90	133–135	87	+ 15.8	112
2h	$C_{16}H_{18}N_2O_3$	<u>67.12</u> 67.04	<u>6.34</u> 6.22	<u>9.78</u> 9.69	176–178	75	-13.3	63
2i	$C_{17}H_{20}N_2O_3$	<u>67.98</u> 67.85	<u>6.71</u> 6.65	<u>9.33</u> 9.26	81-83	83	+5.8	75
2ј	$C_{17}H_{20}N_2O_3$	<u>67.98</u> 67.89	<u>6.71</u> 6.67	<u>9.33</u> 9.39	118-120	86	+6.6	88
2k	$C_{14}H_{14}N_2O_4$	<u>61.31</u> 61.40	<u>5.14</u> 5.26	<u>10.21</u> 10.12	159–161	91	+24.1	75
21	$C_{15}H_{16}N_2O_4$	<u>62.49</u> 62.40	<u>5.59</u> 5.51	<u>9.72</u> 9.88	133–135	85	+10.8	100
2m	$C_{15}H_{14}N_2O_3$	<u>66.66</u> 66.75	<u>5.22</u> 5.31	<u>10.36</u> 10.26	166–168	78	+9.1	100
2n	$C_{17}H_{18}N_2O_3$	<u>68.44</u> 68.38	<u>6.08</u> 6.00	<u>9.39</u> 9.33	176–178	83	+2.5	150
20	$C_{18}H_{20}N_2O_3$	<u>69.21</u> 69.28	<u>6.45</u> 6.56	<u>8.97</u> 8.85	202–204	86	-3.3	63
2p	$C_{19}H_{22}N_2O_3$	<u>69.92</u> 69.99	<u>6.79</u> 6.87	<u>8.58</u> 8.64	170–172	80	+15.8	67
2q	$C_{22}H_{24}N_2O_3$	<u>72.51</u> 72.43	<u>6.64</u> 6.55	<u>7.69</u> 7.78	252–254	74	-28.3	113

Характеристики алкиламидов 1-гидрокси-3-оксо-5,6-дигидро-3Н-пирроло-[3,2,1-іј]хинолин-2-карбоновой кислоты 2а-q*

* Вольтарен: ПА = -42.5, ДА отсутствует; фуросемид: ПА – отсутствует, ДА = 188. ** ПА – противовоспалительная активность; "–" – угнетение отека; "+" – усиление отека.

*** ДА – диуретическая активность.

Таблица 2

		Химические сдвиги, б, м. д. (Ј, Гц)								
Соели-	1.011	1-OH NH (1H, c) (1H)	Пирролохинолиновое ядро							
нение (1	(1H, c)		H-9 (1Н, д)	H-7 (1Н, д)	Н-8 (1Н, т)	5-СН ₂ (2Н, т)	6-СН ₂ (2Н, т)	R		
2a	17.20	10.11 (к, <i>J</i> = 4.2)	7.71 (<i>J</i> = 8.2)	7.41 (<i>J</i> = 7.3)	7.13 (<i>J</i> = 7.5)	4.34 (<i>J</i> = 7.9)	3.42 (<i>J</i> = 8.1)	2.99 (3Н, д, <i>J</i> = 4.8, CH ₃)		
2b	17.26	10.23 (T, $J = 5.3$)	7.69 (<i>J</i> = 8.0)	7.43 (<i>J</i> = 7.0)	7.14 (<i>J</i> = 7.5)	4.32 (<i>J</i> = 8.2)	3.41 (<i>J</i> = 8.2)	3.45 (2H, кв, <i>J</i> = 6.2, <u>СН</u> ₂ CH ₃); 1.27 (3H, т, <i>J</i> = 7.1, CH ₂ C <u>H</u> ₃)		
2c	17.02	10.37 (T, $J = 5.4$)	7.69 (<i>J</i> = 8.0)	7.44 (<i>J</i> = 7.1)	7.14 (<i>J</i> = 7.4)	4.33 (<i>J</i> = 8.0)	3.41 (<i>J</i> = 7.8)	5.95 (1H, M, CH); 5.28 (1H, \underline{A} , \underline{A} , $J = 16.9$, $J = 1.7$, NCH ₂ CH=C <u>H</u> <i>trans</i>); 5.17 (1H, \underline{A} , \underline{A} , $J = 11.0$, $J = 1.7$, NCH ₂ CH=C <u>H</u> - <i>cis</i>); 4.03 (2H, \underline{T} , $J = 5.5$, NC <u>H₂CH=CH₂</u>)		
2d	17.25	10.28 (т, <i>J</i> = 5.2)	7.68 (<i>J</i> = 8.0)	7.43 (<i>J</i> = 7.1)	7.13 (<i>J</i> = 7.6)	4.32 (<i>J</i> = 8.3)	3.41 (<i>J</i> = 8.2)	3.37 (2H, к, <i>J</i> = 7.1, NC <u>H</u> ₂ CH ₂ CH ₃); 1.66 (2H, м, NCH ₂ C <u>H</u> ₂ CH ₃) 1.03 (3H, т, <i>J</i> = 7.1, CH ₃)		
2e	17.29	10.17 (д, <i>J</i> = 6.7)	7.70 (<i>J</i> = 8.3)	7.42 (<i>J</i> = 7.2)	7.13 ($J = 7.5$)	4.32 (<i>J</i> = 8.1)	3.41 (<i>J</i> = 8.1)	4.18 (1H, м, CH); 1.30 (6H, д, <i>J</i> = 7.0, 2CH ₃)		
2f	17.26	10.25 (T, $J = 4.8$)	7.68 (<i>J</i> = 8.0)	7.43 (<i>J</i> = 7.2)	7.14 (<i>J</i> = 7.8)	4.32 (<i>J</i> = 8.5)	См. R	3.45–3.36 (4H, м, CH ₂ -6 + NC <u>H</u> ₂); 1.63 (2H, кв, <i>J</i> = 7.4, NCH ₂ C <u>H</u> ₂) 1.46 (2H, м, NCH ₂ CH ₂ CH ₂ CH ₃); 0.99 (3H, т, <i>J</i> = 7.4, CH ₃)		
2g	17.25	10.35 (т, <i>J</i> = 5.2)	7.69 (<i>J</i> = 8.2)	7.43 (<i>J</i> = 6.8)	7.14 (<i>J</i> = 7.5)	4.33 (<i>J</i> = 8.2)	3.42 (<i>J</i> = 8.1)	3.25 (2H, т, <i>J</i> = 6.2, NHC <u>H</u> ₂); 1.93 (1H, м, CH); 1.02 (6H, <i>д J</i> = 7.1, 2CH ₃)		
2h	17.30	10.19 (д, <i>J</i> = 7.7)	7.68 (<i>J</i> = 8.1)	7.42 (<i>J</i> = 7.3)	7.13 (<i>J</i> = 7.7)	4.31 (<i>J</i> = 8.2)	3.41 (<i>J</i> = 8.2)	4.02 (1H, м, NC <u>H</u>); 1.62 (2H, кв, <i>J</i> = 7.3, NCHC <u>H</u> ₂); 1.26 (3H, <i>Д</i> <i>J</i> = 6.9, NCHC <u>H</u> ₃); 0.99 (3H, т, <i>J</i> = 7.3, CH ₂ C <u>H</u> ₃)		

Спектры ЯМР ¹Н соединений 2а-q

1018

2i	17.25	10.33 (т, <i>J</i> = 5.2)	7.69 (<i>J</i> = 8.2)	7.39 (<i>J</i> = 7.1)	7.11 (<i>J</i> = 7.5)	4.32 (<i>J</i> = 8.3)	См. R	3.44–3.38 (4H, м, 6-CH ₂ + NC <u>H₂</u>); 1.65 (2H, кв, <i>J</i> = 7.0, NCH ₂ C <u>H₂</u>); 1.42 (4H, м, (C <u>H₂</u>) ₂ CH ₃); 0.96 (3H, т, <i>J</i> = 7.1, CH ₃)
2j	17.26	10.23 (т, <i>J</i> = 5.3)	7.69 (<i>J</i> = 8.2)	7.43 (<i>J</i> = 7.4)	7.14 (<i>J</i> = 7.7)	4.31 (<i>J</i> = 8.0)	См. R	3.45–3.38 (4H, м, 6-CH ₂ + NHC <u>H₂</u>); 1.73 (1H, м, CH); 1.53 (2H, к, <i>J</i> = 7.4, NCH ₂ C <u>H₂</u>); 0.98 (6H, д, <i>J</i> = 7.2, 2CH ₃)
2k	17.28	10.35 (т, <i>J</i> = 5.0)	7.65 (<i>J</i> = 8.1)	7.41 (<i>J</i> = 7.4)	7.11 (<i>J</i> = 7.7)	4.31 (<i>J</i> = 8.2)	3.39 (<i>J</i> = 8.0)	4.58 (1H, т, <i>J</i> = 4.5, OH); 3.61 (2H, к, <i>J</i> = 5.6, CH ₂ O); 3.47 (2H, к, <i>J</i> = 5.3, NHC <u>H₂</u>)
21	17.31	10.28 (т, <i>J</i> = 5.2)	7.67 (<i>J</i> = 8.0)	7.42 (<i>J</i> = 7.0)	7.13 (<i>J</i> = 7.5)	4.31 (<i>J</i> = 8.1)	3.40 (<i>J</i> = 7.9)	4.19 (1H, т, <i>J</i> = 5.2, OH); 3.55 (2H, к, <i>J</i> = 5.8, CH ₂ O); 3.48 (2H, к, <i>J</i> = 6.3, NC <u>H₂</u>); 1.76 (2H, кв, <i>J</i> = 6.2, NCH ₂ C <u>H₂</u>)
2m	17.12	10.22 (д, <i>J</i> = 3.2)	7.69 (<i>J</i> = 8.0)	7.43 (<i>J</i> = 7.5)	7.14 (<i>J</i> = 7.8)	4.30 (<i>J</i> = 7.9)	3.41 (<i>J</i> = 8.0)	2.94 (1H, м, CH); 0.85 (2H, м, CH ₂ циклопропана); 0.66 (2H, м, CH ₂ циклопропана)
2n	17.29	10.29 (д, <i>J</i> = 7.1)	7.67 (<i>J</i> = 7.9)	7.41 (<i>J</i> = 7.1)	7.13 (<i>J</i> = 8.2)	4.30 (<i>J</i> = 7.9)	3.41 (<i>J</i> = 8.0)	4.34 (1H, м, CH); 2.04–1.40 (8H, м, (CH ₂) ₄ циклопентана)
20	17.32	10.34 (д, <i>J</i> = 7.3)	7.69 (<i>J</i> = 8.0)	7.42 (<i>J</i> = 7.2)	7.14 (<i>J</i> = 8.1)	4.31 (<i>J</i> = 8.0)	3.42 (<i>J</i> = 8.0)	3.91 (1H, м, CH); 1.93–1.20 (10H, м, (CH ₂) ₅ циклогексана)
2p	17.31	10.34 (д, <i>J</i> = 7.7)	7.68 (<i>J</i> = 8.0)	7.43 (<i>J</i> = 6.9)	7.14 (<i>J</i> = 7.5)	4.32 (<i>J</i> = 8.3)	3.41 (<i>J</i> = 8.1)	4.11 (1H, м, CH); 1.95–1.43 (12H, м, (CH ₂) ₆ циклогептана)
2q	17.42	10.26 (c)	7.68 (<i>J</i> = 8.1)	7.41 (<i>J</i> = 7.2)	7.13 (<i>J</i> = 7.7)	4.30 (<i>J</i> = 8.0)	3.41 (<i>J</i> = 8.0)	2.14 (9H, с, γ-H-узловые + β-H-мостиковые адамантана); 1.74 (6H, с, δ-H-мостиковые адамантана)

Таблица З

Связь	l, Å	Связь	l, Å
N ₍₁₎ -C ₍₉₎	1.367(2)	$N_{(1)}-C_{(1)}$	1.367(2)
$N_{(1)}-C_{(10)}$	1.461(2)	$N_{(2)} - C_{(12)}$	1.335(3)
$N_{(2)}-C_{(13A)}$	1.471(1)	$N_{(2)} - C_{(13B)}$	1.471(1)
$O_{(1)} - C_{(9)}$	1.242(2)	$O_{(2)} - C_{(7)}$	1.326(2)
$O_{(3)} - C_{(12)}$	1.262(2)	$C_{(1)} - C_{(6)}$	1.380(3)
$C_{(1)} - C_{(2)}$	1.389(3)	$C_{(2)} - C_{(3)}$	1.367(3)
$C_{(2)} - C_{(11)}$	1.510(3)	$C_{(3)} - C_{(4)}$	1.401(3)
$C_{(4)} - C_{(5)}$	1.367(3)	$C_{(5)} - C_{(6)}$	1.415(3)
$C_{(6)} - C_{(7)}$	1.426(3)	$C_{(7)} - C_{(8)}$	1.382(3)
$C_{(8)} - C_{(9)}$	1.460(3)	$C_{(8)} - C_{(12)}$	1.465(3)
$C_{(10)} - C_{(11)}$	1.546(3)	$C_{(13A)} - C_{(16A)}$	1.539(1)
$C_{(13A)} - C_{(14A)}$	1.540(1)	$C_{(14A)} - C_{(15A)}$	1.540(1)
$C_{(13B)} - C_{(16B)}$	1.540(1)	$C_{(13B)} - C_{(14B)}$	1.540(1)
$C_{(14B)} - C_{(15B)}$	1.540(1)		

Длины связей (*l*) в структуре амида 2h

близкую к *ар* относительно связи $C_{(8)}-C_{(12)}$ (торсионный угол $C_{(13)}N_{(2)}C_{(12)}C_{(8)}$ составляет 165.9(2)° в конформере A и –157.4(3)° в B). Метильная группа этого заместителя в конформере A находится в *–ас*-конформации, а в B – в *+sc*-конформации относительно связи $C_{(12)}-N_{(2)}$ (торсионный угол $C_{(12)}N_{(2)}C_{(13)}C_{(16)}$ –123.4(4)° для A и 78.8(8)° для B). Этильная группа находится в *+ac*- и *–ас*-конформации относительно связи $C_{(12)}-N_{(2)}$ (торсионные углы с в *+ac*- и *–ас*-конформации относительно связи $C_{(12)}-N_{(2)}$ в A и B, соответственно, и развернута относительно связи $N_{(2)}-C_{(13)}$ (торсионные углы $C_{(12)}N_{(2)}C_{(13)}C_{(14)}$ 120.9(4)° в A и –158.3(4)° в B, $N_{(2)}C_{(13)}C_{(14)}C_{(15)}$ –49.2(5)° в A и 54.8(9)° в B). При этом возникают укороченные внутримолекулярные контакты $H_{(13b)}...O_{(3)}$ 2.39 (сумма ван-дер-

Таблица 4

Угол	ω, град.	Угол	ω, град.
Угол $C_{(9)}-N_{(1)}-C_{(1)}$ $C_{(1)}-N_{(1)}-C_{(10)}$ $C_{(12)}-N_{(2)}-C_{(13B)}$ $N_{(1)}-C_{(1)}-C_{(2)}$ $C_{(3)}-C_{(2)}-C_{(1)}$ $C_{(1)}-C_{(2)}-C_{(11)}$ $C_{(5)}-C_{(4)}-C_{(3)}$ $C_{(1)}-C_{(6)}-C_{(5)}$ $C_{(5)}-C_{(6)}-C_{(7)}$ $O_{(2)}-C_{(7)}-C_{(6)}$ $C_{(7)}-C_{(8)}-C_{(9)}$ $C_{(9)}-C_{(8)}-C_{(12)}$	 ω, град. 122.8(2) 111.3(2) 117.0(3) 111.9(2) 117.8(2) 107.9(2) 122.5(2) 116.9(2) 127.1(2) 117.3(2) 121.5(2) 120.5(2) 125.5(2) 	Угол $C_{(9)}-N_{(1)}-C_{(10)}$ $C_{(12)}-N_{(2)}-C_{(13A)}$ $N_{(1)}-C_{(1)}-C_{(6)}$ $C_{(6)}-C_{(1)}-C_{(2)}$ $C_{(3)}-C_{(2)}-C_{(11)}$ $C_{(2)}-C_{(3)}-C_{(4)}$ $C_{(4)}-C_{(5)}-C_{(6)}$ $C_{(1)}-C_{(6)}-C_{(7)}$ $O_{(2)}-C_{(7)}-C_{(8)}$ $C_{(8)}-C_{(7)}-C_{(6)}$ $C_{(7)}-C_{(8)}-C_{(12)}$ $O_{(1)}-C_{(9)}-N_{(1)}$	ю, град. 125.9(2) 125.8(2) 123.7(2) 124.3(2) 134.2(2) 119.4(2) 119.0(2) 116.0(2) 122.1(2) 120.7(2) 118.0(2) 119.3(2)
$\begin{array}{l} O_{(1)}-C_{(9)}-C_{(8)} \\ N_{(1)}-C_{(10)}-C_{(11)} \\ O_{(3)}-C_{(12)}-N_{(2)} \\ N_{(2)}-C_{(12)}-C_{(8)} \\ N_{(2)}-C_{(13A)}-C_{(14A)} \\ C_{(15A)}-C_{(14A)}-C_{(13A)} \\ N_{(2)}-C_{(13B)}-C_{(14B)} \\ C_{(15B)}-C_{(14B)}-C_{(13B)} \end{array}$	125.4(2) $104.0(2)$ $121.5(2)$ $118.9(2)$ $104.1(3)$ $112.9(4)$ $103.0(4)$ $104.1(8)$	$\begin{array}{c} N_{(1)} - C_{(9)} - C_{(8)} \\ C_{(2)} - C_{(11)} - C_{(10)} \\ O_{(3)} - C_{(12)} - C_{(8)} \\ N_{(2)} - C_{(13A)} - C_{(16A)} \\ C_{(16A)} - C_{(13A)} - C_{(14A)} \\ N_{(2)} - C_{(13B)} - C_{(16B)} \\ C_{(16B)} - C_{(13B)} - C_{(14B)} \end{array}$	$115.3(2) \\104.7(2) \\119.6(2) \\117.9(4) \\104.9(4) \\129.9(5) \\105.1(6)$

Валентные углы (ω) в структуре амида 2h

ваальсовых радиусов 2.46 [7]), $H_{(14a)}...N_{(2)}$ 2.64 (2.67), $H_{(14d)}...N_{(2)}$ 2.59 (2.67), $H_{(15b)}...N_{(2)}$ 2.40 (2.67), $H_{(15f)}...N_{(2)}$ 2.18 (2.67), $H_{(15f)}...H_{(2Nb)}$ 1.92 Å (2.34 Å).

Теоретическим обоснованием для изучения противовоспалительных свойств синтезированных нами соединений послужила способность близких по строению 4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоксамидов активно подавлять воспалительную реакцию организма на введение каррагенина [8]. Исследования проведены по известной методике [9] на белых беспородных крысах весом 180-200 г на модели каррагенинового отека. Воспаление вызывали путем субплантарного введения в одну из задних лап 0.1 мл 1% водной суспензии каррагенина. Амиды 2а-q вводили внутрижелудочно в виде тонкой водной суспензии, стабилизированной твином-80, в дозе 8 мг/кг (эффективная доза препарата сравнения – вольтарена) за 1 ч до инъекции каррагенина. Оказываемый исследуемыми соединениями эффект оценивали через 2 ч (максимум развития отека, вызванного каррагенином) онкометрически. Из представленных в табл. 1 экспериментальных данных следует, что из всей группы веществ только адамантил-1-амид 2q проявляет заметное, хотя и уступающее вольтарену, антиэкссудативное действие. Остальные соединения либо практически не влияют на отек, либо, как например этиламид 2b, оказывают выраженный провоспалительный эффект.

Влияние амидов 2а-q на мочевыделительную функцию почек изучено по методу Тейлера и Топлиса [10] на белых беспородных крысах весом 180-200 г. Всем животным через желудочный зонд давалась водная нагрузка из расчета 25 мл/кг. Исследуемые соединения вводили внутрижелудочно в дозе 25 мг/кг (эффективная доза фуросемида), после чего подопытные животные помещались в "обменные клетки". Регистрировали диурез через 2 ч, принимая контроль за 100% (табл. 1). Следует отметить достаточно высокий уровень мочегонного действия циклопентиламида 2n, лишь незначительно уступающего в активности фуросемиду. Как было установлено нами ранее [11, 12], диуретические свойства в большей или меньшей мере присущи только арилалкиламидам 4-гидрокси-2-оксо-1,2дигидрохинолин-3-карбоновых кислот, тогда как с переходом к алкиламидам активность полностью исчезала. Поэтому С(8)/N(1)-аннелирование 4-гидрокси-2-оксо-1,2-дигидрохинолинового ядра с дигидропиррольным можно рассматривать как структурный фактор, способствующий проявлению диуретического действия. Этот факт, несомненно, заслуживает внимания и дальнейшего изучения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н синтезированных соединений записаны на приборе Bruker WM-360 (360 МГц) в ДМСО- d_6 , внутренний стандарт ТМС. Контроль за ходом амидирования эфира **1**

осуществлялся методом TCX на пластинках Silufol UV-254 в системе гексан-эфир, 1:2, проявитель пары иода. Этиловый эфир 1-гидрокси-3-оксо-5,6-дигидро-3H-пирроло[3,2,1-*ij*]-хинолин-2-карбоновой кислоты (1) получен по методике работы [13].

Метиламид 1-гидрокси-3-оксо-5,6-дигидро-3H-пирроло[3,2,1-*ij*]хинолин-2-карбоновой кислоты (2a). Раствор 2.59 г (0.01 моль) этилового эфира 1 в 20 мл этанола насыщают газообразным метиламином и оставляют при комнатной температуре на 3 ч. Реакционную смесь разбавляют холодной водой и подкисляют разбавленной (1:1) HCl до pH 4.5–5.0. Выделившийся осадок амида 2a отфильтровывают, промывают водой, сушат.

Этиламид 2b синтезируют по аналогичной методике.

Аллиламид 1-гидрокси-3-оксо-5,6-дигидро-3Н-пирроло[3,2,1-*ij*]хинолин-2-карбоновой кислоты (2c). К раствору 2.59 г (0.01 моль) этилового эфира 1 в 15 мл этанола прибавляют 0.83 мл (0.011 моль) аллиламина и кипятят с обратным холодильником 2 ч (в случае пространственно затрудненных аминов продолжительность реакции увеличивают до 3–4 ч). Обработку реакционной смеси и выделение конечного вещества проводят по методике предыдущего опыта.

Алкиламиды 2d-q получают аналогично.

Рентгеноструктурное исследование. Кристаллы *втор*-бутиламида 2h триклинные (этанол), при 20 °C: *a* = 7.198(1), *b* = 8.658(1), *c* = 12.591(1) Å, α = 71.88(1), β = 82.293(1), γ = 77.59(1)°, *V* = 726.4(1) Å³, *M*_r = 286.32, *Z* = 2, пространственная группа *P* $\bar{1}$, *d*_{выч} = 1.309 г/см³, μ (Мо*K* α) = 0.091 мм⁻¹, *F*(000) = 304. Параметры элементарной ячейки и интенсивности 6179 отражений (2518 независимых, *R*_{int} = 0.022) измерены на дифрактометре Xcalibur-3 (Мо*K* α излучение, CCD-детектор, графитовый монохроматор, ω -сканирование, $2\theta_{max} = 50^{\circ}$).

Структура расшифрована прямым методом по комплексу программ SHELXTL [14]. При уточнении структуры налагались ограничения на длины связей в разупорядоченном фрагменте N–C_{sp3} 1.47(1) и C_{sp3}–C_{sp3} 1.54(1) Å. Положения атомов водорода выявлены из разностного синтеза электронной плотности, а для разупорядоченной части рассчитаны геометрически и уточнены по модели "наездника" с $U_{iso} = nU_{eq}$ неводородного атома, связанного с данным водородным (n = 1.5 для метильной группы и n = 1.2 для остальных атомов водорода). Структуры уточнены по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов до $wR_2 = 0.0124$ по 2418 отражениям ($R_1 = 0.048$ по 1315 отражениям с $F>4\sigma(F)$, S = 0.869). Полная кристаллографическая информация депонирована в Кембриджском банке структурных данных (депонент № ССDC 604003). Межатомные расстояния и валентные углы представлены в табл. 3 и 4.

СПИСОК ЛИТЕРАТУРЫ

- И. В. Украинец, Н. Л. Березнякова, Г. П. Петюнин, И. А. Тугайбей, В. Б. Рыбаков, В. В. Чернышев, А. В. Туров, XTC, 864 (2007).
- 2. A. Kutyrev, T. Kappe, J. Heterocycl. Chem., 34, 969 (1997).
- И. В. Украинец, П. А. Безуглый, О. В. Горохова, В. И. Трескач, В. А. Георгиянц, А. В. Туров, И. Л. Дикий, XTC, 100 (1993). [(Chem. Heterocycl. Comp., 29, 87 (1993)].
- 4. И. В. Украинец, С. Г. Таран, Н. В. Лиханова, Джарадат Нидаль Амин, О. В. Шишкин, *XIC*, 64 (2000). [(*Chem. Heterocycl. Comp.*, **36**, 57 (2000)].
- 5. І. В. Українець, С. А. Ель Каяль, О. В. Горохова, Л. В. Сидоренко, Т. В. Алєксєєва, Вісник фармації, № 1 (41), 10 (2005).
- 6. H.-B. Burgi, J. D. Dunitz, Struct. Correl., VCH, Weinheim, 1994, vol. 2, p. 741.
- 7. Ю. В. Зефиров, *Кристаллография*, **42**, 936 (1997).
- X. Collin, J. M. Robert, M. Duflos, G. Wielgosz, G. Le Baut, C. Robin-Dubigeon, N. Grimaud, F. Lang, J. Y. Petit, *J. Pharm. Pharmacol.*, 53, 417 (2001).
- С. М. Дрововоз, І. А. Зупанець, М. А. Мохорт, Л. В. Яковлєва, Б. М. Клєбанов, в кн. Доклінічні дослідження лікарських засобів: методичні рекомендації, под ред. О. В. Стефанова, Авіцена, Київ, 2001, с. 292.
- Л. Н. Сернов, В. В. Гацура, Элементы экспериментальной фармакологии, Москва, 2000, с. 103.
- 11. С. Г. Таран, Н. В. Ліханова, І. В. Українець, С. Г. Леонова, Л. М. Вороніна, О. І. Набока, *Вісник фармації*, № 2 (20), 47 (1999).
- 12. И. В. Украинец, Дис. докт. хим. наук, Харьков, 1992.
- 13. И. В. Украинец, Л. В. Сидоренко, О. В. Горохова, Е. В. Моспанова, О. В. Шишкин, *XГС*, 718 (2006). [(*Chem. Heterocycl. Comp.*, **42**, 631 (2006)].
- 14. G. M. Sheldrick, SHELXTL PLUS. PC Version. A System of Computer Programs for the Determination of Crystal Structure from X-ray Diffraction Data. Rev. 5.1 (1998).

Национальный фармацевтический университет, Харьков 61002, Украина e-mail: uiv@kharkov.ua Поступило 27.03.2006