И. В. Украинец, Н. Л. Березнякова, В. А. Паршиков, С. В. Шишкина^а

4-ГИДРОКСИХИНОЛОНЫ-2

119*. О РЕАКЦИИ ЭТИЛОВЫХ ЭФИРОВ 1-R-2-ОКСО-4-ХЛОР-1,2-ДИГИДРОХИНОЛИН-3-КАРБОНОВЫХ КИСЛОТ С МАЛОНОНИТРИЛОМ

Этиловые эфиры 1-R-4-дицианометил-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот в кислой среде гидратируются в кетениминной таутомерной форме исключительно до соответствующих хинолилцианацетамидов.

Ключевые слова: малононитрил, 4-хлор-3-этоксикарбонилхинолин-2-он, цианацетамид, гидролиз, РСА.

Многие галогензамещенные азагетероциклы в присутствии оснований способны избирательно обменивать атом галогена на остаток малононитрила с образованием соответствующих гетарилмалонодинитрилов [2]. В зависимости от различных факторов - прежде всего от строения исходного гетарилгалогенида – такие реакции иногда приводят к не совсем обычным результатам. Так, например, после взаимодействия этиловых эфиров 1-R-2-оксо-4-хлор-1,2-дигидрохинолин-3-карбоновых кислот (1) с карбанионом малононитрила и последующего подкисления реакционной смеси водной хлористоводородной кислотой вместо ожилаемых хинолил-малононитрилов были выделены хинолилцианацетамиды 2 [3]. Первая стадия данной реакции, несомненно, собой нуклеофильное замещение атома представляет хлора В хлорхинолинах 1 малононитрилом. Однако вопрос о том, на каком именно этапе одна из нитрильных групп гидроли-зуется до амидной и не сопровождается ли этот процесс хоты бы частично более глубоким гидролизом до замещенной циануксусной кислоты, остал-ся открытым. Ответить на него мы и попытались в данном сообщении.

Для предотвращения всякого рода "неожиданностей" в синтезе использованы хроматографически чистые реагенты. Вначале реакцию проводили по описанной ранее методике [3] как в обычном, так и в безводном ДМФА.

Однако далее неорганические вещества (избыток K₂CO₃ и образовавшийся KCl) осаждали ацетоном, отфильтровывали и после удаления растворителей из фильтрата в обоих случаях были получены одни и те же

^{*} Сообщение 118 см. [1].

1-4 a R = Et, b R = Pr

продукты реакции – калиевые соли 1-R-4-дицианометил-2-оксо-3-этоксикарбонил-1,2-дигидрохинолинов **3**. Их строение подтверждено спектрами ЯМР ¹H, а на примере 1-N-этильного производного **3а** – PCA, показавшим, что в кристалле это соединение представляет собой трехмерный координационный полимер, в котором атомы калия образуют зигзагообразные цепочки. Между собой каждые два атома калия в цепочке связаны поочередно двумя мостиковыми атомами $O_{(2)}$, принадлежащими двум молекулам лиганда **A** и **B** (рис. 1) и двумя атомами $O_{(1)}$, один из которых принадлежит лиганду **A**, а второй – третьему органическому аниону **C**. Дополнительно каждый атом калия координирован двумя атомами $N_{(2)}$ и $N_{(3)}$

Рис. 1. Независимая часть элементарной ячейки с нумерацией атомов в структуре калиевой соли **За**

Рис. 2. Координационная сфера атома калия в соли За

Рис. 3. Органический анион соли За, координированный четырьмя катионами калия

цианогрупп, один из которых принадлежит лиганду **B**, а второй – четвертому лиганду **D**. Таким образом, каждый атом калия связан шестью координационными связями с четырьмя молекулами органического лиганда (рис. 2). В свою очередь, каждый органический анион координирован с четырьмя катионами калия (рис. 3). Координационная сфера атома калия – сильно искаженный октаэдр (значения валентных углов N–K–O, O–K–O, N–K–N варьируются в пределах 65.8–153.5°). В основании октаэдра лежат атомы $O_{(1)}$ и $O_{(2)}$ лиганда **A**, а также атомы $O_{(2)}$ и $N_{(3)}$ лиганда **B**. В аксиальных направлениях атом калия координирован с атомами $O_{(1)}$ лиганда **C** и $N_{(2)}$ лиганда **D**.

