Е. В. Громачевская, Е. А. Кайгородова, В. Е. Заводник, Г. Д. Крапивин

ИССЛЕДОВАНИЕ В ОБЛАСТИ ХИНАЗОЛИНОВ

4*. НЕОБЫЧНОЕ ПРОТЕКАНИЕ АЦИЛИРОВАНИЯ АЛКИЛ-2-(4,4-ДИФЕНИЛ-1,2,3,4-ТЕТРАГИДРО-2-ХИНАЗОЛИНИЛИДЕН)АЦЕТАТОВ. МОЛЕКУЛЯРНАЯ СТРУКТУРА МЕТИЛ-2-(4,4-ДИФЕНИЛ-1,2,3,4-ТЕТРАГИДРО-2-ХИНАЗОЛИНИЛИДЕН)-3-ОКСОБУТАНОАТА

При изучении реакции производных хиназолинов с хлорангидридами в отсутствие кислот выявлено, что алкил-2-(4,4-дифенил-1,2,3,4-тетрагидро-2-хиназолинилиден)ацетаты подвергаются С-ацилированию; методом РСА исследована молекулярная структура метил-2-(4,4-дифенил-1,2,3,4-тетрагидро-2-хиназолинилиден)-3-оксобутаноата.

Ключевые слова: тетрагидрохиназолинилиденацетаты, ацилирование, масс-спектрометрия, молекулярная структура, прототропная таутомерия.

Ранее нами была описана реакция *о*-аминофенилдифенилкарбинола с нитрилами различного строения и хлорной кислотой [1, 2]. Этиловый эфир циануксусной кислоты в условиях указанной реакции образует этил-2-(4,4-дифенил-1,2,3,4-тетрагидро-2-хиназолинилиден)ацетат (1b), существующий в виде смеси *Z*- и *E*-изомеров [2]. Там же отмечено, что метилирование этого соединения происходит как N- и C-диметилирование с миграцией экзоциклической кратной связи в гетероцикл и образованием соответствующего этил-2-(3-метил-4,4-дифенил-3,4-дигидро-2-хиназолинил)- пропаноата.

В связи со столь необычным протеканием реакции алкилирования – при наличии двух аминных атомов азота алкилирование происходит только по одному из них, а второе алкилирование происходит по экзоциклической кратной связи в α -положение к карбоксилатной группе – представляло интерес исследовать поведение соединений **1а,b** в реакции ацилирования, т. е. в условиях замены "мягкого" электрофила (R⁺) на "жесткий" (RC⁺=O).

Реакцию мы проводили действием двукратного избытка галогенангидрида карбоновой кислоты в сухом бензоле при комнатной температуре [3] (схема 1).

Согласно элементному анализу, ЯМР ¹Н и масс-спектрам, в результате реакции были получены продукты моноацилирования по экзоциклическому атому углерода кратной связи C=C **2a**-g (табл. 1, 2 и 6).

^{*} Сообщение 3 см. [1].

Схема 1

Таблица 1

1a, 2a R = Me; **1b, 2b–g** R = Et; **2a,b** R¹ = Me, c R¹ = Ph, d R¹ = CH₂Cl, e R¹ = 4-O₂NC₆H₄, f R¹ = 4-MeOC₆H₄, g R¹ = n-C₄H₉

В спектрах ЯМР ¹Н соединений **2а–g** (табл. 2), записанных в различных растворителях, наблюдаются существенные различия в количестве и положении сигналов NH-протонов. Так, в растворах CDCl₃ имеются четыре слабопольных сигнала NH-протонов, каждый интенсивностью близкой к 0.5H, что свидетельствует о присутствии в растворе двух геометрических Z- и E-изомеров в соотношении, близком к 1:1. В спектрах, записанных в (CD₃)₂CO или ДМСО-d₆, имеются только два уширенных синглета сигналов NH-протонов интенсивностью 1H каждый. Такое изменение характера спектров при переходе от менее к более полярному растворителю можно объяснить существованием динамического равновесия между изомерными формами в результате прототропной таутомерии C \implies A \rightleftharpoons B.

