К. Брокайте, В. Мицкявичюс, Г. Микульскене^а

СИНТЕЗ И СВОЙСТВА МЕТИЛОВЫХ ЭФИРОВ ГИДРОПИРИМИДИНУКСУСНЫХ КИСЛОТ

Исследованы реакции алкилирования 1-арилзамещенных дигидро-2,4(1H,3H)-пиримидиндионов метил-2-бромацетатом, осуществлены гидролиз и конденсация полученных продуктов с *о*-фенилендиамином. Полученные соединения идентифицированы методами ЯМР, ИК спектроскопии и масс-спектрометрии. Обсуждено проявление структурных особенностей синтезированных соединений в спектрах ЯМР¹H и ¹³C.

Ключевые слова: 1-арилдигидро-2,4(1H,3H)-пиримидиндион, бензимидазолы, гидропиримидинуксусные кислоты, алкилирование, конденсация, ЯМР, ИК, массспектрометрия.

Пиримидинуксусные кислоты и их производные обладают биологической активностью [1–4]. Однако данные о синтезе дигидропиримидинуксусных кислот в литературе отсутствуют. Целью нашей работы являются синтез и иследование некоторых химических свойств продуктов алкилирования 1-арилзамещенных дигидро-2,4(1H,3H)-пиримидиндионов метиловым эфиром бромуксусной кислоты.

Нами установлено, что реакции 1-арилзамещенных дигидро-2,4(1H,3H)пиримидиндионов **1а-е** с метил-2-бромацетатом в ДМФА в присутствии гидроксида натрия происходят одназначно и образуются исключительно продукты N-алкилирования – метил-2-[3-арил-2,6-диоксогексагидро-1-пиримидинил]ацетаты **2а-е**, выделенные из реакционной смеси разведением смесью воды и льда. Дигидропиримидинуксусные кислоты **3а-е** получены при кипячении соответствующих эфиров **2а-е** в 10% соляной кислоте с последующим охлаждением реакционной смеси до 4 °C.

Исследована возможность синтеза бензимидазольной системы по методу Филлипса из карбоксикислоты и о-фенилендиамина. При исследовании продуктов конденсации метиловых эфиров 2а-е с о-фенилендиамином в 4M соляной кислоте оказалось, что в каждой реакции образуются по два продукта – 3-(1Н-бензимидазол-2-илметил)-1-арилдигидропиримидин-2,4(1H,3H)-дионы **4а-е** и продукты распада гидропиримидинового кольца – N-[2-(1H-бензимидазол-2-ил)этил]-N-ариламины 5a,b,e или N-[2-(1H-бензимидазол-2-ил)этил]-N'-(1H-бензимидазол-2-илметил)-N-дизамещенные фенилмочевин 6с,d (табл. 1). Вероятно данная реакция протекает по двум направлениям. Первое направление конденсация о-фенилендиамина с эфирами 2 и образованием соединений 4а-е. Вторая конкурирующая реакция – это нуклеофильная атака группы 4-СО гетерокольца диамином с последующим раскрытием гетерокольца, образованием бензимидазольного фрагмента (соединения **6c,d**) и последующим гидролизом амида до соединений структуры 5а,b,e.

Схема 1

a R = Ph, **b** R = 4-MeC₆H₄, **c** R = 2,4-Me₂C₆H₃, **d** R = 2-Me-5-ClC₆H₃, **e** R = 4-Me-3-ClC₆H₃

Структуры синтезированных соединений подтверждены методами ИК, масс-спектрометрии и спектроскопии ЯМР ¹H, ¹³С (табл. 2) с отнесением сигналов на основании общих правил аддитивности заместителей и привлечением спектральных данных модельных соединений [5–9].