Таблица 1

Связь	l, Å	Связь	l, Å
K _(1A) -O _(2B)	2.658(1)	K _(1A) -N _(3A)	2.799(2)
K _(1A) -O _(2A)	2.855(2)	K _(1A) -O _(1B)	2.901(1)
N(1A)-C(9A)	1.383(2)	N _(1A) -C _(1A)	1.401(2)
N(1A)-C(10A)	1.469(2)	N _(2A) -C _(16A)	1.149(2)
N _(3A) -C _(17A)	1.149(2)	O _(1A) -C _(9A)	1.248(2)
O _(2A) -C _(12A)	1.210(2)	O _(3A) -C _(12A)	1.324(2)
O _(3A) -C _(13A)	1.457(2)	C _(1A) -C _(2A)	1.408(3)
C(1A)-C(6A)	1.414(3)	C _(2A) -C _(3A)	1.373(3)
C(3A)-C(4A)	1.384(3)	C _(4A) -C _(5A)	1.374(3)
C(5A)-C(6A)	1.407(3)	C _(6A) -C _(7A)	1.453(2)
C _(7A) -C _(8A)	1.388(2)	C _(7A) -C _(15A)	1.448(2)
C(8A)-C(9A)	1.436(2)	C _(8A) -C _(12A)	1.499(2)
$C_{(10A)} - C_{(11A)}$	1.497(4)	C _(13A) -C _(14A)	1.479(4)
$C_{(15A)} - C_{(17A)}$	1.409(3)	C _(15A) -C _(16A)	1.411(2)
K _(1B) -N _(3B)	2.821(2)	K _(1B) -O _(2B)	2.929(2)
N _(1B) -C _(9B)	1.379(2)	N _(1B) -C _(1B)	1.401(2)
N _(1B) -C _(10B)	1.472(2)	N _(2B) -C _(16B)	1.148(2)
N _(3B) -C _(17B)	1.150(2)	O _(1B) -C _(9B)	1.249(2)
O _(2B) -C _(12B)	1.212(2)	O _(3B) -C _(12B)	1.320(2)
O _(3B) -C _(13B)	1.458(3)	C _(1B) -C _(2B)	1.405(3)
C(1B)-C(6B)	1.412(3)	C _(2B) -C _(3B)	1.376(3)
C _(3B) -C _(4B)	1.379(3)	C _(4B) -C _(5B)	1.377(3)
C _(5B) -C _(6B)	1.410(3)	C _(6B) -C _(7B)	1.456(2)
C _(7B) -C _(8B)	1.386(2)	C _(7B) -C _(15B)	1.452(2)
C _(8B) -C _(9B)	1.437(2)	C _(8B) -C _(12B)	1.497(2)
$C_{(10B)} - C_{(11B)}$	1.504(4)	C _(13B) -C _(14B)	1.492(5)
C _(15B) -C _(17B)	1.406(3)	C _(15B) -C _(16B)	1.413(2)

