Л. Г. Воскресенский, Т. Н. Борисова, Л. Н. Куликова, А. В. Варламов

ТАНДЕМНОЕ РАСЩЕПЛЕНИЕ 2,3,5-ТРИМЕТИЛ-7-ТРИФТОРАЦЕТИЛ-1,2,3,4-ТЕТРАГИДРОПИРРОЛО-[1,2-*c*]ПИРИМИДИНА АКТИВИРОВАННЫМИ АЛКИНАМИ, ОБУСЛОВЛЕННОЕ МИХАЭЛЕВСКИМ ПРИСОЕДИНЕНИЕМ ТРЕТИЧНОГО АТОМА АЗОТА К ТРОЙНОЙ СВЯЗИ

Изучено взаимодействие 7-трифторацетилтетрагидропирроло[1,2-c]пиримидина с ацетилендикарбоновым эфиром (АДКЭ) и этилпропиолатом в ацетонитриле и спиртах. Установлено, что АДКЭ расщепляет пирролопиримидин по аминальному фрагменту в ацетонитриле и метаноле с образованием 1-Н- и 1-метоксиметил-2-(N-диметоксикарбонилвинил-N-метил)аминоэтил-3-метил-5-трифторацетилпирролов. В ацетонитриле этилпропиолат расщепляет пирролопиримидин как по аминальному фрагменту, так и по связи C₍₃₎–N₍₂₎ (реакция Гофмана), а в этаноле только по связи C₍₃₎–N₍₂₎ с образованием 2-пропенил-пирролов.

Ключевые слова: ацетилендикарбоновый эфир, пирролопиримидин, этилпропиолат, тандемное расщепление, цвиттер-ион.

Недавно нами было показано, что при действии ацетилендикарбонового эфира (АДКЭ) 2-замещенные тетрагидропирроло[3,2-*c*]пиридины в полярных апротонных растворителях превращаются в пирроло[2,3-*d*]азоцины и 2-диметоксикарбонилвиниламиноэтилзамещенные 3-винилпирролы [1, 2]. В протонных растворителях (спирты, водные ТГФ и ацетонитрил) происходят расщепление тетрагидропиридинового фрагмента и образование 3-алкокси(гидрокси)алкил-2-диметоксивиниламиноэтилпирролов [3].

Аналогичные тандемные превращения тетрагидропиридинового кольца наблюдаются и при взаимодействии с АДКЭ и алкилпропиолатами тетрагидро-β- и -γ-карболинов [3, 4]. На основе полученных результатов был разработан оригинальный препаративный метод синтеза тетрагидропирроло[2,3-*d*]азоцинов и тетрагидроазоцино[4,5-*b*]- и -[5,4-*b*]индолов [4, 5].

Мы полагаем, что взаимодействие активированных алкинов с конденсированными тетрагидропиридинами начинается с михаэлевского присоединения третичного азота пиперидинового фрагмента к тройной связи алкинов, что приводит к образованию цвиттер-иона [1–4].

Для выявления закономерностей протекания указанной реакции тандемного расщепления и установления ее синтетических границ мы изучили взаимодействие 2,3,5-триметил-7-трифторацетил-1,2,3,4-тетрагидропирроло[1,2-*c*]пиримидина (1) с АДКЭ и этилпропиолатом в ацетонитриле, метаноле и этаноле.

Трифторацетилзамещенный пирролопиримидин 1 получен трифторацетилированием соответствующего тетрагидропирроло[1,2-*c*]пиримидина трифторуксусным ангидридом в пиридине по методике [6]. Следует заметить, что пирроло[1,2-*c*]пиримидин образуется с выходом до 20% при гетероциклизации с ацетиленом оксима 1,2,5-триметилпиперидин-4-она в условиях реакции Трофимова [7].

Установлено, что пирролопиримидин 1 значительно менее активен в реакциях с активированными алкинами, чем тетрагидропирролопиридины и тетрагидрокарболины, где для завершения реакции при 20 °C требовалось от одного до трех дней.

Реакция пирролопиримидина 1 с АДКЭ и этилпропиолатом в ацетонитриле проходила только при кипячении, а в спиртах для окончания реакции при 20 °С требовалось около двух недель.