При необходимости для отнесения спектральных линий применялся метод ЯМР ¹³С АРТ [5, 6]. По характерным особенностям структурных фрагментов изучаемые соединения составляли четыре класса. Заместитель R, присущий всем изученным соединениям, имел вид бензольного кольца с различной степенью замещения. Спектральные линии атомов углерода бензольного кольца соединений 2а-е, 4а-е в спектрах ЯМР¹³С идентифицировались на основании уточненных в данной работе инкрементов ($C_i = 12.05$, $C_o = -1.32$, $C_m = 2.06$, $C_n = -0.54$ м. д.) влияния заместителя пиримидиндионового кольца [8], в случае соединений 5а,b,е уточненного влияния фрагмента NHCH₂CH₂ [5–7] ($C_i = 19.97$, $C_o = -16.41$, $C_m = 0.43, C_n = -12.69$ м. д.), а в соединениях 6с, d – сравнением с родственными фрагментами в модельных соединениях [9]. Характер замещения бензольного кольца существенно влиял на структурные особенности и свойства соединений. При отсутствии заместитея в фенильном кольце (соединения 2а-5а) или при *n*-, *м*-замещении в нем (соединения 2b-5b, 2e-5e) алифатические атомы водорода в спектрах ЯМР ¹Н наблюдаются в виде характерных триплетов (табл. 3, рисунок, 4b), а атомы водорода фрагмента NCH₂C= наблюдаются в виде узкого синглета. Заместитель в *о*-положении (соединения 2с-4с, 2d-4d) припятствует вращению вокруг связи C(1)-N, вследствие чего атомы водорода 1096

Соеди-	Брутто-	<u>Найдено, %</u> Вычислено, %			<i>R</i> .*	Т пп ⁰∩**	Выход,
нение	формула	С	Н	Ν	Nf	Т. ш., С	%
2a	$C_{13}H_{14}N_2O_4$	<u>59.54</u> 59.16	<u>5.38</u> 5.46	<u>10.68</u> 10.34		110–111	40
2b	$C_{14}H_{16}N_2O_4$	<u>60.86</u> 60.66	<u>5.84</u> 5.48	<u>10.14</u> 10.39		108–109	55
2c	$C_{15}H_{18}N_2O_4$	<u>62.06</u> 62.43	<u>6.25</u> 5.99	<u>9.65</u> 9.58		120-121	30
2d	$C_{14}H_{15}ClN_2O_4$	<u>54.11</u> 53.89	<u>4.87</u> 4.63	<u>9.02</u> 8.96		97–98	66
2e	C ₁₄ H ₁₅ ClN ₂ O ₄	<u>54.11</u> 54.35	<u>4.87</u> 4.53	<u>9.02</u> 9.31		101-102	92
3a	$C_{12}H_{12}N_2O_4$	<u>58.06</u> 58.21	<u>4.87</u> 4.75	<u>11.29</u> 11.13		149–150	38
3b	$C_{13}H_{14}N_2O_4$	<u>59.54</u> 59.21	<u>5.38</u> 5.03	<u>10.68</u> 10.57		202-203	72
3c	$C_{14}H_{16}N_2O_4$	<u>60.86</u> 60.57	<u>5.84</u> 5.49	$\frac{10.14}{10.32}$		165 (разл.)	51
3d	$C_{13}H_{13}ClN_2O_4$	<u>52.62</u> 52.23	<u>4.42</u> 4.34	<u>9.44</u> 9.28		184–185	56
3e	$C_{13}H_{13}ClN_2O_4$	<u>52.62</u> 52.37	<u>4.42</u> 4.17	<u>9.44</u> 9.31		143–144	64
4 a	$C_{18}H_{16}N_4O_2$	<u>67.49</u> 67.62	<u>5.03</u> 5.36	<u>17.49</u> 17.55	0.41	230 (разл.)	21
4b	$C_{19}H_{18}N_4O_2$	<u>68.25</u> 68.59	<u>5.43</u> 5.46	<u>16.76</u> 16.49	0.46	245-246	43
4c	$C_{20}H_{20}N_4O_2$	<u>68.95</u> 68.88	<u>5.79</u> 5.43	<u>16.08</u> 16.30	0.55	193–194	38
4d	$C_{19}H_{17}ClN_4O_2$	<u>61.88</u> 61.55	<u>4.65</u> 4.36	<u>15.19</u> 15.11	0.59	128–129	42
4e	$C_{19}H_{17}ClN_4O_2$	<u>61.88</u> 61.73	<u>4.65</u> 4.60	<u>15.19</u> 15.36	0.52	159 (разл.)	30
5a	$C_{15}H_{15}N_3$	<u>75.92</u> 75.82	<u>6.37</u> 6.30	<u>17.71</u> 17.56	0.64	Смола	11
5b	$C_{16}H_{17}N_3$	<u>76.46</u> 76.63	<u>6.82</u> 6.56	<u>16.72</u> 16.59	0.62	Смола	11
5e	$C_{16}H_{16}ClN_3$	<u>67.25</u> 67.33	<u>5.64</u> 5.43	<u>14.70</u> 14.89	0.73	145 (разл.)	14
6с	$C_{26}H_{26}N_6O$	<u>71.43</u> 71.21	<u>6.18</u> 5.98	<u>19.27</u> 19.16	0.23	151–152	23
6d	C25H23CIN6O	<u>65.48</u> 65.43	<u>5.35</u> 5.05	<u>18.03</u> 18.31	0.2	149–150	24

