Посвящается профессору И. Калвиньшу по случаю его 60-летия

Х. Кажока, А. Краузе, М. Вилюмс, Л. Чернова, Л. Силе, Г. Дубурс

СИНТЕЗ И ИССЛЕДОВАНИЕ СТАБИЛЬНОСТИ ЭФИРОВ 6'-КАРБАМОИЛМЕТИЛТИО-5'-ЦИАНО-1',4'-ДИГИДРО-3,4'и -4,4'-БИПИРИДИН-3'-КАРБОНОВЫХ КИСЛОТ

2*. ЭФИРЫ 6'-КАРБАМОИЛМЕТИЛТИО-5'-ЦИАНО-1',4'-ДИГИДРО-4,4'-БИПИРИДИН-3-КАРБОНОВЫХ КИСЛОТ

Методом ВЭЖХ исследована стабильность растворов эфиров 6'-карбамоилметилтио-2'-метил-5'-циано-1',4'-дигидро-4,4'-бипиридин-3'-карбоновых кислот. В качестве стандартных соединений (типичных примесей) синтезированы соответствующие эфиры б'-карбамоилметилтио-5'-циано-4,4'-бипиридин-3'-карбоновых кислот, эфиры 5-метил-3-оксо-7-(пиридин-4-ил)-8-циано-2,3-дигидро-7Н-тиазоло[3,2-а]пиридин-6-карбоновых кислот, метиловый эфир 3-амино-2-карбамоил-6-метил-4-(пиридин-4-ил)-4,7-дигидротиено[2,3-b]пиридин-5-карбоновой кислоты и метиловый эфир 3-амино-2-карбамоил-6-метил-4-(пиридин-4-ил)тиено[2,3-b]пиридин-5-карбоновой кислоты. Анализ ВЭЖХ выполнен в условиях обращеннофазовой хроматографии. Установлено, что растворы исследованных соединений (в качестве растворителей использованы смеси ацетонитрила с фосфатным буфером, значение pH которого не менее 3, но не более 5) стабильны в течение 1 мес при хранении указанных растворов в защищенном от света месте. При оценке чистоты эфиров 6'-карбамоилметилтио-2'-метил-5'-циано-1',4'-дигидро-4,4'-бипиридин-3'-карбоновой киспоты мето-дом ВЭЖХ для более полного разделения анализируемых сорбатов и их типичных приме-сей также следует использовать хроматографические системы, водный компонент подвиж-ной фазы которых имеет значение рН 3-5.

Ключевые слова: 4,4'-бипиридины, 2,3-дигидро-7Н-тиазоло[3,2-*a*]пиридины, тиено-[2,3-*b*]пиридины, ВЭЖХ.

Ранее [2] нами был синтезирован ряд эфиров 6'-карбамоилметилтио-5'-циано-1',4'-дигидро-4,4'-бипиридин-3'-карбоновых кислот, которые, будучи региоизомерами кардиотонического препарата милринона [3], представляют интерес как потенциальные положительно инотропно действующие соединения. Однако известно [2], что гидрированные 2-алкилтио-4,4'-бипиридины неустойчивы в кислых растворах.

В настоящей работе исследована стабильность вышеупомянутых эфиров в смесях ацетонитрил-0.1% раствор фосфорной кислоты (растворы с pH 2.3, табл. 1) и ацетонитрил-фосфатный буфер (растворы с pH 3-9, табл. 1).

Ранее [1] методом ВЭЖХ нами была изучена стабильность эфиров 6'-карбамоилметилтио-5'-циано-1',4'-дигидро-3,4'-бипиридин-3'-

карбоновых кислот и показано, что растворы исследованных соединений в смеси ацетонитрила с фосфатным буфером (pH 3–5) стабильны в течение 1 мес

1-10 Ру = 4-(пиридин-4-ил); 1, 3, 5, 7 R = Me; 2, 4, 6, 8 R = Et

при хранении указанных растворов в защищенном от света месте. Хранение растворов (независимо от значения pH) в незащищенном от света месте приводит к образованию соответствующих эфиров 6'-карбамоилметилтио-5'-циано-3,4'-бипиридин-3'-карбоновых кислот. Присутствие эфиров 5-метил(фенил)-3-оксо-7-(пиридин-3-ил)-8-циано-2,3-дигидро-7H-тиазоло[3,2-*a*]пиридин-6-карбоновых кислот (не более 4%) обнаружено лишь в хранившихся в защищенном от света месте растворах ацетонитрил–0.1% раствор фосфорной кислоты. Ряд пока неидентифицированных продуктов был обнаружен в растворах со значением pH 7–9.