Длины связей (*l*) в структуре калиевой соли За

Таблица 2

Валентные углы (ω) в структуре калиевой соли За

Угол	ω, град.	Угол	ω, град.
O _(2B) -K _(1A) -N _(3A)	138.60(5)	N _(3A) -K _(1A) -O _(2A)	69.67(5)
C _(9A) -N _(1A) -C _(1A)	122.1(2)	C _(9A) -N _(1A) -C _(10A)	117.7(2)
C _(1A) -N _(1A) -C _(10A)	120.2(2)	C _(17A) -N _(3A) -K _(1A)	138.0(2)
C _(12A) -O _(2A) -K _(1A)	126.7(1)	C _(12A) -O _(3A) -C _(13A)	118.1(2)
$N_{(1A)} - C_{(1A)} - C_{(2A)}$	120.7(2)	N _(1A) -C _(1A) -C _(6A)	120.2(2)
$C_{(2A)} - C_{(1A)} - C_{(6A)}$	119.1(2)	$C_{(3A)} - C_{(2A)} - C_{(1A)}$	120.8(2)
$C_{(2A)} - C_{(3A)} - C_{(4A)}$	120.7(2)	C _(5A) -C _(4A) -C _(3A)	119.3(2)
$C_{(4A)} - C_{(5A)} - C_{(6A)}$	122.1(2)	$C_{(5A)}$ - $C_{(6A)}$ - $C_{(1A)}$	117.9(2)
$C_{(5A)} - C_{(6A)} - C_{(7A)}$	122.8(2)	$C_{(1A)}$ - $C_{(6A)}$ - $C_{(7A)}$	119.3(2)
$C_{(8A)} - C_{(7A)} - C_{(15A)}$	122.1(2)	C _(8A) -C _(7A) -C _(6A)	117.4(2)
$C_{(15A)} - C_{(7A)} - C_{(6A)}$	120.5(2)	C _(7A) -C _(8A) -C _(9A)	123.3(2)
$C_{(7A)} - C_{(8A)} - C_{(12A)}$	122.3(2)	C _(9A) -C _(8A) -C _(12A)	114.0(2)
$O_{(1A)} - C_{(9A)} - N_{(1A)}$	120.4(2)	O _(1A) -C _(9A) -C _(8A)	122.2(2)
$N_{(1A)} - C_{(9A)} - C_{(8A)}$	117.2(2)	N _(1A) -C _(10A) -C _(11A)	112.0(2)
$O_{(2A)} - C_{(12A)} - O_{(3A)}$	123.3(2)	O _(2A) -C _(12A) -C _(8A)	125.8(2)
$O_{(3A)} - C_{(12A)} - C_{(8A)}$	110.9(1)	$O_{(3A)}$ - $C_{(13A)}$ - $C_{(14A)}$	107.7(2)
$C_{(17A)} - C_{(15A)} - C_{(16A)}$	116.1(2)	$C_{(17A)}$ - $C_{(15A)}$ - $C_{(7A)}$	120.2(2)
$C_{(16A)} - C_{(15A)} - C_{(7A)}$	123.2(2)	N _(2A) -C _(16A) -C _(15A)	177.7(2)