Характеристики синтезированных соединений

* Ацетон–гексан, 1:1. ** Растворители: толуол (соединения **2а,b,d,e**) и 2-пропанол (соединение **2с**).

Таблица 2

Спектральные характеристики синтезированных соединений

Соеди- нение	ИК спектр, v, см ⁻¹	ЯМР ¹ Н, б, м. д. (<i>J</i> , Гц)*	Масс-спектр, <i>m/z</i> (<i>I</i> _{отн} , %)**
2a	1673, 1719, 1754 (C=O)	2.95 (2H, т, <i>J</i> = 6.6, CH ₂ CO), 3.69 (3H, с, COOCH ₃), 3.91 (2H, т, <i>J</i> = 6.6, CH ₂ N), 4.48 (2H, с, NCH ₂ CO), 7.22–7.44 (5H, м, H аром.)	263 [M+H] ⁺ (100)
2b	1667, 1720, 1752 (C=O)	2.33 (3H, c, 4-CH ₃), 2.93 (2H, т, <i>J</i> = 6.6, CH ₂ CO), 3.69 (3H, c, COOCH ₃), 3.90 (2H, т, <i>J</i> = 6.6, CH ₂ N), 4.47 (2H, c, NCH ₂ CO), 7.19–7.27 (4H, м, H аром.)	277 [M+H] ⁺ (100)
2c	1669, 1717, 1748 (C=O)	2.20 (3H, c, 2-CH ₃), 2.30 (3H, c, 4-CH ₃), 2.94 (2H, т, <i>J</i> = 6.6, CH ₂ CO), 3.68 (3H, c, COOCH ₃), 3.60–3.93 (2H, м, CH ₂ N), 4.42 (1H, д, <i>J</i> = 16.9, NCH ₂ CO/H _A), 4.52 (1H, д, <i>J</i> = 16.9, NCH ₂ CO/H _B), 7.03–7.16 (3H, м, H аром.)	291 [M+H] ⁺ (100)
2d	1682, 1720, 1748 (C=O)	2.24 (3H, c, 2-CH ₃), 2.99 (2H, т, <i>J</i> = 6.6, CH ₂ CO), 3.69 (3H, c, COOCH ₃), 3.69–3.99 (2H, м, CH ₂ N), 4.42 (1H, д, <i>J</i> = 16.9, NCH ₂ CO/H _A), 4.52 (1H, д, <i>J</i> = 16.9, NCH ₂ CO/H _B), 7.27–7.39 (3H, м, H аром.)	311 [M+H] ⁺ (100)*
2e	1667, 1723, 1756 (C=O)	2.31 (3H, c, 4-CH ₃), 2.90 (2H, т, <i>J</i> = 6.6, CH ₂ CO), 3.64 (3H, c, COOCH ₃), 3.80 (2H, т, <i>J</i> = 6.6, CH ₂ N), 4.41 (2H, c, NCH ₂ CO), 7.20–7.44 (3H, м, H аром.)	311 [M+H] ⁺ (100)*
3 a	1660, 1704, 1767 (C=O)	2.95 (2H, т, <i>J</i> = 6.6, CH ₂ CO), 3.95 (2H, т, <i>J</i> = 6.6, CH ₂ N), 4.48 (2H, с, NCH ₂ CO), 7.22–7.44 (5H, м, H аром.), 11.28 (1H, уш. с, COOH)	249 [M+H] ⁺ (100)
3b	1644, 1698, 1768 (C=O)	2.32 (3H, c, 4-CH ₃), 2.93 (2H, т, <i>J</i> = 6.6, CH ₂ CO), 3.90 (2H, т, <i>J</i> = 6.6, CH ₂ N), 4.47 (2H, c, NCH ₂ CO), 7.18–7.24 (4H, м, H аром.), 11.26 (1H, уш. с, COOH)	263 [M+H] ⁺ (100)
3c	1661, 1710, 1749 (C=O)	2.20 (3H, c, 2-CH ₃), 2.30 (3H, c, 4-CH ₃), 2.94 (2H, т, <i>J</i> = 6.6, CH ₂ CO), 3.63–3.91 (2H, м, CH ₂ N), 4.43 (1H, д, <i>J</i> = 17.0, NCH ₂ CO/H _A), 4.52 (1H, д, <i>J</i> = 17.0, NCH ₂ CO/H _B), 7.03–7.15 (3H, м, H аром.), 11.26 (1H, уш. с, COOH)	277 [M+H] ⁺ (100)
3d	1681, 1724, 1730 (C=O)	2.24 (3H, c, 2-CH ₃), 2.99 (2H, т, <i>J</i> = 6.7, CH ₂ CO), 3.70–4.01 (2H, м, CH ₂ N), 4.43 (1H, д, <i>J</i> = 17.0, NCH ₂ CO/H _A), 4.53 (1H, д, <i>J</i> = 17.0, NCH ₂ CO/H _B), 7.27–7.41 (3H, м, H аром.), 10.99 (1H, уш. с, COOH)	297 [M+H] ⁺ (100)*
3e	1662, 1708, 1750 (C=O)	2.33 (3H, c, 4-CH ₃), 2.90 (2H, т, <i>J</i> = 6.7, CH ₂ CO), 3.81 (2H, т, <i>J</i> = 6.7, CH ₂ N), 4.43 (1H, c, NCH ₂ CO), 7.22–7.45 (3H, м, H аром.), 7.81 (1H, уш. с, COOH)	297 [M+H] ⁺ (100)**

