А. С. Канищев, Ю. П. Бандера, В. М. Тимошенко, Э. Б. Русанов, С. А. Бут, Ю. Г. Шермолович

СИНТЕЗ

5-ПОЛИФТОРАЛКИЛ-4-(*n*-ТОЛИЛСУЛЬФОНИЛ)ПИРАЗОЛОВ И 4-ПОЛИФТОРАЛКИЛ-5-(*n*-ТОЛИЛСУЛЬФОНИЛ)ПИРИМИДИНОВ ИЗ 1-ДИМЕТИЛАМИНО-2-(*n*-ТОЛИЛСУЛЬФОНИЛ)-ПОЛИФТОРАЛК-1-ЕН-3-ОНОВ

1-Диметиламино-2-(*n*-толилсульфонил)полифторалк-1-ен-3-оны получены из гидратов 1-(*n*-толилсульфонил)-3,3,3-трифторпропан-2-она и 1-(*n*-толилсульфонил)-3,3,4,4,5,5-гексафторпентан-2-она в условиях реакции Вильсмайера–Хаака–Арнольда. Аналогичная реакция гидрата 1-(*n*-толилсульфонил)-3,3-дифторпропан-2-она приводит к образованию 1-диметиламино-2-(*n*-толилсульфонил)-4,4-дифтор-3-хлорбутадиена-1,3. На примере реакций с азотсодержащими бинуклеофилами показана возможность использования 1-диметиламино-2-(*n*-толилсульфонил)полифторалк-1-ен-3-онов для региоселективного синтеза пиразолов и пиримидинов. Строение 1-фенил-4-(*n*-толилсульфонил)-5-трифторметил-1Н-пиразола подтверждено данными РСА.

Ключевые слова: 1-арилсульфонил-1,1-дигидрополифторалкан-2-он, енаминон, пиразол, пиримидин, реакция Вильсмайера–Хаака–Арнольда, РСА.

Фторсодержащие пиразолы и пиримидины проявляют высокую и разнообразную биологическую активность [1–5], что стимулирует разработку новых методов синтеза этих гетероциклов.

Синтетические подходы к гетероциклической системе пиразола хорошо изучены. Наиболее распространенной является реакция, в которой трехуглеродный фрагмент β-дикарбонильного соединения или его синтетического эквивалента конденсируется с двухатомным фрагментом N–N гидразина или его производного. Одной из проблем, возникающих при этом, является региоселективность реакции при использовании несимметричных исходных соединений, так как в большинстве случаев образуется смесь изомерных N-замещенных пиразолов [6]. Подобная реакция β-дикарбонильных соединений с использованием бинуклеофила с фрагментом N–C–N приводит к образованию пиримидинов и также является часто используемым методом построения этих гетероциклов [7].

В данной работе мы исследовали возможность использования для региоселективного синтеза фторсодержащих пиразолов и пиримидинов 1-диметиламино-2-(*n*-толилсульфонил)полифторалк-1-ен-3-онов **2a**,**b** – синтетических эквивалентов β-дикарбонильных соединений нового типа – 1-арилсульфонил-2-оксополифторалканалей **1a**,**b**. Моноенамины различных 1,3-дикарбонильных соединений (винилоги амидов) находят широкое применение в синтезе многих гетероциклических систем [8].

Соединения **2а,b** были получены по реакции Вильсмайера–Хаака– Арнольда [9] из гидратов 1-арилсульфонил-1,1-дигидрополифторалкан-2-онов **3а,b** [10]. Реакция протекает при комнатной температуре. Использование в аналогичных условиях гидрата кетосульфона **3с** приводит к образованию смеси продуктов реакции. Нагревание этой смеси до 100 °С позволило выделить в индивидуальном состоянии аминодиен **4**, образование которого происходит, по-видимому, в результате хлорирования енольной формы промежуточно образующегося кетосульфона **5**.