$N_{(3A)} - C_{(17A)} - C_{(15A)}$	177.5(2)	N _(3B) -K _(1B) -O _(2B)	66.33(5)
$C_{(9B)} - N_{(1B)} - C_{(1B)}$	122.2(2)	$C_{(9B)}$ - $N_{(1B)}$ - $C_{(10B)}$	117.9(2)
$C_{(1B)} - N_{(1B)} - C_{(10B)}$	119.9(2)	C _(17B) -N _(3B) -K _(1B)	141.6(2)
$C_{(12B)} - O_{(2B)} - K_{(1B)}$	128.9(1)	$C_{(12B)} - O_{(3B)} - C_{(13B)}$	116.5(2)
$N_{(1B)} - C_{(1B)} - C_{(2B)}$	120.8(2)	$N_{(1B)}$ - $C_{(1B)}$ - $C_{(6B)}$	120.0(2)
$C_{(2B)} - C_{(1B)} - C_{(6B)}$	119.2(2)	$C_{(3B)} - C_{(2B)} - C_{(1B)}$	120.6(2)
$C_{(2B)} - C_{(3B)} - C_{(4B)}$	120.8(2)	$C_{(3B)}$ - $C_{(4B)}$ - $C_{(5B)}$	119.7(2)
$C_{(4B)} - C_{(5B)} - C_{(6B)}$	121.5(2)	$C_{(5B)}$ - $C_{(6B)}$ - $C_{(1B)}$	118.2(2)
$C_{(5B)} - C_{(6B)} - C_{(7B)}$	122.2(2)	$C_{(1B)}$ - $C_{(6B)}$ - $C_{(7B)}$	119.5(2)
$C_{(8B)} - C_{(7B)} - C_{(15B)}$	121.7(2)	$C_{(8B)}$ - $C_{(7B)}$ - $C_{(6B)}$	117.2(2)
$C_{(15B)} - C_{(7B)} - C_{(6B)}$	121.1(2)	$C_{(7B)}$ - $C_{(8B)}$ - $C_{(9B)}$	123.3(2)
$C_{(7B)} - C_{(8B)} - C_{(12B)}$	122.7(2)	$C_{(9B)}$ - $C_{(8B)}$ - $C_{(12B)}$	113.6(2)
$O_{(1B)} - C_{(9B)} - N_{(1B)}$	120.6(2)	$O_{(1B)}$ - $C_{(9B)}$ - $C_{(8B)}$	122.0(2)
$N_{(1B)} - C_{(9B)} - C_{(8B)}$	117.3(2)	$N_{(1B)}$ - $C_{(10B)}$ - $C_{(11B)}$	112.4(2)
$O_{(2B)} - C_{(12B)} - O_{(3B)}$	123.5(2)	$O_{(2B)}$ - $C_{(12B)}$ - $C_{(8B)}$	125.1(2)
$O_{(3B)} - C_{(12B)} - C_{(8B)}$	111.4(2)	$O_{(3B)}$ - $C_{(13B)}$ - $C_{(14B)}$	107.5(3)
$C_{(17B)} - C_{(15B)} - C_{(16B)}$	116.2(2)	$C_{(17B)}$ - $C_{(15B)}$ - $C_{(7B)}$	120.3(2)
$C_{(16B)} - C_{(15B)} - C_{(7B)}$	123.1(2)	$N_{(2B)}$ - $C_{(16B)}$ - $C_{(15B)}$	177.4(2)
$N_{(3B)} - C_{(17B)} - C_{(15B)}$	177.2(2)		