1098

4a	1677, 1723 (C=O); 2643, 2852, 2916 (NH)	2.95 (2H, т, <i>J</i> = 6.6, CH ₂ CO), 3.90 (2H, т, <i>J</i> = 6.6, CH ₂ N), 5.10 (2H, с, NCH ₂ C=), 7.12–7.55 (9H, м, H аром.), 12.24 (1H, с, NH)	321 [M+H] ⁺ (100)
4b	1671, 1721 (C=O); 2920, 3030, 3055 (NH)	2.30 (3H, c, 4-CH ₃), 2.95 (2H, т, <i>J</i> = 6.7, CH ₂ CO), 3.86 (2H, т, <i>J</i> = 6.7, CH ₂ N), 5.08 (2H, c, NCH ₂ C=), 7.11–7.61 (8H, м, H аром.), 12.22 (1H, c, NH)	335 [M+H] ⁺ (100)
4c	1675, 1721 (C=O); 2764, 2923, 3071 (NH)	2.14 (3H, c, 2-CH ₃), 2.27 (3H, c, 4-CH ₃), 2.98 (2H, т, <i>J</i> = 6.7, CH ₂ CO), 3.59–3.83 (2H, м, CH ₂ N), 5.07 (1H, д, <i>J</i> = 16.0, NCH ₂ C=/H _A), 5.16 (1H, д, <i>J</i> = 16.0, NCH ₂ C=/H _B), 7.03–7.52 (7H, м, H аром.), 12.18 (1H, уш. с, NH)	349 [M+H] ⁺ (100)
4d	1673, 1719 (C=O); 2739, 2854, 2922 (NH)	2.17 (3H, c, 2-CH ₃), 3.00 (2H, t, $J = 6.7$, CH ₂ CO), 3.63–3.83 (2H, M, CH ₂ N), 5.03 (1H, $_{A}$, $J = 15.9$, NCH ₂ C=/H _A), 5.15 (1H, $_{A}$, $J = 15.9$, NCH ₂ C=/H _B), 7.11–7.53 (7H, M, H apoM.), 7.11 (1H, M, NH), 12.23 (1H, yu. c, NH)	369 [M+H] ⁺ (100)**
4 e	1666, 1727 (C=O); 2753, 2852, 2919 (NH)	2.32 (3H, c, 4-CH ₃), 2.96 (2H, т, <i>J</i> = 6.7, CH ₂ CO), 3.89 (2H, т, <i>J</i> = 6.7, CH ₂ N), 5.08 (2H, c, NCH ₂ C=), 7.11–7.55 (7H, м, H аром.), 12.25 (1H, c, NH)	369 [M+H] ⁺ (100)**
5a		3.06 (2H, т, <i>J</i> = 7.3, CH ₂ (C=)), 3.45–3.62 (2H, м, NH <u>CH₂</u>), 5.73 (2H, т, <i>J</i> = 5.8, CH ₂ <u>NH</u>), 6.51–7.52 (9H, м, H аром.), 12.27 (1H, с, NH)	238 [M+H] ⁺ (100)
5b		2.15 (3H, c, 4-CH ₃), 3.05 (2H, т, <i>J</i> = 7.3, CH ₂ (C=)), 3.46 (2H, т, <i>J</i> = 7.3, CH ₂ NH), 5.49 (1H, уш. c, CH ₂ <u>NH</u>), 6.53–7.48 (8H, м, H аром.), 12.22 (1H, c, NH)	252 [M+H] ⁺ (100)
5e		2.16 (3H, c, 2-CH ₃), 3.04 (2H, т, <i>J</i> = 7.2, CH ₂ (C=)), 3.44–3.51 (2H, м, NH <u>CH₂</u>), 5.90 (1H, т, <i>J</i> = 5.8, CH ₂ <u>NH</u>), 6.50–7.50 (7H, м, H аром.), 12.27 (1H, c, NH)	286 [M+H] ⁺ (100)**
6c		2.14 (3H, c, 2-CH ₃), 2.28 (3H, c, 4-CH ₃), 3.05 (2H, т, <i>J</i> = 7.7, CH ₂ CH ₂ (C=)), 3.69, 4.23 (2H, 2уш. c, NCH ₂), 4.42 (2H, д, <i>J</i> = 5.6, <u>CH₂</u> NH), 6.18 (1H, c, CH ₂ <u>NH</u>), 7.01–7.52 (11H, м, H аром.), 11.84 (2H, 2уш. c, NH)	439 [M+H] ⁺ (100)
6d		2.14 (3H, c, 2-CH ₃), 3.09 (2H, т, <i>J</i> = 7.5, CH ₂ <u>CH</u> ₂ C=), 3.74, 4.18 (2H, 2уш. c, NCH ₂), 4.42 (2H, д, <i>J</i> = 5.6, CH ₂ NH), 6.59 (1H, уш. c, CH ₂ <u>NH</u>), 7.08–7.51 (11H, м, H аром.), 12.18 (2H, c, NH)	459 [M+H] ⁺ (100)**