Объекты исследования данной работы – эфиры 6'-карбамоилметилтио-2'-метил-5'-циано-1',4'-дигидро-4,4'-бипиридин-3'-карбоновых кислот 1 [2] и 2 [4] получены алкилированием соответствующих 3'-алкоксикарбонил-2'-метил-5'-циано-1',4'-дигидро-4,4'-бипиридин-6'-тиолатов 3 и 4 [5] иодацетамидом. Для изучения стабильности растворов эфиров 1 и 2 в качестве стандартных соединений (предполагаемых продуктов превращения при хранении растворов исследуемых эфиров) были использованы соответствующие эфиры 6'-карбамоилметилтио-2'-метил-5'-циано-4,4'-бипиридин-3'-карбоновых кислот **5** [2] и **6**, эфиры 5-метил-3-оксо-7-(пиридин-4ил)-8-циано-2,3-дигидро-7Н-тиазоло[3,2-*а*]пиридин-6-карбоновых кислот **7** [6] и **8**, метиловый эфир 3-амино-2-карбамоил-6-метил-4-(пиридин-4ил)-4,7-дигидротиено[2,3-*b*]пиридин-5-карбоновой кислоты **9** [2] и метиловый эфир 3-амино-2-карбамоил-6-метил-4-(пиридин-4ил)тиено[2,3-*b*]пиридин-5-карбоновой кислоты **10** [2].

Бипиридины **5** и **6** получены действием нитрита натрия на соответствующие 1',4'-дигидро-4,4'-бипиридины **1** и **2** в кипящей уксусной кислоте. Кипячением соединений **1**, **2** в уксусной кислоте с добавлением ацетата натрия получены 2,3-дигидро-7Н-тиазоло[3,2-*a*]пиридины **7**, **8**. При кратковременном нагревании раствора соединений **1** или **5** в этаноле с добавкой каталитического количества КОН получены, соответственно, 4,7-дигидротиено[2,3-*b*]пиридин **9** или тиено[2,3-*b*]пиридин **10**.

Для исследования стабильности растворов соединений **1** и **2** (табл. 1) был использован тот же градиентный обращенно-фазовый режим ВЭЖХ, что и в работе [1]. Однако установлено, что данная хроматографическая система

Таблица 1

	Содержание исследуемых соединений в анализируемых растворах, % **, при								
Соеди-	pH 2.3		pH 3	pH 5	pH 7	pH 9			
	Сразу после растворения		Через 1 мес (в темноте)						
1	98.7	91.5	98.5	98.5	90.5	45			
5+7	0.8	8 4.1		1	1	-			
1A = 9	-	-	-	-	8	50			
1C = 10	-	-	-	-	-	4			
1X***	0.5	4.4	0.5	0.5	0.5	1			
2	98.7	91	98.4	98.4	93.5	81			
6+8	1	4.7	1.3	1.3	1.3	-			
2A	-	-	-	-	5	17			
2C	-	-	—	-	—	1.7			
2X***	0.3	4.3	0.3	0.3	0.3	0.3			

Исследование стабильности растворов соединений 1 и 2 методом обращенно-фазовой ВЭЖХ (градиентный режим)*

* Условия хроматографического анализа приведены в экспериментальной части.

** Количественный анализ выполнен методом нормализации площадей ($\lambda = 254$ нм) [7]. Растворы pH 2.3: 5% ацетонитрила в 0.1% растворе фосфорной кислоты в воде; pH 3: ацетонитрил–0.01 М фосфатный буфер pH 3 (25:75); pH 5: ацетонитрил–0.01 М фосфатный буфер pH 5 (25:75); pH 7: ацетонитрил–0.01 М фосфатный буфер pH 7 (30:70); pH 9: ацетонитрил–0.01 М фосфатный буфер pH 9 (30:70).