Соеди-	Брутто- формула	<u>Найдено, %</u> Вычислено, %			Т. пл.,	R_f^*	ИК спектр, v, см ⁻¹	Вы- ход,	
нение		С	Н	Ν	C	v	COOR)	%	
2a	$C_{25}H_{22}N_2O_3$	<u>75.28</u> 75.36	<u>5.72</u> 5.56	<u>6.88</u> 7.03	160–162	0.30	3140, 1625, 1590	50	
2b	$C_{26}H_{24}N_2O_3$	<u>75.38</u> 75.71	<u>5.45</u> 5.86	<u>6.52</u> 6.79	146–148	0.21	3160, 1650, 1620	57	
2c	$C_{31}H_{26}N_2O_3$	<u>78.50</u> 78.46	<u>5.35</u> 5.52	<u>5.72</u> 5.90	158–160	0.81	3130, 1610, 1590	65	
2d	C ₂₆ H ₂₃ ClN ₂ O ₃	<u>69.70</u> 69.87	<u>5.32</u> 5.19	<u>6.42</u> 6.27	150–152	0.75	3140, 1610, 1580	60	
2e**	$C_{31}H_{25}N_3O_5$	<u>71.42</u> 71.67	<u>4.53</u> 4.85	<u>8.15</u> 8.09	193–195	0.70	3120, 1610, 1590	62	
2f	$C_{32}H_{28}N_2O_4$	<u>76.35</u> 76.17	<u>5.71</u> 5.59	<u>5.43</u> 5.55	173–174	0.65	3150, 1600, 1580	52	
2g	$C_{29}H_{30}N_2O_3$	<u>76.85</u> 76.63	<u>6.90</u> 6.65	<u>6.02</u> 6.16	118-120	0.80	3120, 1680, 1590	55	

Характеристики синтезированных соединений 2а-д

* Silufol UV-254, бензол-эфир, 4:1.

** ИК спектр, v, см⁻¹: 1510, 1320 (NO₂).

Схема 2

Прототропная таутомерия (схема 2) обеспечивает возможность вращения относительно экзоциклической кратной связи, что и приводит к динамической *Z*–*E*-изомеризации [4, 5]. Подобное явление изомеризации в растворе наблюдали для 2-этоксикарбонил(ацетил)метилен-4-пиримидинонов в работе [6].

Таблица 2

Соеди- нение	Раство- ритель	Химический сдвиг, б, м. д.	КССВ, <i>Ј</i> , Гц
2a	CDCl ₃	2.45 (3H, c, CH ₃ CO); 3.80 (3H, c, CH ₃ OCO); 6.85 (1H, д, H-8); 7.18 (13H, м, H _{аром}); 10.90, 12.00, 13.10, 14.05 (2H, четыре с, 2NH)	${}^{3}J_{7,8} = 8.0$
	(CD ₃) ₂ CO	2.30 (3H, c, CH ₃ CO); 3.75 (3H, c, CH ₃ OCO); 7.05 (4H, м, C ₆ H ₄); 7.40 (10H, м, 2C ₆ H ₅); 12.20, 12.85 (2H, два уш. c, 2NH)	_
2b	CDCl ₃	1.42 (3H, т, CH ₃); 2.50 (3H, с, CH ₃ CO); 4.25 (2H, кв, CH ₂); 6.75 (1H, д, H-8); 7.20 (13H, м, H _{аром}); 10.95, 12.00, 13.10, 14.00 (2H, два уш. с, 2NH)	${}^{3}J_{7,8} = 8.0,$ ${}^{3}J_{CH_{2}CH_{3}} = 7.5$
	(CD ₃) ₂ CO	1.20 (3H, т, CH ₃), 2.25 (3H, с, CH ₃ CO); 4.15 (2H, кв, CH ₂); 6.90 (4H, м, C ₆ H ₄); 7.22 (10H, м, два C ₆ H ₅); 11.95, 12.80 (2H, четыре с, 2NH)	${}^{3}J_{\rm CH_2CH_3} = 7.0$
2c	CDCl ₃	0.65 (3H, т, CH ₃), 3.80 (2H, кв, CH ₂); 6.77 (1H, д, H-8); 7.30 (18H, м, H _{аром}); 10.55, 11.53, 12.15, 13.20 (2H, четыре с, 2NH)	${}^{3}J_{\rm CH_{2}CH_{3}} = 6.4,$ ${}^{3}J_{7,8} = 7.2$
2d	CDCl ₃	1.40 (3H, т, CH ₃), 4.30 (2H, кв, CH ₂); 4.72 (2H, с, CH ₂ Cl); 6.75 (1H, д, H-8); 7.20 (13H, м, H _{аром}); 10.95, 12.00, 12.65, 13.60 (2H, четыре с, 2NH)	${}^{3}J_{\rm CH_2CH_3} = 7.0$
2e	ДМСО-d ₆	0.57 (3H, т, CH ₃); 3.78 (2H, кв, CH ₂); 6.77 (1H, д, H-8); 7.20 (1H, т, H-6); 7.30 (11H, м, два C ₆ H ₅ ++ H-7); 7.35 (1H, д, H-5); 7.60 (2H, д, H _B); 8.25 (2H, д, H _A); 11.55, 12.10 (2H, два с, 2NH)	${}^{3}J_{CH_{2}CH_{3}} = 7.0,$ ${}^{3}J_{7,8} = 7.2,$ ${}^{3}J_{5,6} = 7.5,$ ${}^{3}J_{AB} = 9.0$
2f	ДМСО-d ₆	0.68 (3H, т, CH ₃); 3.78 (3H, с, OCH ₃); 3.82 (2H, кв, CH ₂); 6.72 (1H, д, H-8); 6.92 (2H, д, 2H _B); 7.10 (2H, д, 2H _A); 7.18 (1H, т, H-6); 7.25 (11H, м, два C ₆ H ₅ + H-7); 7.30 (1H, д, H-5); 11.40, 11.90 (2H, два уш. с, 2NH)	${}^{3}J_{CH_{2}CH_{3}} = 6.5,$ ${}^{3}J_{7,8} = 7.7,$ ${}^{3}J_{5,6} = 7.6,$ ${}^{3}J_{AB} = 8.0$
2g	ДМСО-d ₆	0.90 (3H, т, CH ₃); 1.30 (5H, м, γ-CH ₂ + CH ₃); 1.51 (2H, т, β-CH ₂); 2.75 (2H, т, α-CH ₂); 4.20 (2H, кв, CH ₂); 6.70 (1H, д, H-8); 7.15 (1H, т, H-6); 7.25 (1H, д, H-5); 7.30 (11H, м, два C ₆ H ₅ +H-7); 12.10, 12.55 (2H, два уш. с, 2NH)	${}^{3}J_{CH_{2}CH_{3}} = 6.8,$ ${}^{3}J_{7,8} = 7.5,$ ${}^{3}J_{5,6} = 7.7,$ ${}^{3}J_{CH_{2}CH_{3}} = 6.0$