* Спектры ЯМР ¹Н зарегистрированы в ацетоне- d_6 (соединения **2а**–е) и ДМСО- d_6 (соединения **4**–6). ** Приведены ионы [M+H]⁺, содержащие изотоп Cl³⁵.

Атомы		Химические сдвиги	и (ацетон-d ₆), б, м. д.	
углерода	2a	2b	2c	2d
C-1	144.55	142.04	140.78	144.38
C-2	127.18	127.11	137.28	136.90
C-3	130.56	131.08	133.17	133.93
C-4	127.96	137.67	139.14	129.02
				или 129.48
C-5	130.56	131.08	128.63	132.93
			или 129.24	
C-6	127.18	127.11	128.63	129.02
			или	или 120.49
	154.12	154.14	129.24	129.48
C-2*	154.13	154.14	153.67	153.63
C-4'	170.59	170.61	170.66	170.56
	или 170.85	или 170.80	или 170.99	или 170.87
C-5'	33.21	33.23	33.32	33.24
C-6'	45.78	45.90	45.76	45.54
N <u>CH</u> 2COO	43.12	43.11	43.01	43.02
CH ₂ COO	170.59	170.61	170.66	170.56
	или	или	или	ИЛИ
	170.85	170.80	170.99	170.87
OCH ₃	53.31	53.29	53.28	53.33
2-CH ₃			18.83	18.45
4-CH ₃		21.92	21.96	

Данные спектров ЯМР ¹³С соединений 2а-d

фрагмента NCH₂ наблюдаются в виде мультиплета AB спин-спинновой системы ABX₂ (рисунок, **4c**). Атомы водорода фрагмента NCH₂C= наблюдаются в виде мультиплета спин-спинновой системы AB. В спектрах ЯМР ¹³С при *о*-замещении в бензольном кольце специфического изменения химических сдвигов атомов углерода пиримидиндионового кольца не наблюдалось.