*** Суммарное содержание неидентифицированных примесей (число неидентифицированных примесей не более 3).

не позволяет разделить такие пары соединений, как 5/7 и 6/8 [время удерживания, t_r : 6.65 (5), 6.64 (7) и 7.45 (6), 7.49 мин (8)], поэтому данные, указанные в табл. 1 для названных выше соединений, следует рассмативать как суммарное содержание 5 + 7 и 6 + 8.

При вводе пробы сразу после растворения соединений 1 и 2 в подвижной фазе (растворы рН 2.3, табл. 1) на полученных хроматограммах преобладают пики, соответствующие дигидробипиридинам 1 и 2 (содержание последних в анализируемых растворах 98.7%). На хроматограммах тех же проб через 1 мес площади пиков, соответствующих соединениям 1 и 2, уменьшаются до 91-91.5%. В то же время имеет место увеличение (от 0.8 до 4.1% - раствор 1; от 1 до 4.7% - раствор 2) площадей пиков, соответствующих 5 + 7 и 6 + 8. Согласно данным, полученным с помощью спектрофотометрического детектора на диодной матрице ProStar 330, УФ спектры пиков, совпадающих по времени удерживания со стандартами 5 – 8, сразу после растворения соединений 1 и 2 в подвижной фазе совпадают с УФ спектрами модельных соединений 5 и 6, а через 1 мес уже совпадают с УФ спектрами модельных соединений 7 и 8. Это не противоречит данным, ранее полученным нами для эфиров 6'-карбамоилметилтио-5'-циано-1',4'-дигидро-3,4'-бипиридин-3'-карбоновых кислот. Как было показано в работе [1], через 1 мес, при хранении растворов с рН 2.3 исследуемых соединений в темноте, имело место образование соответствующих эфиров 5-метил(фенил)-3-оксо-7-(пиридин-3'-ил)-8-циано-2,3-дигидро-7Н-тиазоло[3,2-а]пиридин-8-карбоновых кислот.

Согласно данным табл. 1, на хроматограммах растворов с рН 3 и рН 5 соединений 1 и 2 наблюдается лишь незначительное увеличение площади пиков, соответствующих соединениям 5+7 и 6+8 (не более 0.3%), т. е. растворы стабильны в течение 1 мес при хранении в защищенном от света месте. Установлено (эти данные не включены в табл. 1, так как идентичны результатам, полученным в сообщении [1]), что под действием света во всех исследуемых растворах независимо от значения рН происходит окисление дигидробипиридинов 1 и 2 до соответствующих бипиридинов 5 и 6. Анализ растворов с рН 7 через 1 мес после растворения исследуемых соединений показал уменьшение содержания дигидробипиридинов 1 и 2 (от 98.7 до 90.5% – раствор 1; от 98.7 до 93.5% – раствор 2) и образование продуктов, характеристики которых близки к таковым неидентифицированных в работе [1] соединений типа А (содержание 1А – 8%; 2А – 5%). В растворах с рН 9 через 1 мес содержание дигидробипиридинов 1 и 2 составляет уже только 81 для раствора 2 (R = Et) и 45% для раствора 1 (R =Ме). В то же время, содержание соединения 2А составляет 17, а 1А – 50%. Кроме того, наблюдается образование продуктов, близких к неидентифицированным соединениям C [1] (содержание 1C – 4; 2C – 1.7%). Сравнение соединений 1А и 1С с модельными соединениями 9 и 10 показало, что как по времени удерживания, так и по УФ спектру соединение 1А идентично соединению 9, а модельное соединение 10 соответствует соединению 1С. Этот факт можно объяснить тем, что в растворе с рН 7 протекает внутримолекулярная циклизация 1 по Торпу, приводящая к дигидротиенопиридину 9, а в растворе с pH 9 – окисление 1 и

внутримолекулярная циклизация или внутримолекулярная циклизация 1 и окисление с образованием тиенопиридина 10.

В табл. 2 показана зависимость времени удерживания соединений 1, 2 и 5–8 от рН фосфатного буфера и концентрации ацетонитрила в под-вижной фазе (изократический режим ВЭЖХ). Как и следовало ожидать, в

обращенно-фазовой хроматографии с увеличением концентрации ацетонитрила уменьшается время удерживания сорбата. Видно, что заметное изменение времени удерживания бипиридинов **5**, **6** происходит при изменении рН подвижной фазы от 3 до 5.