Пиразолы **6а–**g получали прибавлением соответствующего гидразина к раствору енаминона **2а,b** в ацетонитриле. Реакция заканчивается через 2 ч при комнатной температуре. Протекание реакции удобно контролировать методом спектроскопии ЯМР ¹⁹F реакционной смеси, причем в спектрах наблюдались сигналы только одного из двух возможных региоизомеров **6**. Строение соединения **6d** однозначно доказано методом РСА. Общий вид молекулы соединения **6d**, а также основные длины связей и валентные углы приведены на рисунке. Центральный пиразольный цикл $C_{(1)}C_{(2)}C_{(3)}N_{(2)}N_{(1)}$

Общий вид молекулы соединения **6d**. Избранные длины связей и валентные углы: $C_{(5)}$ – $N_{(1)}$ 1.443(2), $N_{(1)}$ – $C_{(1)}$ 1.352(2), $N_{(1)}$ – $N_{(2)}$ 1.356(2), $N_{(2)}$ – $C_{(3)}$ 1.317(3), $S_{(1)}$ – $C_{(2)}$ 1.757(2), $S_{(1)}$ – $O_{(1)}$ 1.4251(16), $S_{(1)}$ – $O_{(2)}$ 1.4345(17), $S_{(1)}$ – $C_{(11)}$ 1.755(2) Å; $C_{(5)}N_{(1)}C_{(1)}$ 129.04(16), $C_{(5)}N_{(1)}N_{(2)}$ 119.21(16), $N_{(1)}N_{(2)}C_{(3)}$ 105.33(17) °

практически плоский (отклонение от среднеквадратичной плоскости не превышает 0.005 Å). В силу стерических условий бензольные кольца $C_{(5)}-C_{(10)}$ и $C_{(11)}-C_{(16)}$ развернуты почти ортогонально относительно центрального пиразольного цикла: соответствующие двугранные углы составляют 80.68 и 74.48°.

Образование только одного региоизомера позволяет предположить, что на первой стадии реакции происходит переаминирование енаминона 2 с последующей внутримолекулярной нуклеофильной атакой вторым атомом азота углерода карбонильной группы в интермедиате 7, приводящей к отщеплению молекулы воды и образованию гетероцикла 6 [11].

6 a $R_F = H(CF_2)_3$, R = Ph, **b** $R_F = H(CF_2)_3$, $R = 2-ClC_6H_4$, **c** $R_F = H(CF_2)_3$, R = Me, **d** $R_F = CF_3$, R = Ph, **e** $R_F = CF_3$, $R = 2-ClC_6H_4$, **f** $R_F = CF_3$, R = Me, **g** $R_F = H(CF_2)_3$, R = H

Пиримидины **8а-с** получали, используя соли соответствующих амидинов в качестве фрагмента N–C–N.

8 a $R_F = H(CF_2)_3$, $X = NH_2$, b $R_F = CF_3$, $X = NH_2$, c $R_F = H(CF_2)_3$, X = Me

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н, ¹⁹F и ¹³С измерены на приборе Varian VXR-300 (300, 282 и 75 МГц соответственно) в CDCl₃ (соединения **2a,b**, **4**, **6a–**g) и ДМСО-d₆ (соединения **8a–c**), внутренний стандарт ТМС (для ЯМР ¹Н и ¹³С) и C₆F₆ (δ = –162.9 м. д. относительно CCl₃F, для ¹⁹F). Масс-спектры зарегистрированы на приборе Agilent 1100 Series, оснащенном диодноматричным и масс-селективным детектором Agilent LC\MSD SL, способ ионизации – химическая при атмосферном давлении (APCI). ИК спектры получены на приборе UR-20. Для колоночной хроматографии использовали силикагель марки 60А 70–230. Все растворители были предварительно высушены и перегнаны согласно стандартным методикам.

Енаминоны 2a,b (общая методика). К 2.8 мл (30 ммоль) POCl₃ прибавляют 6 мл ДМФА, комплекс перемешивают 1 ч и добавляют раствор 5 ммоль гидрата кетосульфона 3a,b в 6 мл ДМФА, перемешивают 2 ч при 20 °С и выливают на лед. Кристаллический осадок отфильтровывают, промывают водой и высушивают. Полученные енаминоны могут быть использованы в последующих синтезах без дополнительной очистки. Аналитические образцы получали кристаллизацией.