Характерной особенностью спектров ЯМР ¹Н соединений **2а**–е являются синглет группы СООСН₃ при 3.6 м. д. и в спектрах ЯМР ¹³С соответствующие спектральные линии атомов углерода при 170 и 53 м. д. Структуры соединений **3а**–е подтверждались наличием уширенного синглета 11.3 м. д. в спектрах ЯМР ¹Н. Об образовании соединений типа **4а–е** свидетельствуют наличие характерных мультиплетов бензимидазола в области ароматических протонов [10–12], наличие уширенного синглета при 12.2 м. д. в спектрах ЯМР ¹Н. В спектрах ЯМР ¹³С наличие бензимидазольного фрагмента подтверждается набором характерных уширенных из-за обменных процессов линий, иногда теряющихся в шумах (соединения **4b,c**), а также сигналом при 150 м. д., отнесенным к атому С-а.

Участки спектров ЯМР 1 Н алифатических протонов соединений 4b,c и 6c

Таблица 4

	, ,	1			
Атомы		Химические	е сдвиги (ДМС	Э-d ₆), δ, м. д.	
углерода	4 a	4b	4c	4d	4e
C-1	142.33	139.82	138.59	142.23	141.26
C-2	125.21	125.11	135.04	134.79	125.68
C-3	128.67	129.12	131.16	132.14	132.76
					или 133.16
C-4	126.00	135.32	136.85	127.29	132.76
				или 127.54	или 133.16
C-5	128.67	129.12	126.95	130.31	131.08
			или 127.29		
C-6	125.21	125.11	126.95	127.29	123.87
			или 127.29	или 127.54	
C-2'	151.04	151.07	151.09	150.96	150.99
	или 152.24	или 152.23	или 151.78	или 151.79	или 152.26
C-4'	169.50	169.53	169.64	169.57	169.49
C-5'	31.33	31.33	31.44	31.35	31.26
C-6'	43.55	43.65	43.58	43.34	43.51
N <u>CH</u> 2C=	38.44	38.42	38.23	38.28	38.52
C-a	151.04	151.07	151.09	150.96	150.99
	или 152.24	ИЛИ 152.22	ИЛИ 15178	или 151.70	ИЛИ 152.24
C-h	118 36	Не цабл	111/69	118 30	118 33
C-0	121 10	121 36	121 40	121 10	121.16
C-C	или	121.50	121.40	или	или
	121.68			121.83	121.78
C-d	121.10	121.36	121.40	121.10	121.16
	ИЛИ 121.69			ИЛИ 121.92	ИЛИ 121 70
C a	121.08	На набл	111 15	121.83	121.78
C-e C-f	13/ 16	пе наол. Не набл	на цаби	13/ 20	111.1
C-1 C-9	1/3 0/	Не набл	не набл. Не набл	1/3 05	1/3 22
с- <u>в</u> 2 - СН-	173.04	TTC HAUJI.	17 32	16.01	143.22
2-0113 4-CH		20.50	20.54	10.71	19.11
1-0113	1	20.50	20.34	1	17.11

Данные спектров ЯМР ¹³С соединений 4а–е

Атомы	Химические сдвиги (ДМСО-d ₆), δ, м. д.				
углерода	5a	5b	5e		
C-1	148.47	146.22	147.99		
C-2	112.09	112.28	111.29		
			или 111.80		
C-3	128.93	129.37	133.64		
C-4	115.81	124.20	121.44		
C-5	128.93	129.37	131.39		
C-6	112.09	112.28	111.29		
			или 111.80		
NH <u>CH2</u> CH2	41.41	41.72	41.39		
NHCH ₂ CH ₂	28.58	28.61	28.50		
C-a	153.16	153.22	153.05		
C-b	118.12	118.29	118.20		
C-c	121.39	121.15	121.01		
	или 121.44	или 121.29	или 121.10		
C-d	121.39	121.15	121.01		
	или 121.44	или 121.29	или 121.10		
C-e	110.73	110.83	110.54		
C-f	134.21	134.45	134.32		
C-g	143.31	142.41	143.18		
2-CH ₃					
4-CH ₃		20.05	18.46		

Данные спектров ЯМР ¹³С соединений 5a, b, e

Для строения продуктов распада гидропиримидинового кольца соединений **5**а,**b**,**e** характерны появление второго сигнала NH при 5.5 м. д. в спектрах ЯМР ¹H, иногда наблюдаемого в виде триплета из-за спинспинового взаимодействия с протонами группы CH₂, и наличие структурного фрагмента CH₂CH₂, в котором разница протонов в химических сдвигах на 0.5 м. д. меньше, чем в соответствующем фрагменте пиримидиндионового кольца, а также отсутствие линий углерода карбонильных групп при 150 и 169 м. д. в спектрах ЯМР ¹³С.