Спектры ЯМР ¹Н соединений 2а-д

Проекция пространственной модели молекулы метил 2-(4,4-дифенил-1,2,3,4-тетрагидро-2-хиназолинилиден)-3-оксобутаноата (2а)

Оказалось, что при кристаллизации из раствора в твердую фазу переходит только один изомер. Методом РСА показано, что для соединения **2a** таковым является *Z*-изомер (рисунок, табл. 3–5).

Как видно из рисунка, в молекуле **2а** имеются две внутримолекулярные водородные связи H(1)...O(3) и H(2)...O(1). Параметры водородной связи N(1)-H(1)...O(3): межатомные расстояния H(1)...O(3) и N(1)...O(3), соответственно, 1.759 и 2.530 Å, валентные углы N(1)-H(1)...O(3) и H(1)...O(3)-C(12), соответственно, 140.3 и 103.3°.

Аналогичные параметры второй водородной связи N(2)-H(2)...O(1): межатомные расстояния H(2)...O(1) и N(2)...O(1), соответственно, 1.960 и 2.591 Å, валентные углы N(2)-H(2)...O(1) и H(2)...O(1)-C(10), соответственно, 139.9 и 98.9°.

Сопряжение между аминными атомами азота и карбонильными группами проявляется в значительных искажениях межатомных расстояний в системе формально двойных и ординарных связей, соединяющих эти атомы. Так, формально двойные связи C(1)–C(9) и C(12)–O(3) сильно удлиняются: связь C(1)–C(9) до 1.437(2), связь C(12)–O(3) до 1.245(2) Å (в сопряженной системе C=C-C=O стандартная длина связи C=C 1.36 ± 0.01, связи C=O 1.215 ± 0.005 Å [7]). В результате сопряжения уменьшаются межатомные расстояния N(1)–C(1) и N(2)–C(1) до 1.340(2) и 1.334(2) Å, стандартная длина связи N–C (*sp*²) 1.43 ± 0.01 Å [7]. Обращает на себя