1-Диметиламино-4,4,5,5,6,6-гексафтор-2-(*п*-толилсульфонил)гекс-1-ен-3-он (2а). Выход 88%, т. пл. 118–120 °С (из смеси гексан–эфир, 4 : 1). ИК спектр (тонкий слой), v, см⁻¹: 1610 (С=С), 1660 (С=О). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 8.26 (1H, с, CH=N); 7.28 и 7.75 (4H, д. д, ³*J*_{HH} = 8.0, C₆H₄); 6.16 (1H, т. т, ²*J*_{HF} = 53.0, ³*J*_{HF} = 6.0, HCF₂); 3.44 (3H, с, NCH₃); 3.04 (3H, с, NCH₃); 2.42 (3H, с, CH₃). Спектр ЯМР ¹⁹F, δ , м. д. (*J*, Гц): –118.14 (2F, м, CF₂); –133.56 (2F, м, CF₂); –138.42 (2F, д. м, *J*_{FH} = 53.0, HCF₂). Масс-спектр, *m/z*: 404 [M]⁺. Найдено, %: С 44.53; H 3.74; N 3.77; S 8.07. C₁₅H₁₅F₆NO₃S. Вычислено, %: С 44.67; H 3.75; N 3.47; S 7.95.

1-Диметиламино-4,4,4-трифтор-3-(*п*-толилсульфонил)бут-1-ен-3-он (2b). Выход 82%, т. пл. 155–157 °С (из метанола). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 8.16 (1H, с, CH=N); 7.25 и 7.73 (4H, д. д. ³_{J</sup>_{HH} = 8.0, C₆H₄); 3.42 (3H, с, NCH₃); 2.92 (3H, с, NCH₃); 2.40 (3H, с, CH₃).}

Спектр ЯМР ¹⁹F, б, м. д.: –73.04 (с, СF₃).

1-Диметиламино-2-(*п*-толилсульфонил)-**3**-хлор-**4**,**4**-дифторбутадиен-1,**3** (**4**). К 2.8 мл (30 ммоль) POCl₃ прибавляют 6 мл ДМФА, комплекс перемешивают 1 ч и добавляют раствор 1.24 г (5 ммоль) гидрата кетосульфона **3с** в 6 мл ДМФА, выдерживают 2 ч при 100 °С, охлаждают и выливают на лед. Кристаллический осадок отфильтровывают, промывают водой и высушивают. Выход 75%, т. пл. 114–116 °С (из смеси гексан–эфир, 9 : 1). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 7.51 (1H, с, CH=N); 7.26 и 7.72 (4H, д. д. ${}^{3}J_{HH} = 8.0, C_{6}H_{4}$); 3.09 (6H, с, N(CH₃)₂); 2.41 (3H, с, CH₃). Спектр ЯМР ¹⁹F, δ, м. д. (*J*, Гц): -80.41 (1F, д. ${}^{2}J_{CF} = 290.0, {}^{2}J_{CF} = 296.0, CF_{2}$); 150.39 (д. ${}^{4}J_{CF} = 2.5, =CH$); 142.93 (с, ${}_{(Ar)}CH_{3}$); 139.78 (с, ${}_{(Ar)}SO_{2}$); 129.40 (с, ${}_{(Ar)}H$); 127.28 (с, ${}_{(Ar)}H$); 94.91 (с, =C–SO₂); 84.48 (д. д. ${}^{2}J_{CF} = 29.0, {}^{2}J_{CF} = 40.0, =C-Cl$); 47.37 (ш, CH₃N); 37.45 (ш, CH₃N); 21.54 (с, CH₃_(Ar)). Масс-спектр *m/z*: 322 [M]⁺. Найдено, %: C 48.66; H 4.26; Cl 11.21; N 4.38; S 10.15. C₁₃H₁₄ClF₂NO₂S. Выгислено, %: C 48.52; H 4.39; Cl 11.02; N 4.35; S 9.97.

5-Полифторалкил-4-(*п***-толилсульфонил)пиразолы 6а-g** (общая методика). К раствору 1 ммоль енаминона **2а,b** в 7 мл MeCN прибавляют 1 ммоль соответствующего гидразина, перемешивают 2 ч при 20 °C. Реакционную смесь фильтруют и фильтрат упаривают в вакууме (10–15 мм рт. ст.) при 50 °C. Остаток кристаллизуют.

4-(*п***-Толилсульфонил)-1-фенил-5-(1,1,2,2,3,3-гексафторпропил)-1Н-пиразол (6а**). Выход 88%, т. пл. 144–146 °C (из этанола). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 8.18 (1H, с, CH=N); 7.33 и 7.86 (4H, д. д. ³*J*_{HH} = 8.0, C₆H₄); 7.36–7.56 (5H, м, C₆H₅); 6.24 (1H, т. т. ²*J*_{HF} = 52.0, ³*J*_{HF} = 6.0, HCF₂); 2.46 (3H, с, CH₃). Спектр ЯМР ¹⁹F, δ , м. д. (*J*, Гц): –103.71 (2F, м, CF₂); –129.61 (2F, м, CF₂); –138.74 (2F, д. м, *J*_{FH} = 52.0, HCF₂). Спектр ЯМР ¹³C, δ , м. д. (*J*, Гц): 144.89 (с, C_(Pyr)SO₂); 142.15 (с, CH=N); 138.70 (с, C_(Ar)CH₃); 138.47 (с, C_(Ar)SO₂); 130.59 (т, *J*_{CF} = 32.5, C_(Pyr)CF₂); 130.48 (с, C_{(Ph})H); 129.85 (с, C_(Ar)H); 128.67 (с, C_(Ar)H); 127.91 (с, C_{(Ph})H); 127.23 (с, C_{(Ph})H); 112.52 (т. м, *J*_{CF} = 260.0, HCF₂CF₂CF₂); 109.60 (т. т. *J*_{CF} = 258.5, ²*J*_{CF} = 32.0, HCF₂CF₂CF₂); 107.67 (т. т. *J*_{CF} = 253.0, ²*J*_{CF} = 29.5, HCF₂CF₂CF₂); 21.60 (с, CH₃(_{Ar)}). Масс-спектр, *m/z*: 449.2 [M]⁺. Найдено, %: C 50.88; H 3.11; N 6.32; S 7.22. C₁₉H₁₄F₆N₂O₂S. Вычислено, %: C 50.89; H 3.15; N 6.25; S 7.15.

4-(*п***-Толилсульфонил)-1-(2-хлорфенил)-5-(1,1,2,2,3,3-гексафторпропил)-1Н-пиразол (6b)**. Выход 83%, т. пл. 113–115 °С (из этанола). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 8.23 (1H, с, CH=N); 7.36 и 7.85 (4H, д. д. $^{3}J_{HH} = 8.0$, C₆H₄); 7.38–7.54 (4H, м, 2-ClC₆H₄); 6.28 (1H, т. т. $^{2}J_{HF} = 51.7$, $^{3}J_{HF} = 5.8$, HCF₂); 2.46 (3H, с, CH₃). Спектр ЯМР ¹⁹F, б, м. д. (*J*, Гц): F_A –103.95; F_B –108.85 (2F, AB, $J_{FF} = 297.0$, CF₂); F_A –129.58; F_B –130.25 (2F, AB, $J_{FF} = 285.0$, CF₂); -138.53 (2F, м, HCF₂).