При распаде гидропиримидинового кольца в соединениях с *о*-замещением в бензольном кольце, образуются стабильные соединения **6с,d**, в молекулах которых имеются два бензимидазольных фрагмента. Строение соединений **6с,d** подтверждается наличием двух уширенных синглетов группы NH бензимидазольных фрагментов при 12.2 и синглета группы NH при 6.2 м. д. в спектрах ЯМР ¹Н. Присутствие линии в виде дублета при 4.4 м. д. указывает на существование фрагмента NHCH₂C=. На наличие быстрого обменного процесса в растворах молекул соединений **6с,d** указывают уширенные мультиплеты фрагмента NCH₂CH₂C=

Таблица б

Атомы	Химические сдвиги (ДМСО-d ₆), б, м. д.			
углерода	6c	6d		
C-1	137.11 или 137.26	141.54		
C-2	137.11 или 137.26	135.90		
C-3	131.94	130.58		
C-4	136.37	129.41		
C-5	127.73	127.67		
C-6	129.36	132.60		
NCONH	156.65	156.32		
NH <u>CH</u> 2C=	38.75	38.28		
$NCH_2CH_2C=$	47.25	47.44		
$NCH_2CH_2C=$	27.88	27.88		
C-a / C-a'	152.48 или 153.40	152.44 или 153.41		
C-b / C-b'	114.69 или 114.80	118.33 или 118.42		
C-c / C-c'	121.25 или 121.32	121.30 или 121.37		
C-d / C-d'	121.25 или 121.32	121.30 или 121.37		
C-e/ C-e'	114.69 или 114.80	110.75 или 110.83		
C-f / C-f'	138.87	134.23 или 134.56		
C-g / C-g'	138.87	143.33 или 143.63		
2-CH ₃	17.26	16.91		
4-CH ₃	20.60			

Данные спектров ЯМР ¹³С соединений 6с.d

(рисунок, **6c**), в случае отсутствия обмена – наблюдаются разрешенные мультиплеты (рисунок, **4c**,**b**). Тщательное интегрирование спектров ЯМР ¹Н соединений **6c**,**d** подтверждает наличие нужного количества протонов и упомянутых выше фрагментов.

Наличие линии при 156, 153 и 152 м. д. в спектрах ЯМР ¹³С соединений **6с,d** указывает на существование фрагмента NCONH, и, соответственно, атомов С-а, С'-а бензимидазольного фрагмента. Линии при 47, 27 и 38 м. д. однозначно отнесены к атомам углерода фрагментов N<u>CH₂CH₂</u>, NCH₂<u>CH₂</u> и CONH<u>CH₂C</u>= соответственно.

При сравнении (табл. 3, 4) химических сдвигов соответствующих фрагментов соединений **2а–е** и **4а–е** следует учитывать, что в спектрах соединений **2а–е**, зарегистрированых в ацетоне- d_6 , наблюдается слабопольное смещение линий алифатических и ароматических атомов углерода на 2 м. д. в спектрах ЯМР ¹³С.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С получены на спектрометре Varian Unity Inova (300 и 75 МГц соответственно), внутренний стандарт ТМС. ИК спектры записаны на приборе Perkin–Elmer Spectrum Bx FT–IR в таблетках КВг. Масс-спектры получены на спектрометре Waters ZQ 2000, ионизирующее напряжение – 15 эВ. Контроль за ходом реакций и чистотой полученных соединений проводился методом TCX на пластинках Silufol UV-254, проявление – в УФ свете или парами иода.