Основным недостатком описанного градиентного режима (табл. 1) было неудовлетворительное разделение пар соединений 7/5 и 8/6. На основании данных табл. 2, была рассчитана селективность или относительное удерживание (α) для следующих пар разделяемых соединений: 5/1, 7/1, 7/5, 6/2, 8/2, 8/6. Известно, что хорошее хроматографическое разделение двух веществ возможно при селективности α >1.5. Из данных представленных в табл. 3 следует, что хроматографическая система, подвижная фаза которой имеет значение pH 3-5, отвечает этому требованию. При использовании хроматографической системы, водный компонент подвижной фазы которой имеет значение pH > 5, может возникнуть проблема при разделении дигидробипиридинов 1 и 2 с соответствующими бипиридинами 5 и 6 ($\alpha < 1.4$). Видно, что в более кислых системах ухудшается селективность разделения для пар соединений 7/5 и 8/6, поэтому не удивительно, что в условиях градиентного режима, где в качестве водного компонента подвижной фазы использовался 0.1% раствор фос-форной кислоты (pH 2.3), разделение бипиридинов 5, 6 с соответ-ствующими тиазолопиридинами 7, 8 неудовлетворительно (α <1.1).

Таблица 2

Зависимость времени удерживания соединений 1, 2 и 5–8 в от pH фосфатного буфер и концентрации ацетонитрила в подвижной фазе (изократический режим)*	a

Co-	Время удерживания, t_r , мин, при									
еди-	рН 3			pH 5		pH 7		pH 9		
нение	20%	25%	30%	40%	25%	35%	30%	35%	30%	40%
1	15.33	5.65	3.33	1.93	4.13	2.34	3.32	2.85	3.45	2.20
5	-	33.49	14.82	3.56	9.27	3.38	3.70	3.09	3.83	2.36
7	_	25.30	14.84	4.99	20.55	7.07	9.52	7.08	9.80	4.39
2	41.25	13.39	6.44	2.41	7.71	3.18	5.25	3.73	5.13	2.75
6	_	-	31.15	5.16	15.38	4.62	5.61	4.06	5.45	2.92
8	—	—	35.65	8.49	42.20	11.91	17.18	11.10	16.71	6.27

* Условия хроматографического анализа см. в экспериментальной части.

Лра	Селективность**, а							
два разделяемых соединения	AH – ΦБ (40 : 60), pH 3	AH – ΦБ (35 : 65), pH 5	AH – ΦБ (35 : 65), pH 7	AH – ΦБ (40 : 60), pH 9				
5/1	5.33	2.34	1.18	1.24				
7/1	9.17	6.70	4.26	4.41				
7/5	1.72	3.02	3.60	3.55				
6/2	4.28	1.88	1.37	1.15				
8/2	8.22	6.38	5.28	3.97				
8/6	1.92	3.38	3.83	3.47				

Селективность хроматографической системы* в зависимости от рН подвижной фазы

* Изократический режим. Условия хроматографического анализа см. в экспериментальной части.

** Селективность, или относительное удерживание двух разделяемых соединений: $\alpha_{i,j} = t_{ri} - t_0 / t_{rj} - t_0 = k_i / k_j$, где t_{ri} и t_{rj} – время удерживания соответствующее *i*-му и *j*-му

компонентам разделяемой пары; $t_0 - {ypaцun} = 1.56$ мин.

Для подтверждения образования тиазолопиридинов 7, 8 в растворах с pH 2.3 соединений 1, 2, хранившихся в течение 1 мес в темноте (табл. 1), была использована изократическая хроматографическая система с подвижной фазой, состоящей из 35% ацетонитрила и 65% 0.01 М фосфатного буфера (pH 5). Установлено, что сразу после растворения соединений 1, 2 в подвижной фазе на хроматограмме помимо дигидробипиридина 1 или 2 присутствует только соответствующий бипиридин 5 или 6, тогда как анализ растворов (pH 2.3) соединений 1, 2, хранившихся в течение 1 мес в темноте показал, что содержание бипиридина 5 или 6 не изменилось, в то время как имеет место образование соответствующего тиазолопиридина 7 или 8.