Таблица З

Основные длины связи (d) в молекуле соединения 2а

Связь	<i>d</i> , Å	Связь	<i>d</i> , Å
O(1)–C(10)	1.224(2)	C(2)–C(14)	1.544(3)
O(2)–C(10)	1.333(2)	C(3)–C(8)	1.381(3)
O(2)–C(11)	1.448(3)	C(3)–C(4)	1.385(3)
O(3)–C(12)	1.245(2)	C(4)–C(5)	1.382(3)
N(1)–C(1)	1.340(2)	C(5)–C(6)	1.373(3)
N(1)–C(4)	1.407(3)	C(6)–C(7)	1.374(4)
N(2)–C(1)	1.334(2)	C(7)–C(8)	1.385(3)
N(2)–C(2)	1.464(2)	C(9)–C(12)	1.443(3)
C(1)–C(9)	1.437(3)	C(9)–C(10)	1.447(3)
C(2)–C(3)	1.513(3)	C(12)–C(13)	1.500(3)
C(2)–C(20)	1.530(3)		

Таблица 4

Основные валентные	(φ) углы в молекуле соединени	яί	2a
--------------------	----	-----------------------------	----	----

Угол	ф, град	Угол	ф, град
C(10)-O(2)-C(11)	116.1(2)	C(12)-C(9)-C(10)	124.4(2)
C(1)–N(1)–C(4)	122.20(19)	O(1)-C(10)-O(2)	119.2(2)
C(1)–N(2)–C(2)	122.98(18)	O(1)-C(10)-C(9)	125.5(2)
N(2)-C(1)-N(1)	115.58(19)	O(2)–C(10)–C(9)	115.3(2)
N(2)-C(1)-C(9)	123.59(19)	O(3)–C(12)–C(9)	121.9(2)
N(1)-C(1)-C(9)	120.83(19)	O(3)–C(12)–C(13)	115.1(2)
N(2)-C(2)-C(3)	105.82(16)	C(9)–C(12)–C(13)	123.0(2)
N(2)-C(2)-C(20)	108.30(16)	C(19)-C(14)-C(15)	118.6(2)
C(3)-C(2)-C(20)	111.43(17)	C(19)–C(14)–C(2)	122.4(2)
N(2)-C(2)-C(14)	109.02(16)	C(15)-C(14)-C(2)	119.0(2)
C(3)–C(2)–C(14)	110.88(16)	C(14)-C(15)-C(16)	120.1(3)
C(20)–C(2)–C(14)	111.19(16)	C(17)-C(16)-C(15)	120.2(3)
C(8)–C(3)–C(4)	118.4(2)	C(18)-C(17)-C(16)	120.4(3)
C(8)–C(3)–C(2)	123.9(2)	C(17)-C(18)-C(19)	120.2(3)
C(4)–C(3)–C(2)	117.58(19)	C(14)-C(19)-C(18)	120.6(3)
C(5)–C(4)–C(3)	121.1(2)	C(25)-C(20)-C(21)	118.3(2)
C(5)–C(4)–N(1)	120.0(2)	C(25)-C(20)-C(2)	119.6(2)
C(3)–C(4)–N(1)	118.89(18)	C(21)-C(20)-C(2)	122.0(2)
C(6)-C(5)-C(4)	119.0(2)	C(22)-C(21)-C(20)	120.5(2)
C(5)-C(6)-C(7)	121.3(3)	C(23)–C(22)–C(21)	120.7(3)
C(6)–C(7)–C(8)	118.8(3)	C(22)–C(23)–C(24)	119.7(3)
C(3)–C(8)–C(7)	121.3(2)	C(23)-C(24)-C(25)	120.1(3)
C(1)-C(9)-C(12)	119.18(19)	C(20)-C(25)-C(24)	120.5(2)
C(1)–C(9)–C(10)	116.34(19)		

Таблица 5

Угол	θ, град	Угол	ө, град
N(1)-C(4)-C(3)-C(2)	5.8 (2)	N(2)-C(1)-C(9)-C(10)	5.4 (2)
C(4)-C(3)-C(2)-N(2)	33.8 (2)	N(1)-C(1)-C(9)-C(12)	1.6 (2)
C(3)-C(2)-N(2)-C(1)	47.3 (2)	C(1)-C(9)-C(10)-O(1)	12.9 (2)
C(2)-N(2)-C(1)-N(1)	27.3 (2)	C(1)-C(9)-C(12)-O(3)	1.8 (2)
N(2)-C(1)-N(1)-C(4)	9.0 (2)	C(1)-C(9)-C(12)-C(13)	166.2 (2)
C(1)-N(1)-C(4)-C(3)	19.0 (2)	C(9)–C(10)–O(2)–C(11)	177.5 (2)

Диэдральные (0) углы в молекуле соединения 2а

внимание и разница в межатомных расстояниях N(1)-C(4) и N(1)-C(1): заметно меньшая длина связи N(1)-C(1) свидетельствует о смещении неподеленной электронной пары атома N(1) в сторону сопряженной системы C=C-C=O.