В независимой части элементарной ячейки находятся два катиона калия и два органических аниона **A** и **B** (рис. 1). Бициклический фрагмент органического аниона плоский с точностью 0.02 Å. Удлинение связей $O_{(1)}$ - $C_{(9)}$ [1.248(2) в молекуле **A**, 1.249(2) Å в молекуле **B**] и $C_{(7)}$ - $C_{(8)}$ [1.388(2) в **A**, 1.386(2) Å в **B**] по сравнению с их средними значениями 1.210 и 1.332 Å, соответственно, [4] при одновременном укорочении связей $C_{(7)}$ - $C_{(15)}$ [1.448(2) в **A**, 1.452(2) Å в **B**] и $C_{(8)}$ - $C_{(9)}$ [1.436(2) в **A**, 1.437(2) Å в **B**] (средние значения 1.510 и 1.455 Å соответственно), а также то, что атомы $C_{(7)}$, $C_{(15)}$, $C_{(16)}$ и $C_{(17)}$ лежат в одной плоскости, позволяет представить строение аниона исследуемой соли как резонансный гибрид двух канонических структур **3** и **4** с преимущественным вкладом 1,2-дигидроформы **3**.

Этильный заместитель при атоме $N_{(1)}$ расположен перпендикулярно плоскости хинолонового фрагмента [торсионные углы $C_{(9)}-N_{(1)}-C_{(10)}-C_{(11)}$ 98.7(2) в **A** и –99.3(2)° в **B**]. Отталкивание между атомами водорода этильной группы и атомами бицикла [укороченные внутримолекулярные контакты $H_{(10a)}...C_{(2)}$ 2.58 в **A** и 2.60 в **B** (сумма ван-дер-ваальсовых радиусов 2.87 [5]); $H_{(10a)}...H_{(2)}$ 2.03 в **A** и 2.07 в **B** (2.34); $H_{(10b)}...O_{(1)}$ 2.31 в **A** и 2.27 Å в **B** (2.46 Å)] обусловливает, по-видимому, удлинение связей $N_{(1)}-C_{(9)}$ 1.383(2) в **A**, 1.379(2) в **B** и $N_{(1)}-C_{(1)}$ 1.401(2) Å в **A** и **B** по сравнению с их средними значениями 1.347 и 1.371 Å соответственно.

Отталкивание между пространственно сближенными заместителями при атомах $C_{(7)}$ и $C_{(8)}$ [укороченные контакты $N_{(3)}...C_{(12)}$ 3.13 в **A** и 3.11 Å в **B** (3.21 Å)] приводит к развороту обоих заместителей относительно плоскости бициклического фрагмента [торсионные углы $C_{(9)}-C_{(8)}-C_{(12)}-O_{(2)}$ 68.5(3) в **A** и -72.4(3)° в **B**; $C_{(8)}-C_{(7)}-C_{(15)}-C_{(17)}$ 29.3(3) в **A** и -28.9(3)° в **B**]. Этильная группа сложноэфирного заместителя находится в *ар*-конформации относительно связей $C_{(12)}-C_{(8)}$ и $C_{(12)}-O_{(3)}$ [торсионные углы $C_{(13)}-O_{(3)}-C_{(12)}-C_{(8)}$ -177.3(2) в **A** и 177.8(2)° в **B**; $C_{(12)}-O_{(3)}-C_{(13)}-C_{(14)}-179.6(2)$ в **A** и 174.6(2)° в **B**]. В кристалле обнаружен межмолекулярный укороченный контакт H_(10c)...C_(4a) (*x*-1, *y*, *z*) 2.82 Å.

Таким образом, проведенное исследование позволяет однозначно исключить возможность гидратации нитрильной группы в амидную на начальной стадии синтеза.

Нитрилы – устойчивые к гидролизу соединения. Для их превращения в амиды, как правило, необходимы достаточно жесткие кислые или щелочные условия. При подкислении водных растворов калиевых солей **3** присоединение воды происходит необычно легко. Этот факт вполне согласуется с представлением о том, что первоначально образующиеся хинолилмалононитрилы гидролизуются в таутомерной кетениминной форме [3]. Тем не менее, приводящие к карбоксамидам реакции кетениминов с водой, как известно, протекают медленно [6], поэтому точнее будет говорить о том, что быстрой гидратации подвергаются высоко реакционноспособные кетениминиевые соли **5**, поскольку синтез проходит в кислой среде.

В химии нитрилов хорошо известна способность образовавшихся амидов гидролизоваться до кислот гораздо быстрее первой стадии процесса, т. е. гидратации нитрила в амид. Именно поэтому превращение

нитрилов в амиды без последующего их гидролиза в кислоты проводят

в специальных условиях (в концентрированной серной или полифосфорной кислоте, обработкой трифторидом бора в уксусной кислоте и т. д.) [6]. При получении цианацетамидов **2** никаких особых приемов не требуется. Хроматографический контроль показывает, что содержание основного вещества в неочищенных соединениях **2a,b** составляет 98.7 и 99.1%, соответственно, тогда как следы теоретически возможных примесей – хинолилциануксусных кислот **6** – не обнаружены.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н синтезированных соединений записаны на приборе Varian Mercury-VX-200 (200 МГц), растворитель ДМСО-d₆, внутренний стандарт ТМС. Хромато-массспектры цианацетамидов **2** зарегистрированы на спектрометре Agilent 1100 LC/MSD, способ ионизации APCI (химическая ионизация при атмосферном давлении). Параметры хроматографической колонки: длина 50 мм, диаметр 4.6 мм, неподвижная фаза – ZORBAX Eclipse XDB-C18, растворитель – водный ацетонитрил, подкисленный 0.1% трифторуксусной кислоты, градиентное элюирование, скорость подачи растворителя 2.4 мл/мин.

Калиевая соль 4-дицианометил-2-оксо-3-этоксикарбонил-1-этил-1,2-дигидрохинолина (3a). К раствору 2.79 г (0.01 моль) этилового эфира 2-оксо-4-хлор-1-этил-1,2-дигидрохинолин-3-карбоновой кислоты (1a) в 15 мл ДМФА прибавляют 0.72 г (0.011 моль) малононитрила, 2 г К₂СО₃ и перемешивают 3.5 ч при 50 °С. Охлаждают, прибавляют 50 мл ацетона и фильтруют. Осадок на фильтре несколько раз промывают ацетоном. Раствори-тели из фильтруют, после чего конечное соединение осаждают гексаном или эфиром. Выделившийся желтый осадок соли 3a отфильтровывают, промывают гексаном или эфиром, сушат. Выход 2.95 г (85%). Т. пл. 263–265 °С. Монокристаллы для РСА получены кристаллизацией из ацетона. Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 8.48 (1H, д. д, *J* = 8.3 и *J* = 1.5, H-5); 7.54 (1H, т. д, *J* = 7.7 и *J* = 1.5, H-7); 7.42 (1H, д. д, *J* = 8.6 и *J* = 1.1, H-8); 7.14 (1H, т. д, *J* = 7.5 и *J* = 1.4, H-6); 4.15 (4H, м. NCH₂ + OCH₂); 1.22 (3H, т, *J* = 6.9, OCH₂CH₃); 1.12 (3H, т, *J* = 7.1, NCH₂CH₃). Найдено, %: С 58.89; H 4.15; N 12.17. С₁₇H₁₄KN₃O₃. Вычислено, %: С 58.77; H 4.06; N 12.09.

Калиевая соль 4-дицианометил-2-оксо-1-пропил-3-этоксикарбонил-1,2-дигидрохинолина (3b). Получают аналогично. Выход 3.28 г (91%). Т. пл. 247–249 °С. Спектр ЯМР ¹Н, δ , м. д. (J, Γ ц): 8.46 (1H, д. д, J = 8.4 и J = 1.5, H-5); 7.53 (1H, т. д, J = 7.9 и J = 1.2, H-7); 7.41 (1H, д. д, J = 8.6 и J = 1.0, H-8); 7.13 (1H, т. д, J = 7.4 и J = 1.3, H-6); 4.14 (2H, к, J = 7.0, OCH₂); 4.05 (2H, т, J = 8.1, NCH₂); 1.56 (2H, м, NCH₂C<u>H₂</u>); 1.21 (3H, т, J = 7.0, OCH₂C<u>H₃</u>); 0.91 (3H, т, J = 7.5, NCH₂CH₂C<u>H₃</u>). Найдено, %: С 59.94; H 4.60; N 11.56. С₁₈H₁₆KN₃O₃. Вычислено, %: С 59.82; H 4.46; N 11.63.

Этиловый эфир 4-(карбамоилцианометил)-2-оксо-1-этил-1,2-дигидрохинолин-3-карбоновой кислоты (2a). Раствор 0.35 г (0.001 моль) соответствующей калиевой соли 3а в 5 мл воды подкисляют HCl до pH 4 и оставляют в выпарительной чашке при комнатной температуре до полного высыхания. Для удаления KCl остаток обрабатывают 5 мл сухого ацетона и через несколько часов отфильтровывают. Остаток на фильтре промывают сухим ацетоном, после чего растворитель из фильтрата удаляют. Хромато-масс-спектрометрическому исследованию подвергают сначала неочищенное, а затем перекристаллизованное из этанола соединение в сравнении с заведомым образцом [3]. Содержание основного вещества в образце с 98.70% возрастает до 99.96%. Масс-спектр, m/z ($I_{oтн}$, %): 285 [M–CONH₂+H]⁺ (97), 282 [M–EtOH+H]⁺ (15), 213 [M–CONH₂–COOC₂H₄+H]⁺ (100).