Таким образом, в данной работе изучено хроматографическое поведение соединений 1, 2 и 5–8 в различных условиях обращенно-фазовой хроматографии. Установлено, что образование бипиридинов 5, 6 происходит под действием света во всех исследуемых растворах независимо от значения pH. Показано, что при хранении растворов в темноте образование тиазолопиридинов 7, 8 наблюдается в растворах со значением pH<3, а в растворах со значением pH>5 происходит образование соответствующих 4,7-дигидротиено[2,3-*b*]пиридинов A и/или тиено[2,3-*b*]пиридинов C. Установлено, что растворы исследованных соединений (когда в качестве растворителей использованы смеси ацетонитрила с фосфатным буфером, значение pH которого не менее 3, но не более 5) стабильны в течение 1 мес при условии хранения указанных растворов в защищенном

от света месте. Кроме того, при оценке чистоты дигидробипиридинов 1 и 2

методом ВЭЖХ (определение содержания типичных примесей **5–8**) для более полного разделения анализируемых сорбатов также следует использовать хроматографические системы, водный компонент подвижной фазы которых имеет значение pH 3–5.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры сняты на спектрометре Perkin–Elmer 580В в вазелиновом масле. Спектры ЯМР ¹Н записаны на спектрометре WH 90/DC (90 МГц), внутренний стандарт ГМДС (б 0.05 м. д.). Контроль за ходом реакции и индивидуальностью веществ осуществлен с помощью TCX на пластинках Silufol UV-254, элюент хлороформ–гексан–ацетон, 2:1:5. Соединения перекристаллизованы из этанола.

Синтез и характеристика соединений 1, 5, 9 и 10 описаны в [2], соединения 2 – в [4], соединения 7 – в [6].

Этиловый эфир 6'-карбамоилметилтио-2'-метил-5'-циано-4,4'-бипиридин-3'-карбоновой кислоты (6). Раствор 0.36 г (1 ммоль) этилового эфира 6'-карбамоилметилтио-2'-метил-5'-циано-1',4'-дигидро-4,4'-бипиридин-3'-карбоновой кислоты (2) в 3 мл уксусной кислоты нагревают до кипения и прибавляют 0.11 г (1.5 ммоль) нитрита натрия. После прекращения выделения NO₂, реакционную смесь выливают в 10 мл воды, нейтрализуют аммиаком и отфильтровывают осадок, который промывают 10 мл воды. Получают 0.20 г (58%) соединения 6. Т. пл. 162–164 °C. ИК спектр, v, см⁻¹: 1684, 1728 (C=O); 2224 (C=N); 3164, 3312 (NH₂). Спектр ЯМР ¹Н (ДМСО-d₆), δ , м. д. (*J*, Гц): 0.95 и 4.03 (5H, т и к, *J* = 7, OC₂H₃); 2.68 (3H, с, 6-CH₃); 3.97 (2H, с, SCH₂); 6.06 и 6.53 (2H, уш. с и уш. с, CONH₂); 7.32 и 8.30 (4H, д. д и д. д, *J* = 5, C₅H₄N). Найдено, %: C 57.26; H 4.28; N 15.86; S 9.00. C₁₇H₁₆N₄O₃S. Вычислено, %: C 57.29; H 4.53; N 15.72; S 9.00.

Этиловый эфир 5-метил-3-оксо-7-(4'-пиридил)-8-циано-2,3-дигидро-7Н-тиазоло[3,2-*a*]пиридин-8-карбоновой кислоты (8). Смесь 0.36 г (1 ммоль) сложного эфира 2 и 0.02 г (0.25 ммоль) ацетата натрия в 3 мл уксусной кислоты нагревают в течение 3 ч. После охлаждения к реакционной смеси прибавляют 5 мл этанола. Затем нейтрализуют аммиаком и отфильтровывают осадок, который промывают 5 мл воды. Полученный фильтрат выливают в 10 мл воды, отфильтровывают осадок, который перекристаллизовывают из этанола. Получают 0.18 г (53%) соединения 8. Т. пл. 162–164 °С. ИК спектр, v, см⁻¹: 1667, 1718 (C=O); 2202 (C=N). Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (*J*, Гц): 1.12 и 4.07 (5Н, т и к, *J* = 7, OC₂H₅); 2.68 (3H, с, 6-CH₃); 3.94 (2H, с, 2-CH₂); 4.72 (1H, с, 7-H); 7.16 и 8.60 (4H, д. д и д. д, C₅H₄N). Найдено, %: С 59.58; H 4.23; N 12.30; S 9.24. C₁₇H₁₅N₃O₃S. Вычислено, %: C 59.81; H 4.43; N 12.31; S 9.39.