При действии на пирролопиримидин 1 АДКЭ в ацетонитриле и в метаноле происходит расщепление по аминальному фрагменту, в результате чего с умеренными выходами образуются 1-Н- и 1-метоксиметил-2-(N-диметоксикарбонилвинил-N-метил)аминоэтил-3-метил-5-трифторацетилпирролы 2 и 3 соответственно.

После образования промежуточного цвиттер-иона A расщепление аминального фрагмента идет по связи $C_{(1)}$ – $N_{(2)}$ аналогично расщеплению аминалей под действием электрофилов. Пара электронов узлового атома азота в цвиттер-ионе делокализована в пиррольном кольце и мало доступна для стабилизации катиона, образующегося при расщеплении аминального мостика, что и снижает реакционную способность пирролопиримидина 1 в описываемых реакциях. В метаноле промежуточный

Таблица 1

Спектры ЯМР ¹ Н соединений 2–6												
	Химические сдвиги, б, м. д. (Ј, Гц)											
Соеди- нение	H-3, c	4-CH ₃ , c	R	\mathbb{R}^1								
				CH ₂ -CH(CH ₃)–N(CH ₃)–CR ² =CHR ³							CH ₃ CH=CH	
				СН ₂ , д. д	СН	СН3, д	N-CH ₃	CH=	R ²	R ³	СН3, д	CH=CH
2	6.99	2.06	10.33 (уш. с, NH)	2.83 (J = 7.8, J = 14.6), 2.95 (J = 6.6, J = 14.6)	3.71–3.77 (м)	1.22 (<i>J</i> = 6.6)	2.69	4.64 (c)	3.89 (c)	3.62 (c)	-	-
3	7.09	2.07	3.34 (с, CH ₃), 5.65 (д, <i>J</i> = 10.6)	2.83 (J = 8.7, J = 14.5), 2.93 (J = 5.9, J = 14.5)	3.86 (м)	1.14 (<i>J</i> = 6.7)	2.76	4.65 (c)	3.89 (c)	3.63 (c)	-	-
4	7.00	2.07	9.89 (уш. с, NH)	2.84 (J = 6.8, J = 14.4), 2.91 (J = 7.9, J = 14.4)	3.75 (сек, J = 7.0, J = 14.4)	1.16 (<i>J</i> = 7.0)	2.67	4.55 (д, <i>J</i> = 12.9)	7.46 (д, <i>J</i> = 12.9)	1.22 (т, J = 7.1), 4.10 (кв, J = 7.1)	-	-
5	7.10	2.14	1.26 (τ , $J = 7.1$, CH ₃ CH ₂), 2.64 (c , NCH ₃), 4.14 (κ , J = 7.1, CH ₃ CH ₂), 4.64 (π , $J = 12.9$, CH=CH), 5.74 (π , NCH ₂ N), 7.61 (π , J = 12.9, CH=CH)	_	_	_	_	_	_	_	2.0 (<i>J</i> = 5.8)	6.14–6.28 (м)
6	6.99	2.13	9.72 (уш. с, NH)	_	-	-	-	_	-	_	1.95 (<i>J</i> = 4.3)	6.34 (д, <i>J</i> = 4.3)

Me

1084

цвиттер-ион А трансформируется в Б, в котором нуклеофильное содействие спирта облегчает расщепление тетрагидропиримидинового кольца.

При взаимодействии пирролопиримидина 1 с этилпропиолатом в ацетонитриле также преимущественно расщепляется аминальный мостик, что приводит к образованию 2-(этоксикарбонилвинил)аминозамещенного пиррола 4. Более высокая по сравнению с интермедиатом A основность анионного центра в соответствующем цвиттер-ионе **B**, где в делокализации участвует одна сложноэфирная группа, обусловливает появление нового канала расщепления по связи $C_{(3)}$ – $N_{(2)}$ (реакция Гофмана) и образование 2-пропенилпиррола **5**.

В этаноле из-за стерических препятствий, создаваемых трифторацетильной и этоксикарбонилвинильной группами невозможно образование интермедиата типа В. Анионный центр цвиттер-иона В в этом случае отщепляет от этанола протон, генерируя этоксид-анион. Последний, являясь сильным основанием, обусловливает гофмановское расщепление пиримидинового кольца. В качестве основного продукта взаимодействия пирролопиримидина 1 с этилпропиолатом в спирте образуется пропенилпиррол 5 с аминальным фрагментом при пиррольном атоме азота и продукт его гидролитического расщепления 3-метил-2-(пропен-1-ил)-5трифторацетилпиррол 6.