1-Метил-4-(*п*-толилсульфонил)-5-(1,1,2,2,3,3-гексафторпропил)-1H-пиразол (6с). Выход 68%, т. пл. 124–126 °С (из этанола). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 8.09 (1H, с, CH=N); 7.31 и 7.80 (4H, д. д. ³*J*_{HH} = 8.0, C₆H₄); 6.30 (1H, т. т. ²*J*_{HF} = 52.0, ³*J*_{HF} = 6.0, HCF₂); 3.99 (3H, с, NCH₃); 2.42 (3H, с, CH₃). Спектр ЯМР ¹⁹F, δ , м. д. (*J*, Гц): –107.59 (2F, м, CF₂); –132.28 (2F, м, CF₂); –138.32 (2F, д. м, ²*J*_{FH} = 52.0, HCF₂). Спектр ЯМР ¹³C, δ , м. д. (*J*, Гц): 144.63 (с, С_(Руг)SO₂); 138.56 (т, *J*_{CF} = 31.5, C_(Руг)CF₂); 138.33 (с, C_(AT)CH₃); 136.58 (с, CH=N); 129.69 (с, С_{(AT})H); 127.72 (с, C_(AT)H); 125.27 (с, C_(AT)SO₂); 112.20 (т. т, *J*_{CF} = 252.0, ²*J*_{CF} = 30.5, HCF₂CF₂CF₂); 110.33 (т. м, *J*_{CF} = 263.0, ²*J*_{CF} = 33.0, HCF₂CF₂CF₂); 108.04 (т. т, *J*_{CF} = 253.5, ²*J*_{CF} = 29.0, H<u>C</u>F₂CF₂CF₂); 40.18 (с, NCH₃); 21.53 (с, CH₃_(AT)).

4-(*n***-Толилсульфонил)-1-фенил-5-трифторметил-1Н-пиразол (6d)**. Выход 68%, т. пл. 116 °С (из этанола). Спектр ЯМР ¹Н, δ , м. д. (*J*, Γ ц): 8.19 (1H, c, CH=N); 7.36 и 7.88 (4H, д. д., ${}^{3}J_{\rm HH} = 8.0, C_{6}H_{4}$); 7.38–7.56 (5H, м, C₆H₅); 2.45 (3H, c, CH₃). Спектр ЯМР ¹⁹F, δ , м. д.: –55.49 (c, CF₃).

4-(*п***-Толилсульфонил)-5-трифторметил-1-(2-хлорфенил)-1Н-пиразол (6е)**. Выход 63%, т. пл. 93–95 °С (из этанола). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 8.22 (1H, с, CH=N); 7.36 и 7.88 (4H, д. д. ³_{J_{HH}} = 8.0, C₆H₄); 7.38–7.57 (4H, м, 2-ClC₆H₄); 2.45 (3H, с, CH₃). Спектр ЯМР ¹⁹F, б, м. д.: –57.32 (с, CF₃).

1-Метил-4-(*п*-толилсульфонил)-**5-три**фторметил-**1H**-пиразол (6f). Выход 61%, т. пл. 162–164 °С (из этанола). Спектр ЯМР ¹H, δ , м. д. (*J*, Γ ц): 8.04 (1H, c, CH=N); 7.31 и 7.82 (4H, д. д. ³_{J_{HH}} = 8.0, C₆H₄); 3.97 (3H, c, NCH₃); 2.45 (3H, c, CH₃). Спектр ЯМР ¹⁹F, δ , м. д.: –61.56 (c, CF₃).

4-(*п***-Толилсульфонил)-5-(1,1,2,2,3,3-гексафторпропил)-1Н-пиразол (6g)**. К раствору 1 ммоль енаминона **2a** в 7 мл МеСN прибавляют 1 ммоль сульфата гидразина и 2 ммоль К₂CO₃, кипятят при перемешивании 8 ч, фильтруют и упаривают досуха. Остаток очищают

хроматографированием, используя этилацетат как элюент. Получают пиразол **6g** в виде желтого масла. R_f 0.9 (Silufol UV-254, этилацетат, проявление парами иода). Выход 55%. Спектр ЯМР ¹H, δ , м. д. (*J*, Γ ц): 11.53 (1H, уш. с, NH); 8.30 (1H, с, CH=N); 7.31 и 7.80 (4H, д. д. $^3J_{\text{HH}} = 8.0$, C₆H₄); 6.29 (1H, т. т, $^2J_{\text{HF}} = 52.5$, $^3J_{\text{HF}} = 6.0$, HCF₂); 2.46 (3H, с, CH₃). Спектр ЯМР ¹⁹F, δ , м. д. (*J*, Γ ц): -107.32 (2F, м, CF₂); -131.94 (2F, м, CF₂); -138.14 (2F, д. м, $^2J_{\text{FH}} = 52.5$, HCF₂).

4-Полифторалкил-5-(*n*-толилсульфонил)пиримидины 8а-с (общая методика). К раствору 1 ммоль енаминона 2а,b в 7 мл MeCN прибавляют 1 ммоль гидрохлорида гуанидина (в случае соединений 8а,b) либо гидрохлорида ацетамидина (в случае соединения 8с) и 2 ммоль K₂CO₃. Реакционную смесь кипятят при перемешивании 2 ч и после охлаждения обрабатывают как описано ниже.

2-Амино-5-(*п*-толилсульфонил)-4-(1,1,2,2,3,3-гексафторпропил)пиримидин (8a). Реакционную смесь фильтруют, фильтрат упаривают досуха, в остатке соединение 8a. Выход 95%, т. пл. 217–219 °С (из MeCN). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 9.14 (1H, с, CH=N); 8.46 (2H, уш. с, NH₂); 7.41 и 7.78 (4H, д. д, ³J_{HH} = 8.0, C₆H₄); 7.32 (1H, т. т, ²J_{HF} = 52.0, ³J_{HF} = 6.0, HCF₂); 2.38 (3H, с, CH₃). Спектр ЯМР ¹⁹F, δ , м. д. (*J*, Гц): –107.05 (2F, м, CF₂); –130.39 (2F, м, CF₂); –137.02 (2F, д. м, ²J_{FH} = 52.0, HCF₂). Масс-спектр, *m*/*z*: 398 [M]⁻.

2-Амино-5-(*п*-толилсульфонил)-4-трифторметилпиримидин (8b). Выпавшее из реакционной смеси при охлаждении соединение 8b отфильтровывают, промывают на фильтре водой и высушивают. Выход 84%, т. пл. 260–262 °C (из MeCN). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 9.09 (1H, с, CH=N); 8.43 (2H, уш. с, NH₂); 7.41 и 7.78 (4H, д. д, ³J_{HH} = 8.0, C₆H₄); 2.38 (3H, с, CH₃). Спектр ЯМР ¹⁹F, δ , м. д.: –64.36 (с, CF₃).

2-Метил-5-(*п***-толилсульфонил)**-4-(**1**,**1**,**2**,**2**,**3**,**3**-гексафторпропил)**пиримидин** (8с). Реакционную смесь фильтруют, фильтрат упаривают досуха. Остаток кристаллизуют. Выход 81%, т. пл. 110–112 °С (из этанола). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 9.68 (1H, с, CH=N); 7.47 и 7.87 (4H, д. д. $^{3}J_{HH} = 8.0, C_{6}H_{4}$); 7.10 (1H, т. т. $^{2}J_{HF} = 51.5, {}^{3}J_{HF} = 6.0, HCF_{2}$); 2.84 (3H, с, CH₃); 2.40 (3H, с, CH₃). Спектр ЯМР ¹⁹F, б, м. д. (*J*, Гц): –106.81 (2F, м, CF₂); –129.30 (2F, м, CF₂); –137.24 (2F, д. м, ${}^{2}J_{FH} = 51.5, HCF_{2}$).