Собственно сопряженная система, β , β -диамино- α , α -дикарбонильная группировка, практически плоская – диэдральные углы N(1)–C(1)–C(9)–C(12) и N(2)–C(1)–C(9)–C(10), соответственно, 1.6 и 5.4° (см. табл. 5) – и стабилизирована двумя водородными связями, описанными выше. Образование такой системы сопряжения, возможно, является движущей силой реакции ацилирования по кратной связи.

Шестичленный гетероциклический фрагмент молекулы имеет конформацию искаженной *твист-ванны*: проведенный согласно [8] расчет параметров складчатости цикла C(1)–N(1)–C(4)–C(3)–C(2)–N(2) дает следующие значения: S = 0.449; $\theta = 59.03^{\circ}$; $\psi = 18.97$. Атомы N(1) и C(2) выходят на 0.145 и 0.494 Å, соответственно, из плоскости остальных четырех атомов "*дна ванны*" (среднее отклонение от плоскости не превышает 0.05 Å). Двугранные углы между плоскостью "*дна ванны*" и "*стенками ванны*" C(1)–N(1)–C(4) и N(2)–C(2)–C(3), соответственно, 4.9 и 33.7°.

Пространственное расположение трех фенильных заместителей у sp^3 -гибридизованного атома C(2) весьма напоминает конформацию обычного трифенилметана – искаженный *пропеллер*: фенильные кольца C(3)...C(8), C(14)...C(19) и C(20)...C(25) повернуты в одну и ту же сторону относительно соответствующих плоскостей N(2)–C(2)–C(*i*) (*i* = 3, 14 или 20) на 32.2, 46.6 и 43.1°.

Характерной особенностью масс-спектров электронного удара синтезированных соединений **2а–b,е–g** является последовательное отщепление от молекулярного иона фенильного радикала и молекулы соответствующего спирта (схема 3). Дальнейший распад катиона Φ_2 определяется характером заместителя R¹. В спектрах всех исследованных соединений имеется также достаточно интенсивный (12–79%) пик соответствующего ацилкатиона R¹–C⁺=O.

Таблица б

Масс-спектры электронного удара соединений 2а,b,е-д

Соели-	m/z (I, %) от максимального						
нение	M ^{+.}	Φ_1^{+}	Φ_2^{+}	$R^1 - C^+ = O$	Другие характеристичные ионы		
2a	398 (12)	321 (5)	289 (100)	43 (50)	247 (28) [Φ ₂ -42], 205 (5) [Φ ₂ -42-42], 77 (45)		
2b	412 (38)	335 (15)	289 (100)	43 (20)	247 (26) [Φ ₂ -42], 205 (5) [Φ ₂ -42-42], 77 (30)		
2e	519 (24)	442 (5)	396 (100)	150 (23)	104 (44) [C ₇ H ₄ O], 77 (30)		
2f	504 (43)	427 (5)	381 (100)	135 (79)	92 (7), 77 (20)		
2g	454 (60)	377 (6)	331 (61)	85 (12)	412 (15) [M-42], 370 (100) [M-42-42], 289 (30) [Φ ₂ -42], 247 (99) [Φ ₂ -42-42], 77 (27)		

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на приборе Specord IR-75 при комнатной температуре в вазелиновом масле. Спектры ЯМР ¹Н сняты на приборах Tesla BS-467 (60 МГц) и Bruker DRX 500 (500 МГц), внутренний стандарт ТМС. Масс-спектры получены на приборе Varian CH-6 с прямым вводом вещества в ионный источник при энергии ионизации электронов 70 эВ. ТСХ осуществлялась на пластинах Silufol UV-254, проявитель пары иода.