Этиловый эфир 4-(карбамоилцианометил)-2-оксо-1-пропил-1,2-дигидрохинолин-3карбоновой кислоты (2b) получают из калиевой соли 3b и исследуют по схеме предыдущего примера. Содержание основного вещества в неочищенном образце составляет 99.12%, в перекристаллизованном из этанола – 99.94%. Масс-спектр, m/z ($I_{\rm отн}$, %): 299 [M-CONH₂+H]⁺ (95), 296 [M-EtOH+H]⁺ (17), 227 [M-CONH₂-COOC₂H₄+H]⁺ (100).

Кроме того, полученные цианацетамиды **2** дополнительно идентифицированы по спектрам ЯМР ¹Н, а также по отсутствию депрессии температур плавления смешанных проб с заведомыми образцами [3].

Рентгеноструктурное исследование. Кристаллы калиевой соли За моноклинные

(ацетон) при 20 °C: a = 13.926(1), b = 19.033(1), c = 14.118(1) Å, $\beta = 118.47(1)^{\circ}$, V = 3289.6(3) Å³, $M_r = 347.41$, Z = 8, пространственная группа $P2_1/n$, $d_{\rm выч} = 1.403$ г/см³, μ (Мо $K\alpha$) = 0.343 мм⁻¹, F(000) = 1440. Параметры элементарной ячейки и интенсивности 17612 отражений (7523 независимых, $R_{\rm int} = 0.035$) измерены на дифрактометре Xcalibur-3 (Мо $K\alpha$ -излучение, CCD-детектор, графитовый монохроматор, ω -сканирование, $2\theta_{\rm max} = 55^{\circ}$).

Структура расшифрована прямым методом по комплексу программ SHELXTL [7]. Положения атомов водорода выявлены из разностного синтеза электронной плотности и уточнены изотропно. Структура уточнена по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов до $wR_2 = 0.112$ по 7495 отражениям ($R_1 = 0.047$ по 5503 отражениям с $F>4\sigma(F)$, S = 1.046). Полная кристаллографическая информация депонирована в Кембриджском банке структурных данных (депонент № ССDC 296936). Межатомные расстояния и валентные углы представлены в табл. 1, 2.

СПИСОК ЛИТЕРАТУРЫ

- 1. И. В. Украинец, Л. В. Сидоренко, О. В. Горохова, С. В. Шишкина, А. В. Туров, *XTC*, № 5 (2007).
- 2. Ю. А. Шаранин, В. К. Промоненков, В. П. Литвинов, Итоги науки и техники. ВИНИТИ. Сер. Органическая химия, **20**(I), 52 (1991).
- 3. И. В. Украинец, Н. Л. Березнякова, Л. В. Сидоренко, С. В. Шишкина, ХГС, № 5 (2007).
- 4. H.-B. Burgi, J. D. Dunitz, Struct. Correl., VCH, Weinheim, 1994, 2, 741.
- 5. Ю. В. Зефиров, *Кристаллография*, **42**, 936 (1997).
- 6. *Общая органическая химия,* под ред. Д. Бартона и У. Д. Оллиса, Химия, Москва, 1982, т. 3, с. 640, 665.
- 7. G. M. Sheldrick, SHELXTL PLUS. PC Version. A System of Computer Programs for the Determination of Crystal Structure from X-ray Diffraction Data. Rev. 5.1 (1998).

Национальный фармацевтический университет, Харьков 61002, Украина e-mail: uiv@kharkov.ua Поступило 30.01.2006

^аНТК "Институт монокристаллов" НАН Украины, Харьков 61001 e-mail: sveta@xray.isc.kharkov.com