Рентгеноструктурное исследование монокристалла соединения 6d, выращенного из абсолютного этанола, с линейными размерами 0.38 × 0.25 × 0.20 мм проведено при комнатной температуре на автоматическом CCD дифрактометре Bruker Apex II (МоКα-излучение, $\lambda = 0.71069$ Å, $\theta_{max} = 31^{\circ}$, сегмент сферы $-12 \le h \le 12, -14 \le k \le 13, -15 \le l \le 14$). Всего было собрано 10 339 отражений (5214 независимых отражений, R_{int} = 0.0197). Кристаллы соединения 6d триклинные, a = 8.7461(2), b = 10.1910(2), c = 10.5604(2) Å, V = 856.47(3) Å³, M = 435.03, Z = 2, $d_{\text{BbH}} = 1.421$ r/cm³, $\mu = 2.32$ cm⁻¹, F(000) = 376, пространственная группа Р-1 (№ 2). Структура расшифрована прямым методом и уточнена МНК в полноматричном анизотропном приближении с использованием программ SHELXS97 и SHELXL97 [12, 13]. В уточнении использовано 5214 отражений (3684 отражения с $I > 2\sigma(I)$; 232 уточняемых параметра, число отражений на параметр 22.47). Все атомы водорода были выявлены из разностного синтеза электронной плотности и включены в уточнение с фиксированными позиционными и тепловыми параметрами. При уточнении была использована весовая схема $\omega = 1/[\sigma^2(Fo^2) + (0.1006P)^2 + 0.8932P]$, где $P = (Fo^2 + 2Fc^2)/3$. Окончательные значения факторов расходимости $R_1 = 0.0544$ и $wR_2 = 0.0766$, GOOF = 0.708. Остаточная электронная плотность из разностного ряда Фурье составляет -0.363 и 0.541 е/Å³. Полный набор рентгеноструктурных данных для соединения 6d депонирован в Кембриджском банке структурных данных (ССDC 645235).

СПИСОК ЛИТЕРАТУРЫ

- 1. D. Lednicer, L. A. Mitscher, Organic Chemistry of Drugs Synthesis, Wiley, New York, 1977, vol. 1–3.
- A. F. De Arriba, L. A. Gomes-Casajus, F. Cavalcanti, C. Almansa, J. Garcia-Rafanell, J. Med. Chem., 40, 547 (1997).
- R. W. Harper, W. T. Jackson, L. L. Froelich, R. J. Boyd, T. E. Aldridge, D. K. Herron, J. Med. Chem., 37, 2411 (1994).

- 4. A. F. De Arriba, L. A. Gomes-Casajus, F. Cavalcanti, C. Almansa, J. Garcia-Rafanell, J. Forn, Eur. J. Pharmacol., 318, 341 (1996).
- 5. S. Kawamura, J. Sato, T. Hamada, M. Sakaki, Y. Sanemitsu, J. Agr. Food Chem., 41, 288 (1993).
- 6. J. Elguero, in Comprehensive Heterocyclic Chemistry II, A. R. Katritzky, C. W. Rees (Ed.), Elsevier Science, New York, 1997, 5, p. 167.
- 7. D. J. Brown, in Comprehensive Heterocyclic Chemistry II, A. R. Katritzky, C. W. Rees (Ed.), Elsevier Science, New York, 1997, vol. 3, p. 57.
- 8. P. Lue, J. V. Greenhill, Adv. Heterocycl. Chem., 67, 207 (1997).
- C. Jutz, Adv. Org. Chem., 9/1, 225 (1976).
 Ю. Г. Шермолович, В. М. Тимошенко, В. В. Листван, Л. Н. Марковский, ЖОрХ, 34, 1167 (1998).
- 11. E. Dominguez, E. Ibeas, E. Martinez de Marigorta, J. Kepa Palacios, R. SanMartin, J. Org. Chem., 61, 5435 (1996).
- 12. G. M. Sheldrick, SHELXS97. Program for the Solution of Crystal Structure, Univ. of Göttingen, Germany (1997).
- 13. G. M. Sheldrick, SHELXL97. Program for the Refinement of Crystal Structure, Univ. of Göttingen, Germany (1997).

Институт органической химии НАН Украины, Киев 02094 e-mail: sherm@bpci.kiev.ua

Поступило 13.10.2006