Таким образом показано, что тандемному расщеплению подвергаются также конденсированные тетрагидропиридины, у которых пиррольный цикл конденсирован с Δ^3 -пиперидеиновым по связи $N_{(1)}$ – $C_{(2)}$. Реакция протекает через образование цвиттер-иона, дальнейшая трансформация которого зависит от электродонорных свойств гетероциклического фрагмента.

Соеди-	Брутто-	В	Найдено,% ычислено, 9	2⁄0	[M] ^{+●}	R_f^*	Выход, %	
нение	формула	С	Н	Ν		Aluioi		
2	$C_{17}H_{21}F_3N_2O_5$	<u>52.36</u> 52.31	<u>5.37</u> 5.42	<u>7.12</u> 7.18	390	0.60	60	
3	$C_{19}H_{25}F_3N_2O_6$	<u>52.58</u> 52.53	<u>5.86</u> 5.80	<u>6.49</u> 6.45	434	0.55	45	
4	$C_{16}H_{21}F_3N_2O_3$	<u>55.57</u> 55.49	<u>6.19</u> 6.11	<u>8.01</u> 8.09	346	0.60	41	
5	$C_{17}H_{21}F_3N_2O_3$	<u>56.84</u> 56.98	<u>5.82</u> 5.91	<u>7.77</u> 7.82	358	0.55	7 30**	
6	$C_{10}H_{10}F_{3}NO$	<u>55.39</u> 55.30	<u>4.71</u> 4.64	<u>6.54</u> 6.45	217	0.50	10	

Характеристики синтезированных соединений

* Этилацетат-гексан, 1:5 (соединение 3) и 1:3 (соединения 2, 4-6).

** Реакцию проводили в этаноле.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры синтезированных соединений зарегистрированы на спектрометре Specord IR-75 в пленке (для масел). Масс-спектры ионизации электронами были получены на хромато-масс-спектрометре Finnigan MAT-95 XL с прямым вводом образца в источник ионов с энергией ионизации 70 эВ, масс-спектры ESI были получены на масс-спектрометре Agilent 1100 Series LC/MSD Trap System VL. Спектры ЯМР ¹Н получены в растворах CDCl₃ и ДМСО-d₆ при 23 °C на приборах Bruker WP-200 (200 МГц) и Bruker WP-400 (400 МГц), внутренний стандарт ТМС. Для ТСХ использованы пластины Silufol UV-254 и Alufol (проявление парами иода), для колоночной хроматографии – нейтральный оксид алюминия II ст. акт. по Брокману или Al₂O₃ Fluka-507C (зернистость 0.05–0.15 мм).

Диметил-(*E*)-2-(метил-{1-метил-2-[3-метил-5-(2,2,2-трифторацетил)-1Н-пиррол-2ил]этил}амино)-2-бутендиоат (2). К раствору 0.13 г (0.5 ммоль) пирролопиримидина 1 в 10 мл ацетонитрила добавляют 0.114 г (0.8 ммоль) АДКЭ, кипятят 48 ч (контроль ТСХ, Alufol, этилацетат-гексан, 1:3). Наблюдается сильное осмоление реакционной массы. После завершения реакции растворитель удаляют, образовавшееся коричневое масло хроматографируют на колонке с оксидом алюминия (h = 10 см, d = 2 см), смесью этилацетат-гексан, 1:10, вымывают пиррол 2 в виде светло-желтого масла.

Диметил-(*E*)-2-[{2-[1-(метоксиметил)-3-метил-5-(2,2,2-трифторацетил)-1Hпиррол-2-ил]-1-метилэтил}(метил)амино]-2-бутендиоат (3). К раствору 0.13 г (0.5 ммоль) пирро-лопиримидина 1 в метаноле добавляют 0.114 г (0.8 ммоль) АДКЭ, оставляют на 1 нед при комнатной температуре (контроль TCX, Alufol, этилацетат-гексан, 1:5). Наблюдается сильное осмоление реакционной массы. После завершения реакции растворитель удаляют, образовавшееся коричневое масло хроматографируют на колонке с оксидом алюминия (h = 10 см, d = 2 см), смесью этилацетат-гексан, 1:10, вымывают пиррол 3 в виде светло-желтого масла.