Рентгеноструктурное исследование соединения 2а. Бесцветные кристаллы соединения

2а состава C₂₅H₂₂N₂O₃·0.5C₂H₅OH, полученные многократной кристализацией из этанола, триклинные, при 18 °C: *a* = 8.915(2), *b* = 11.299(2), *c* = 12.549(3) Å, *α* = 69.40(3), *β* = 73.81(3), γ = 68.81(3)°, *V* = 1086.5(4) Å³, *d*_{выч} = 1.287 г/см³. Пространственная группа *P*-1, *Z* = 2. РСА выполнен на автоматическом дифрактометре CAD 4 (графитовый монохроматор, Мо*Кα*излучение, *θ*/2θ-сканирование от 1.76 до *θ*_{max} = 25°). Размер кристалла 0.23 × × 0.21 × 0.12 мм. Получено 3812 отражений с *I* > 3*σ*(*I*). Структура расшифрована прямым методом по комплексу программ SHELXTL [9] и уточнена в анизотропном (изотропном для атомов водорода) приближении до достижения факторов расходимости *R*¹ = 0.0315 и *wR*² = 0.0728. Координаты атомов депонированы в Кембриджском банке структурных данных (депонент № ССDC 620810).

Метил-2-(4,4-дифенил-1,2,3,4-тетрагидро-2-хиназолинилиден)ацетат (1а) получают согласно методике [2]. Т. пл. 179–181 °С (из этанола). ИК спектр, v, см⁻¹: 3280 (NH), 1615 (С=С), 1660 (СООСН₃). Спектр ЯМР ¹Н (ДМСО-d₆), δ, м. д.: 3.50 (3H, с, СН₃); 4.20, 4.38, 9.47, 9.75 (четыре с интенсивностью 0.5H каждый, 2NH); 6.60 (1H, м, H-8); 6.85 и 6.90 (1H, два с интенсивностью 0.5H каждый, =CH−); 7.20 (13H, м, Н_{аром}). Найдено, %: С 77.25; H 5.41; N 7.52. С₂₃H₂₀N₂O₂. М⁺⁺ 356. Вычислено, %: С 77.53; H 5.62; N 7.86. M 356.50.

Этил-2-(4,4-дифенил-1,2,3,4-тетрагидро-2-хиназолинилиден)-3-оксобутаноат (2b). К раствору 0.65 г (1.7 ммоль) этаноата 1b и 0.42 г (3.4 ммоль) бромистого ацетила в 7 мл сухого бензола при перемешивании добавляют 0.5 г Na₂CO₃. Смесь интенсивно перемешивают 2.5 ч при комнатной температуре. По окончании реакции (контроль – TCX) неорганические соли отфильтровывают, промывают бензолом, фильтрат упаривают. Полученный продукт очищают хроматографированием на колонке (сорбент – силикагель марки L 40/100, элюент бензол). Выход 0.40 г (57%).

Соединение 2а получают аналогично из метилацетата 1а.

Соединения 2с-д получают согласно приведенной выше методике, используя в качестве ацилирующих агентов хлорангидриды соответствующих кислот.

СПИСОК ЛИТЕРАТУРЫ

- 1. Е. В. Громачевская, Е. А. Кайгородова, С. И. Фирганг, Г. Д. Крапивин, *XГС*, 1222 (2005). [*Chem. Heterocycl. Comp.*, **41**, 1045 (2005)].
- Е. В. Громачевская, Г. Д. Крапивин, Ф. В. Квитковский, А. О. Шеин, В. Г. Кульневич, XTC, 640 (2001). [Chem. Heterocycl. Comp., 37, 588 (2001)].
- 3. Вейганд-Хильгетаг, Методы эксперимента в органической химии, Химия, Москва, 1968, с. 432.
- Н. П. Костюченко, В. Г. Граник, А. М. Жидкова, Р. Г. Глушков, Ю. Н. Шейнкер, XTC, 1212 (1974). [Chem. Heterocycl. Comp., 10, 1053 (1974)].
- 5. Н. З. Тугушева, С. Ю. Рябова, Н. П. Соловьева, В. Г. Граник, *XГС*, 781 (1994). [*Chem. Heterocycl. Comp.*, **30**, 683 (1994)].
- В. Л. Гейн, С. Г. Питиримова, О. В. Винокурова, Ю. С. Андрейчиков, А. В. Комков, В. С. Богданов, В. А. Дорохов, *Изв. АН, Сер. хим.*, 1475 (1994).
- 7. А. Гордон, Р. Форд, Спутник химика, Мир, Москва, 1976.
- 8. Н. С. Зефиров, В. А. