И. В. Украинец, Н. Л. Березнякова, А. В. Туров^а, С. В. Шишкина⁶

4-ГИДРОКСИХИНОЛОНЫ-2

123.* АМИДИРОВАНИЕ 2-БРОММЕТИЛ-5-ОКСО-1,2-ДИГИДРО-5Н-ОКСАЗОЛО[3,2-*a*]ХИНОЛИН-4-КАРБОНОВОЙ КИСЛОТЫ

Обработка 2-бромметил-5-оксо-1,2-дигидро-5H-оксазоло[3,2-*a*]хинолин-4-карбоновой кислоты хлористым тионилом сопровождается трансформацией оксазолохинолонового ядра и приводит к образованию хлорангидрида 1-(2,3-дихлорпропил)-2-оксо-4-хлор-1,2-дигидрохинолин-3-карбоновой кислоты.

Ключевые слова: оксазоло[3,2-*а*]хинолин, 4-хлорхинолин-2-он, амидирование, размыкание цикла, РСА.

Карбоновые кислоты могут быть превращены в N-замещенные амиды, представляющие собой потенциально биологически активные вещества, различными способами. Тем не менее, в препаративной органической химии широко используются лишь немногие из них. Наиболее известные – превращение кислоты в хлорангидрид или же имидазолид обработкой, соответственно, хлористым тионилом или N,N'-карбонилдиимидазолом (CDI). Мы изучили возможность применения этих методов для амидирования недавно описанной 2-бромметил-5-оксо-1,2-дигидро-5Hоксазоло[3,2-*a*]-хинолин-4-карбоновой кислоты (1).

Оказалось, что реакции кислоты 1 как с хлористым тионилом, так и с N,N'-карбонилдиимидазолом проходят без видимых осложнений. Поэтому последующая обработка промежуточных хинолонов 2 и 3 *п*-анизидином теоретически должна была бы привести к одному и тому же соединению -4-метоксианилиду 2-бромметил-5-оксо-1,2-дигидро-5Н-оксазоло[3,2-а]хинолин-4-карбоновой кислоты (5). Однако на практике свойства полученных анилидов 4 и 5 оказались различными. Первоначальное предположение о том, что в случае применения N,N'-карбонилдиимидазола могло произойти нуклеофильное замещение атома брома кислоты 1 на остаток имидазола не оправдалось – в спектрах ЯМР ¹Н и ¹³С соответствующих имидазолу сигналов нет. Более того, сравнительный анализ спектров ЯМР ¹Н полученных веществ и их синтетического предшественника – кислоты 1 – показал, что к существенной трансформации оксазолохинолонового скелета приводит обработка хлористым тионилом, тогда как в случае N,N'карбонилдиимидазола характер спектра почти не изменяется.

Аналогичное заключение сделано и на основании исследования спектров $\rm 3MP^{13}C$ анилидов 4 и 5, а также после гидролиза предполагаемого хлорангидрида – образовавшаяся кислота 6 по своим свойствам и спектральным характеристикам значительно отличалась от исходной.

^{*} Сообщение 122 см. [1].

Однако вопрос о том, что же именно происходит с кислотой 1 в условиях изучаемой реакции оставался открытым.

Решение этой задачи было найдено после обработки хлористым тионилом этилового эфира 2-бромметил-5-оксо-1,2-дигидро-5H-оксазоло-[3,2-*a*]хинолин-4-карбоновой кислоты (7).

Из полученного вещества удалось вырастить подходящий для РСА монокристалл, что и позволило однозначно охарактеризовать его как этиловый эфир 1-(2,3-дихлорпропил)-2-оксо-4-хлор-1,2-дигидрохинолин-3-карбоновой кислоты (8). Начальной стадией этой необычной реакции, очевидно, является присоединение HCl, следы которого всегда присутствуют в хлористом тиониле. Далее образовавшееся 4-гидроксипроизводное 9 несомненно претерпевает три превращения: нуклеофильное ароматическое замещение группы OH, расщепление простой эфирной связи в оксазолидиновом ядре и, наконец, обмен атома брома на хлор. В то же время, однозначно утверждать, как проходят эти процессы – одновременно или в какой-то определенной последовательности – не представляется возможным.

Из данных РСА следует, что бициклический фрагмент и атомы Cl₍₁₎, $C_{(10)}$, $O_{(1)}$, $C_{(13)}$ этилового эфира **8** лежат в одной плоскости с точностью 0.01 Å (рисунок, табл. 1, 2). При этом возникает укороченный внутримолекулярный контакт H₍₅₎...Cl₍₁₎ 2.66 Å (сумма ван-дер-ваальсовых радиусов 3.06 Å [2]). Сложноэфирный заместитель развернут перпендикулярно плоскости бицикла (торсионный угол C₍₇₎–C₍₈₎–C₍₁₀₎–O₍₂₎ 89.3(5)°). Этильная группа находится в *ар*-конформации относительно связи C₍₈₎– C₍₁₀₎, а связь C₍₁₁₎–C₍₁₂₎ практически перпендикулярна связи C₍₁₀₎–O₍₃₎ (торсионные углы C₍₁₁₎–O₍₃₎–C₍₁₀₎–C₍₈₎–179.5(3)°, C₍₁₀₎–O₍₃₎–C₍₁₁₎–C₍₁₂₎ – 85.3(4) °). Такое расположение этильной группы приводит к возникновению укороченного внутримолекулярного контакта H_(11a)...O₍₂₎ 2.40 Å (2.46 Å).

Отталкивание между заместителем при атоме $N_{(1)}$ и соседними карбонильной группой и атомом водорода в *пери*-положении бензольного кольца [внутримолекулярные укороченные контакты $H_{(2)}...C_{(13)}$ 2.60 (2.87), $H_{(2)}...H_{(13a)}$ 1.95 (2.34), $H_{(13a)}...C_{(2)}$ 2.51 (2.87), $H_{(13b)}...O_{(1)}$ 2.38 (2.46) и $H_{(14)}...C_{(9)}$ 2.84 Å (2.87 Å)] приводит к тому, что дихлорпропильный заместитель расположен практически перпендикулярно плоскости бициклического фрагмента (торсионный угол $C_{(9)}-N_{(1)}-C_{(13)}-C_{(14)}$ 78.1(3)°) и находится в *ар*-конформации (торсионный угол $N_{(1)}-C_{(13)}-C_{(14)}-C_{(15)}$ -175.8(3)°). При этом атомы хлора в нем находятся в *-sc*-положении друг относительно друга (торсионный угол $Cl_{(2)}-C_{(14)}-Cl_{(3)}$ –65.1(3)°), несмотря на укороченный внутримолекулярный контакт $Cl_{(2)}...C_{(1)}$ 3.53 Å (3.61 Å).

В кристалле молекулы эфира **8** образуют стопки вдоль кристаллографического направления (1 0 0), связанные между собой очень слабыми межмолекулярными водородными связями $C_{(13)}$ - $H_{(13a)}$... $O_{(2)'}$ (1+*x*, *y*, *z*) H...O 2.39 Å, C-H...O 133°, $C_{(15)}$ - $H_{(15b)}$... $O_{(1)'}$ (1-*x*, 2-*y*, 1-*z*) H...O 2.43 Å, C-H...O 162°. В кристалле также обнаружены укороченные межмолекулярные контакты $H_{(4)}$... $Cl_{(3)'}$ (*x*, *y*, *z*-1) 2.98 (3.06), $H_{(11b)}$... $Cl_{(2)'}$ (*x*-1, *y*+1, *z*) 2.96 (3.06), $Cl_{(1)}$... $Cl_{(1)'}$ (-*x*, 2-*y*, -*z*) 3.45 (3.80), $Cl_{(1)}$... $Cl_{(3)'}$ (1-*x*, 1-*y*, 1-*z*) 3.58 (3.80), $Cl_{(2)}$... $C_{(9)'}$ (1-*x*, 1-*y*, 1-*z*) 3.58 (3.61), $Cl_{(3)}$... $C_{(7)'}$ (1-*x*, 1-*y*, 1-*z*) 3.57 Å (3.61 Å).

Строение молекулы трихлорзамещенного эфира 8 с нумерацией атомов

Таблица 1

Связь	l, Å	Связь	l, Å
Cl ₍₁₎ –C ₍₇₎	1.760(3)	$N_{(1)}-C_{(1)}$	1.386(4)
N ₍₁₎ -C ₍₉₎	1.386(4)	$N_{(1)} - C_{(13)}$	1.467(4)
$O_{(1)} - C_{(9)}$	1.224(4)	$C_{(1)} - C_{(2)}$	1.409(5)
$C_{(1)} - C_{(6)}$	1.416(5)	$Cl_{(2)}-C_{(14)}$	1.827(3)
$O_{(2)} - C_{(10)}$	1.186(4)	$C_{(2)} - C_{(3)}$	1.352(6)
$Cl_{(3)}-C_{(15)}$	1.844(4)	$O_{(3)} - C_{(10)}$	1.321(4)
$O_{(3)} - C_{(11)}$	1.462(4)	$C_{(3)} - C_{(4)}$	1.393(8)
$C_{(4)} - C_{(5)}$	1.382(8)	$C_{(5)} - C_{(6)}$	1.388(5)
$C_{(6)} - C_{(7)}$	1.434(5)	$C_{(7)} - C_{(8)}$	1.321(5)
C ₍₈₎ –C ₍₉₎	1.460(4)	$C_{(8)} - C_{(10)}$	1.499(4)
$C_{(11)} - C_{(12)}$	1.486(6)	$C_{(13)} - C_{(14)}$	1.520(5)
C ₍₁₄₎ –C ₍₁₅₎	1.499(5)		

Длины связей (*l*) в структуре трихлорзамещенного эфира 8

Угол	ω, град.	Угол	ω, град.
$C_{(1)} - N_{(1)} - C_{(9)}$	123.0(2)	$C_{(1)} - N_{(1)} - C_{(13)}$	123.2(2)
$C_{(9)} - N_{(1)} - C_{(13)}$	113.7(2)	$N_{(1)}-C_{(1)}-C_{(2)}$	121.4(3)
$N_{(1)}-C_{(1)}-C_{(6)}$	120.4(3)	$C_{(2)} - C_{(1)} - C_{(6)}$	118.2(3)
$C_{(3)} - C_{(2)} - C_{(1)}$	120.7(4)	$C_{(10)} - O_{(3)} - C_{(11)}$	117.0(3)
$C_{(2)} - C_{(3)} - C_{(4)}$	121.7(4)	$C_{(5)} - C_{(4)} - C_{(3)}$	118.5(4)
$C_{(4)} - C_{(5)} - C_{(6)}$	121.4(5)	$C_{(5)} - C_{(6)} - C_{(1)}$	119.5(4)
$C_{(5)} - C_{(6)} - C_{(7)}$	124.5(4)	$C_{(1)} - C_{(6)} - C_{(7)}$	116.1(3)
$C_{(8)} - C_{(7)} - C_{(6)}$	123.6(3)	$C_{(8)} - C_{(7)} - Cl_{(1)}$	118.6(3)
$C_{(6)} - C_{(7)} - Cl_{(1)}$	117.8(2)	$C_{(7)} - C_{(8)} - C_{(9)}$	120.6(3)
$C_{(7)} - C_{(8)} - C_{(10)}$	125.1(3)	$C_{(9)} - C_{(8)} - C_{(10)}$	114.3(3)
$O_{(1)} - C_{(9)} - N_{(1)}$	121.3(3)	$O_{(1)} - C_{(9)} - C_{(8)}$	122.3(3)
$N_{(1)}-C_{(9)}-C_{(8)}$	116.3(2)	$O_{(2)} - C_{(10)} - O_{(3)}$	124.6(3)
$O_{(2)} - C_{(10)} - C_{(8)}$	123.8(3)	$O_{(3)} - C_{(10)} - C_{(8)}$	111.6(2)
$O_{(3)}-C_{(11)}-C_{(12)}$	111.2(3)	$N_{(1)}-C_{(13)}-C_{(14)}$	113.3(2)
$C_{(15)} - C_{(14)} - C_{(13)}$	108.8(3)	$C_{(15)}-C_{(14)}-Cl_{(2)}$	110.9(2)
$C_{(13)}$ - $C_{(14)}$ - $Cl_{(2)}$	111.7(2)	$C_{(14)} - C_{(15)} - Cl_{(3)}$	111.9(3)

Валентные углы (ω) в структуре трихлорзамещенного эфира 8

С учетом данных, полученных методом PCA, все встало на свои места и в спектрах ЯМР. Так, например, спектр ЯМР ¹³С анилида 4 полностью согласуется со структурой ациклического трихлорпроизводного. Об этом свидетельствует аномально сильнопольный химический сдвиг сигнала атома $C_{(4)}$ хинолинового фрагмента, равный 140.7 м. д. Такое положение

1038

δ , м. д.HMQCHMBC10.42-161.2; 132.5; 121.48.08126.9140.7; 139.1; 133.47.82116.4139.1; 126.9; 124.3; 118.47.80133.417.57121.4156.30; 132.5; 121.47.46124.3118.4; 116.46.93114.7156.3; 132.54.8547.258.9; 36.8; 158.9; 139.14.8258.947.24.7147.258.9; 36.8; 158.9; 139.14.0036.858.98; 47.23.7555.9156.3			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	δ, м. д.	HMQC	HMBC
8.08126.9140.7; 139.1; 133.47.82116.4139.1; 126.9; 124.3; 118.47.80133.4139.1; 126.9; 124.3; 118.47.80133.4156.30; 132.5; 121.47.57121.4156.30; 132.5; 121.47.46124.3118.4; 116.46.93114.7156.3; 132.54.8547.258.9; 36.8; 158.9; 139.14.8258.947.24.7147.258.9; 36.8; 158.9; 139.14.0036.858.98; 47.23.7555.9156.3	10.42	_	161.2; 132.5; 121.4
7.82 116.4 $139.1; 126.9; 124.3; 118.4$ 7.80 133.4 $156.30; 132.5; 121.4$ 7.57 121.4 $156.30; 132.5; 121.4$ 7.46 124.3 $118.4; 116.4$ 6.93 114.7 $156.3; 132.5$ 4.85 47.2 $58.9; 36.8; 158.9; 139.1$ 4.82 58.9 47.2 4.71 47.2 $58.9; 36.8; 158.9; 139.1$ 4.00 36.8 $58.98; 47.2$ 3.75 55.9 156.3	8.08	126.9	140.7; 139.1; 133.4
7.80 133.4 7.57 121.4 $156.30; 132.5; 121.4$ 7.46 124.3 $118.4; 116.4$ 6.93 114.7 $156.3; 132.5$ 4.85 47.2 $58.9; 36.8; 158.9; 139.1$ 4.82 58.9 47.2 4.71 47.2 $58.9; 36.8; 158.9; 139.1$ 4.00 36.8 $58.98; 47.2$ 3.75 55.9 156.3	7.82	116.4	139.1; 126.9; 124.3; 118.4
7.57 121.4 $156.30; 132.5; 121.4$ 7.46 124.3 $118.4; 116.4$ 6.93 114.7 $156.3; 132.5$ 4.85 47.2 $58.9; 36.8; 158.9; 139.1$ 4.82 58.9 47.2 4.71 47.2 $58.9; 36.8; 158.9; 139.1$ 4.00 36.8 $58.98; 47.2$ 3.75 55.9 156.3	7.80	133.4	
7.46124.3118.4; 116.46.93114.7156.3; 132.54.8547.258.9; 36.8; 158.9; 139.14.8258.947.24.7147.258.9; 36.8; 158.9; 139.14.0036.858.98; 47.23.7555.9156.3	7.57	121.4	156.30; 132.5; 121.4
6.93114.7156.3; 132.54.8547.258.9; 36.8; 158.9; 139.14.8258.947.24.7147.258.9; 36.8; 158.9; 139.14.0036.858.98; 47.23.7555.9156.3	7.46	124.3	118.4; 116.4
4.8547.258.9; 36.8; 158.9; 139.14.8258.947.24.7147.258.9; 36.8; 158.9; 139.14.0036.858.98; 47.23.7555.9156.3	6.93	114.7	156.3; 132.5
4.8258.947.24.7147.258.9; 36.8; 158.9; 139.14.0036.858.98; 47.23.7555.9156.3	4.85	47.2	58.9; 36.8; 158.9; 139.1
4.7147.258.9; 36.8; 158.9; 139.14.0036.858.98; 47.23.7555.9156.3	4.82	58.9	47.2
4.0036.858.98; 47.23.7555.9156.3	4.71	47.2	58.9; 36.8; 158.9; 139.1
3.75 55.9 156.3	4.00	36.8	58.98; 47.2
	3.75	55.9	156.3

Таблица 3 Полный перечень корреляций, найденных для анилида 4

сигнала никак не может соответствовать карбонильному атому углерода. Кроме того, сигнал β -атома углерода в заместителе при атоме $N_{(1)}$ также вполне соответствует группе –СНСІ–. Для этого соединения получены следующие углеродные и протонные химические сдвиги.

Отнесение протонированных атомов углерода сделано на основании спектров HMQC, а отнесение четвертичных атомов углерода – на основании корреляций в спектрах HMBC. Так, отнесение узлового атома $C_{(8a)}$ следует из имеющихся для него корреляций с протонами H-5,7 и метиленовыми протонами группы N–CH₂. Химический сдвиг атома $C_{(4a)}$ определяется корреляциями с протонами H-6 и H-8. Атом $C_{(4)}$, связанный с хлором, имеет интенсивную корреляцию через три связи с протоном H-5, что позволяет отнести его вполне надежно. Карбонильный атом $C_{(2)}$ можно 1039

отнести на основании корреляции с протонами метиленовой группы N-CH₂.

Сигнал амидного карбонила при атоме $C_{(3)}$ был отнесен на основании наличия корреляции с амидным протоном NH. Единственным атомом углерода, для которого не найдено корреляций с протонами, является атом $C_{(3)}$. Его мы отнесли методом исключения. Химический сдвиг этого атома вполне характерен для сопряженных систем. Важнейшие из корреляций HMBC, послужившие основанием для отнесений, показаны на схеме, а их полный список приведен в табл. 3.

Протонный спектр альтернативного анилида 5, хотя и содержит то же самое количество протонов, однако, сильно отличается по их химическим сдвигам. Отнесение сигналов сделаны на основании их мультиплетности и наличия кросс-пиков в спектре COSY. В углеродном спектре этого соединения сигнал атома $C_{(5)}$ хинолинового цикла имеет химический сдвиг 177.7 м. д., что характерно для сопряженной карбонильной группы.

Сигнал атома $C_{(2)}$ оксазолидинового цикла имеет химический сдвиг 80.9 м. д., что подтверждает его связь с атомом кислорода. Отнесения остальных сигналов следуют из наблюдающихся корреляций в спектрах HMBC и HMQC. Так, отнесение сигнала 124.2 м. д. к узловому атому $C_{(5a)}$ следует из наличия его корреляций с атомами H-7 и H-9. Отнесение сигнала при 135.1 м. д. к атому $C_{(9a)}$ следует из его корреляций через три связи с атомами H-6 и H-8. Сигнал хинолинового атома $C_{(3a)}$ интерпретирован на основании корреляции с метиленовыми протонами при гетероциклическом атоме азота, а отнесение сигнала атома $C_{(4)}$ следует из корреляции с протоном амидной группы NH. Отнесение сигналов в оксазолидиновом цикле также вполне надежно следует из найденных корреляций. Так, и метиленовые протоны и протон CH имеют корреляцию через три связи с хинолиновым атомом $C_{(3a)}$, а это возможно исключительно при циклическом строении соединения. Следует, однако, отметить, что корреляция протона при 5.68 м. д. (атом H-2 оксазолидинового кольца)

Δ, м. д.	HMQC	НМВС
12.33	-	96.3; 121.5; 133.2
8.25	127.0	177.7; 135.1; 134.0
7.81	134.0	135.1; 127.0
7.58	121.5	155.7; 133.2; 121.5
7.56	116.7	125.1; 124.2
7.48	125.1	124.2; 116.7
6.88	114.7	155.7; 133.2; 114.7
5.68	80.9	163.0
4.68	49.3	163.0; 80.9; 35.1
4.31	49.3	163.0; 80.9; 35.1
4.02	35.1	80.9; 49.3
3.72	55.9	155.7

Полный перечень корреляций, найденных для оксазолохинолона 5

Таблица 4

и атомом C_(3a) ядра хинолина весьма слаба. Ее удается наблюдать только 1040

при увеличении времени смешивания в импульсной последовательности до 100 мс. При этом многие корреляции, связанные с большими КССВ становятся невидимыми. Отнесения остальных сигналов даны на схеме и в табл. 4. Таким образом, все полученные данные согласуются с предложенной структурой анилидов 4 и 5.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С 4-метоксианилидов **4** и **5**, эксперименты по двумерной спектроскопии ЯМР ¹Н СОЅҮ, гомоядерному эффекту Оверхаузера NOESY-1D, а также гетероядерные корреляционные спектры HMQC и HMBC зарегистрированы на спектрометре Varian Mercury-400 (400 и 100 МГц соответственно). Все двумерные эксперименты проводились с градиентной селекцией полезных сигналов. Время смешивания в импульсных последовательностях соответствовало ¹ $J_{CH} = 140 \text{ и }^{2,3}J_{CH} = 8 \Gamma \text{ц}$. Количество инкрементов в спектрах COSY и HMQC составило 128, а в спектрах HMBC – 400. Время смешивания в эксперименте NOESY-1D составляло 500 мс. Спектры ЯМР ¹Н остальных соединений записаны на приборе Varian Mercury-VX-200 (200 МГц). Во всех случаях растворитель ДМСО-d₆, внутренний стандарт ТМС.

2-Бромметил-5-оксо-1,2-дигидро-5Н-оксазоло[3,2-а]хинолин-4-карбоновая кислота (1) и ее этиловый эфир 7 получены по методике работы [3]. В работе использованы N,N'-карбонилдиимидазол и безводный ДМФА для пептидного синтеза фирмы Fluka.

4-Метоксианилид 1-(2,3-дихлорпропил)-2-оксо-4-хлор-1,2-дигидрохинолин-3-карбоновой кислоты (4). Смесь 3.24 г (0.01 моль) 2-бромметил-5-оксо-1,2-дигидро-5Ноксазоло[3,2-а]хинолин-4-карбоновой кислоты (1) и 30 мл SOCl₂ кипятят 10 ч. Затем избыток SOCl₂ полностью отгоняют в вакууме. Образовавшийся хлорангидрид 2 растворяют в 15 мл сухого ацетона, полученный раствор при охлаждении и интенсивном перемешивании прибавляют в смесь 1.23 г (0.01 моль) *п*-анизидина и 1.4 мл (0.01 моль) триэтиламина в 20 мл сухого ацетона. Через 5 ч реакционную смесь разбавляют холодной водой. Выделившийся осадок анилида 4 отфильтровывают, промывают водой, сушат. Выход 3.78 г (86%). Т. пл. 188–190 °С (из этанола). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 10.42 (1Н, с, NН); 8.08 (1Н, д, J = 8.1, Н-5); 7.82 (2Н, м, Н-7,8); 7.57 (2Н, д, J = 8.7, Н-2',6'); 7.46 (1Н, т, J = 7.3, Н-6); 6.93 (2Н, д, J = 8.7, Н-3',5'); 4.85 (1Н, м, NCH); 4.82 (1Н, м, NCH₂C<u>H</u>Cl); 4.71 (1H, м, NCH); 4.00 (2H, м, CH₂Cl); 3.75 (3H, с, OCH₃). Спектр ЯМР ¹³С, δ, м. д.: 161.2 (С₍₃₎=О); 158.9 (С₍₂₎=О); 156.3 (С₍₄₎); 140.7 (С₍₄₎); 139.1 (С_(8a)); 133.4 (С₍₇₎); 132.5 $(C_{(1')}); 129.6 (C_{(3)}); 126.9 (C_{(5)}); 124.3 (C_{(6)}); 121.4 (C_{(2',6)}); 118.4 (C_{(4a)}); 116.4 (C_{(8)}); 114.7$ (С_(3',5')); 58.9 (NCH₂<u>C</u>HCl); 55.9 (OCH₃); 47.2 (NCH₂); 36.8 (CH₂Cl). Найдено, %: С 54.55; Н 3.81; N 6.47. С₂₀Н₁₇Сl₃N₂O₃. Вычислено, %: С 54.63; Н 3.90; N 6.37.

4-Метоксианилид 2-бромметил-5-оксо-1,2-дигидро-5H-оксазоло[3,2-*а***]хинолин-4-карбоновой кислоты (5). К раствору 3.24 г (0.01 моль) соединения 1** в 20 мл безводного ДМФА прибавляют 1.62 г (0.01 моль) N,N'-карбонилдиимидазола. Полученную реакционную смесь выдерживают при 55–60 °С до полного прекращения выделения CO₂ (~2 ч), защищая от влаги воздуха. К полученному имидазолиду **3** прибавляют 1.23 г (0.01 моль) *n*-анизидина, после чего продолжают нагревание еще 3 ч. Охлажденную реакционную смесь разбавляют водой. Осадок анилида **5** отфильтровывают, промывают водой, сушат. Выход 3.90 г (91%). Т. пл. 227–229 °С (из этанола). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 12.33 (1H, с, NH); 8.25 (1H, д, *J* = 7.8, H-6); 7.81 (1H, т, *J* = 7.3, H-8); 7.58 (2H, д, *J* = 8.8, H-2',6'); 7.56 (1H, д, *J* = 8.5, H-9); 7.48 (1H, т, *J* = 7.3, H-7); 6.88 (2H, д, *J* = 8.8, H-3',5'); 5.68 (1H, м, NCH₂C<u>HO</u>); 4.68 (1H, т, *J* = 9.8, NCH); 4.31 (1H, д. д. *J* = 6.6 и *J* = 9.7, NCH); 4.02 (2H, м, CH₂Br); 3.72 (3H, с, OCH₃). Спектр ЯМР ¹³С, δ, м. д.: 177.7 (C₍₅₎=O); 163.0 (C_(3а)); 161.6 (C₍₄=O); 155.7 (C₍₄)); 135.1 (C_{(9а})); 134.0 (C₍₈₎); 133.2 (C_{(1'})); 127.0 (C₍₆₎); 125.1 (C₍₇₎); 124.2 (C_{(5а})); 121.5 (C_{(2:6})); 116.7 (C₍₉₎); 114.7 (C_{(3:5})); 96.3 (C₄)); 80.9 (NCH₂<u>C</u>HO); 55.9 (OCH₃); 49.3 (NCH₂); 35.1 (CH₂Br). Найдено, %: C 55.84; H 4.10; N 6.46. C₂₀H₁₇BrN₂O₄. Вычислено, %: C 55.96; H 3.99; N 6.53.

1-(2,3-Дихлорпропил)-2-оксо-4-хлор-1,2-дигидрохинолин-3-карбоновая кислота (6). К полученному хлорангидриду 2 (см. пример по синтезу анилида 4) прибавляют 20 мл воды, тщательно размешивают и оставляют на 2–3 ч при комнатной температуре. Образовавшуюся кислоту 6 отфильтровывают, промывают водой, сушат. Выход 3.17 г

(95%). Т. пл. 167–169 °С (из этанола). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 12.11 (1Н, уш. с, COOH); 8.03 (1Н, д, *J* = 8.0, H-5); 7.81–7.74 (2Н, м, H-7,8); 7.44 (1Н, т, *J* = 7.7, H-6); 4.90–4.53 (3Н, м, NCH₂CH); 4.04 (2Н, м, CH₂Cl). Найдено, %: С 46.76; Н 3.13; N 4.10. С₁₃H₁₀Cl₃NO₃. Вычислено, %: С 46.67; Н 3.01; N 4.19.

Этиловый эфир 1-(2,3-дихлорпропил)-2-оксо-4-хлор-1,2-дигидрохинолин-3-карбоновой кислоты (8). Раствор $3.52 \, \Gamma$ (0.01 моль) этилового эфира 2-бромметил-5-оксо-1,2дигидро-5H-оксазоло[3,2-*a*]хинолин-4-карбоновой кислоты (7) и 30 мл SOCl₂ кипятят 10 ч. Избыток SOCl₂ удаляют в вакууме. Остаток обрабатывают холодной водой. Осадок эфира 8 отфильтровывают, промывают водой, сушат. Выход $3.26 \, \Gamma$ (90%). Т. пл. $84-86 \, ^{\circ}$ С (из эфира). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 8.03 (1H, д, *J* = 8.1, H-5); 7.83–7.76 (2H, м, H-7,8); 7.44 (1H, т, *J* = 7.6, H-6); 4.89–4.52 (3H, м, NCH₂CH); 4.34 (2H, к, *J* = 7.2, COOCH₂); 4.03 (2H, м, CH₂Cl); 1.29 (3H, т, *J* = 7.0, CH₃). Найдено, %: С 49.57; H 3.75; N 3.77. C₁₅H₁₄Cl₃NO₃. Вычислено, %: С 49.68; H 3.89; N 3.86.

Рентгеноструктурное исследование. Кристаллы трихлорзамещенного эфира **8** (из диэтилового эфира) триклинные, при 20 °C: a = 8.503(1), b = 9.109(1), c = 11.978(2) Å, $\alpha = 68.89(1)$, $\beta = 79.20$ (1), $\gamma = 73.48(1)^{\circ}$, V = 826.0(2) Å³, $M_{\rm r} = 362.62$, Z = 2, пространственная группа $P\bar{1}$, $d_{\rm выч} = 1.458$ г/см³, $\mu({\rm Mo}K\alpha) = 0.565$ мм⁻¹, F(000) = 372. Параметры элементарной ячейки и интенсивности 7949 отражений (2277 независимых, $R_{\rm int} = 0.017$) измерены на дифрактометре Xcalibur-3 (Мо $K\alpha$, ССD-детектор, графитовый монохроматор, ω -сканирование, $2\theta_{\rm max} = 60^{\circ}$).

Структура расшифрована прямым методом по комплексу программ SHELXTL [4]. Положения атомов водорода выявлены из разностного синтеза электронной плотности и уточнены по модели "наездника" с $U_{iso} = nU_{eq}$ неводородного атома, связанного с данным водородным (n = 1.5 для метильной группы и n = 1.2 для остальных атомов водорода). Структура уточнена по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов до $wR_2 = 0.205$ по 4648 отражениям ($R_1 = 0.075$ по 2606 отражениям с $F>4\sigma(F)$, S = 0.959). Полная кристаллографическая информация депонирована в Кембриджском банке структурных данных (депонент № ССDC 604004). Межатомные расстояния и валентные углы представлены в табл. 1 и 2.

СПИСОК ЛИТЕРАТУРЫ

- 1. И. В. Украинец, Е. В. Моспанова, Л. В. Сидоренко, *ХГС*, 1023 (2007).
- 2. Ю. В. Зефиров, Кристаллография, **42**, 936 (1997).
- 3. И. В. Украинец, Л. В. Сидоренко, О. В. Горохова, С. В. Шишкина, А. В. Туров, *XГС*, 736 (2007).
- 4. G. M. Sheldrick, SHELXTL PLUS. PC Version. A System of Computer Programs for the Determination of Crystal Structure from X-ray Diffraction Data. Rev. 5.1 (1998).

Национальный фармацевтический университет, Харьков 61002, Украина e-mail: uiv@kharkov.ua Поступило 27.03.2006

^аКиевский национальный университет им. Тараса Шевченко, Киев 01033, Украина e-mail: nmrlab@univ.kiev.ua

⁶НТК "Институт монокристаллов" НАН Украины, Харьков 61001, Украина e-mail: sveta@xray.isc.kharkov.com