Метил[3-арил-2,6-диоксотетрагидропиримидин-1(2Н)-ил]ацетаты 2а-е (общая методика). К 100 мл сухого ДМФА при перемешивании прибавляют 2.40 г (60 ммоль) 60% суспензии гидроксида натрия в парафине. В полученную суспензию в течение 10 мин при перемешивании прибавляют 50 ммоль соответствующего 1-арилдигидро-2,4-пиримидиндиона 1а-е, растворенного в 50 мл сухого ДМФА. Температуру смеси поднимают до 50 °C и продолжают перемешивать до прекращения выделения водорода (~45 мин). Смесь охлаждают до 5–10 °C, по каплям в течение 10 мин прибавляют 14.2 мл (150 ммоль) 2бромметилацетата, растворенного в 20 мл сухого ДМФА. Температуру смеси поднимают до 50-60 °C, перемешивают 30 мин, охлаждают до 20 °C и содержимое выливают в смесь воды и льда (~500 мл). Выделившиеся кристаллы соединений 2а-е отфильтровывают, промывают водой, сушат и перекристаллизовывают из соответствующего растворителя.

[3-Арил-2,6-диоксогексагидропиримидин-1(2H)-ил]уксусные кислоты За-е (общая методика). Раствор 2 ммоль соответствующего эфира 2а-е в 12 мл 10% соляной кислоты кипятят в течение 2 ч, охлаждают, выделившиеся соединения За-е отфильтровывают, промывают водой, сушат. Очищают двукратным растворением в 5% растворе Na₂CO₃, фильтрованием и осаждением 5% соляной кислотой.

3-(1Н-Бензимидазол-2-илметил)-1-арилдигидропиримидин-2,4(1Н,3Н)-дионы 4а-е, N-[2-(1Н-бензимидазол-2-ил)этил]-N-ариламины 5а,b,е и N-[2-(1Н-бензимидазол-2-ил)этил]-N'-(1Н-бензимидазол-2-илметил)-N-арилмочевины 6с,d (общая методика). Раствор 4 ммоль соответствующего эфира 2а-е и 1.30 г (12 ммоль) *о*-фенилендиамина в 12 мл 4 М раствора соляной кислоты кипятят 16 ч, охлаждают и смесь нейтрализуют 25% аммиаком до рН 8–9. Выделившийся осадок отфильтровывают, очищают с помощью колоночной хроматографии. Элюент ацетон-гексан, 1 : 1.

СПИСОК ЛИТЕРАТУРЫ

- 1. D. S. Dogruer, S. Unlu, M. F. Sahin, E. Yesilada, Farmaco, 53, 80 (1998).
- 2. V. J. Demopoulos, E. J. Rekka, J. Pharm. Sci, 84, 79 (1995).
- 3. J. Ellingboe, T. Alessi, J. Millen, J. Sredy, A. King, C. Prusiewicz, F. Guzzo, D. VanEngen, J. Bagli, J. Med. Chem., 33, 2892 (1990).
- B. L. Mylari, W. J. Zembrowski, T. A. Beyer, C. E. Aldinger, T. W. Siegel, J. Med. Chem., 35, 2155 (1992).
- 5. H. Duddeck, W. Dietrich, G. Tóth, *Structure Elucidation by Modern NMR*, Springer, Darmstadt, Steinkopff, New York, 1998.
- 6. H. O. Kalinowski, S. Berger, S. Braun, ¹³C NMR -Spektroskopie, Georg Thieme Verlag, Stuttgart, New York, 1984.
- J. D. Memory, N. K. Wilson, NMR of Aromatic Compounds, John Wiley & Sons, New York, 1982.
- K. Beresnevičiūtė, Z. Beresnevičius, G. Mikulskienė, J. Kihlberg, J. Broddefalk, Magn. Reson. Chem., 35, 553 (1997).
- K. Kantminienė, Z. Beresnevičius, G. Mikulskienė, J. Kihlberg, J. Broddefalk, J. Chem. Res. Synopses, 1, 16(S), 164 (M) (1999).
- M. Bonamico, V. Fares, A. Flamini, P. Imperatori, N. Poli, J. Chem. Soc., Perkin Trans. 2, 1359 (1990).
- 11. Z. Kang, C. C. Dykstra, D. Boykin, *Molecules*, 9, 158 (2004).
- 12. R. J. Pugmire, D. M. Grant, J. Am. Chem. Soc., 93, 1880 (1971).

Каунасский технологический университет, Каунас LT-50254, Литва e-mail: Vytautas.Mickevicius@ktu.lt Поступило 11.03.2006

^аИнститут биохимии, Вильнюс LT-08622, Литва e-mail: gemam@bchi.lt