Условия ВЭЖХ-анализа. Градиентный режим. Измерения выполнены на жидкостном хроматографе Varian ProStar, состоящем из градиентного насоса ProStar 240; спектрофотометрического детектора на диодной матрице ProStar 330 (λ = 254 нм) и автосамплера ProStar 410. Колонка (150 × 4.6 мм) фирмы Agilent заполнена сорбентом Zorbax SB-C18. Подвижная фаза: ацетонитрил – 0.1% раствор фосфорной кислоты в воде (pH 2.3). Линейный градиент (15 мин) от 5 до 95% ацетонитрила. Расход подвижной фазы 1.0 мл/мин. Пробы (10 мкл, в подвижной фазе 0.5 мг/мл) вводили с помощью автосамплера. Время удерживания, t_i: 5.54 (1); 6.65 (5); 6.64 (7); 5.28 (1A=9); 6.70 (1C=10); 6.11 (2); 7.45 (6); 7.49 (8); 5.95 (2A); 7.52 мин (2C). Время удерживания условно несорбирующегося вещества (урацил), t₀, 1.55 мин.

Приготовление анализируемых растворов описано в сообщении [1].

Изократический режим. Измерения выполнены на хроматографической системе состоящей из насоса Waters 510; УФ детектора Du Pont Instruments U.V. Spectrophotometer ($\lambda = 254$ нм) и интегратора Hewlett Packard HP 3395. Колонка (150×4.6 мм) фирмы Agilent заполнена сорбентом Zorbax Extend-C18. Подвижная фаза: ацетонитрил (AH) – фосфатный буфер (ФБ). Растворы 0.01 М ФБ (pH 3; 5; 7; 9) получены титрованием 0.01 М фосфорной

кислоты 1 М гидроксидом калия до желаемого значения pH [1]. Расход подвижной фазы 1.0 мл/мин. Пробы (50 мкл, в подвижной фазе c = 0.05 мг/мл) вводили без остановки 847

потока с помощью петлевого крана-дозатора Rheodyne 7125. Соотношение компонентов подвижной фазы и время удерживания анализируемых сорбатов см. в табл. 2.

СПИСОК ЛИТЕРАТУРЫ

- 1. Х. Кажока, А. Краузе, М. Вилюмс, Л. Чернова, Л. Силе, Г. Дубурс, *XIC*, 59 (2007). [*Chem. Heterocycl. Comp.*, **43**, 50 (2007)].
- 2. A. Krauze, G. Duburs, Latv. J. Chem., 92 (1994).
- 3. A. A. Alausi, D. C. Johnson, Circulation, 73, 10 (1986).
- 4. А. А. Краузе, Э. Э. Лиепиньш, Ю. Э. Пелчер, З. А. Калме, Г. Я. Дубур, *XГС*, 75 (1986). [*Chem. Heterocycl. Comp.*, **22**, 63 (1986)].
- 5. А. А. Краузе, Э. Э. Лиепиньш, Ю. Э. Пелчер, З. А. Калме, Г. Я. Дубур, *XГС*, 630 (1986). [*Chem. Heterocycl. Comp.*, **22**, 517 (1986)].
- 6. А. А. Краузе, Г. Я. Дубур, *ХГС*, 1134 (1996). [*Chem. Heterocycl. Comp.*, **32**, 982 (1996)].
- В. Д. Шатц, О. В. Сахартова, Высокоэффективная жидкостная хроматография: Основы теории. Методология. Применение в лекарственной химии, Зинатне, Рига, 1988, с. 255.

Латвийский институт органического синтеза, Рига, LV-1006 e-mail: helena@osi.lv Поступило 23.10.2006