Этил-(E)-3-(метил{[3-метил-2-[(E)-1-пропенил]-5-(2,2,2-трифторацетил)-1Н-пиррол-1-ил]метил}амино)-2-пропеноат (5), этил-(E)-3-(метил{1-метил-2-[3-метил-5-(2,2,2-трифторацетил)-1Н-пиррол-2-ил]этил}амино)-2-пропеноат (4). К раствору 0.13 г (0.5 ммоль) пирролопиримидина 1 в 10 мл ацетонитрила добавляют 0.098 г (1 ммоль) этилпропиолата, кипятят 2 нед (контроль TCX, Alufol, этилацетат-гексан, 1:3). Наблюдается сильное осмоление реакционной массы. После завершения реакции растворитель удаляют, образовавшуюся многокомпонентную смесь хроматографируют на колонке с оксидом алюминия (h = 15 см, d = 2 см) смесью этилацетат-гексан, 1:7, вымывают пиррол **5** в виде желтого масла с выходом 7%, а смесью этилацетат-гексан, 1:5, вымывают пиррол **4** в виде желтого масла.

Этил-(E)-3-(метил{[3-метил-2-[(E)-1-пропенил]-5-(2,2,2-трифторацетил)-1Н-пиррол-1-ил]метил}амино)-2-пропеноат (5), 2,2,2-трифтор-1-{4-метил-5-[(E)-1-пропенил]-1Нпиррол-2-ил}-1-этанон (6). К раствору 0.13 г (0.5 ммоль) пирролопиримидина 1 в 10 мл этанола добавляют 0.098 г (1 ммоль) этилпропиолата, оставляют на 1 нед при комнатной температуре (контроль TCX, Alufol, этилацетат-гексан, 1:3). Наблюдается сильное осмоление реакционной массы. После завершения реакции растворитель удаляют, образовавшуюся многокомпонентную смесь хроматографируют на колонке с оксидом алюминия (h = 15 см, d = 2 см), смесью этилацетат-гексан, 1:10, вымывают пиррол 6 в виде светложелтого масла, а смесью этилацетат-гексан, 1:7, вымывают пиррол 5 в виде желтого масла с выходом 30%.

Работа выполнена при финансовой поддержке РФФИ (грант 02-03-32941) и программы Университеты России (проект УР 05.01.254).

СПИСОК ЛИТЕРАТУРЫ

- 1. A. V. Varlamov, T. N. Borisova, L. G. Voskressensky, B. Nsabimana, A. I. Chernyshev, *Heterocycl. Commun.*, 7, 461 (2001).
- A. V. Varlamov, T. N. Borisova, L. G. Voskressensky, T. A. Soklakova, L. N. Kulikova, A. I. Chernyshev, G. G. Alexandrov, *Tetrahedron Lett.*, 43, 6767 (2002).
- 3. A. V. Varlamov, T. N. Borisova, L. G. Voskressensky, T. A. Soklakova, L. N. Kulikova, *Molecular Diversity*, **6**, 207 (2003).
- 4. L. G. Voskressensky, T. N. Borisova, L. N. Kulikova, A. V. Varlamov, M. Catto, C. Altomare, A. Carotti, *Eur. J. Org. Chem.*, 3128 (2004).
- L. G. Voskressensky, T. N. Borisova, T. A. Soklakova, L. N. Kulikova, R. S. Borisov, A. V. Varlamov, *Lett. Org. Chem.*, 2, 297 (2005).
- 6. A. V. Varlamov, T. N. Borisova, L. G. Voskressensky, B. Nsabimana, T. A. Soklakova, *Mendeleev Commun.*, **12**, 162 (2001).
- 7. Н. С. Простаков, А. В. Варламов, Т. Н. Борисова, Н. Д. Сергеева, *XГС*, 1286 (1987). [*Chem. Heterocycl. Comp.*, **23**, 1034 (1987)].

Российский университет дружбы народов, Москва 117198 e-mail: avarlamov@sci.pfu.edu.ru Поступило 02.02.2006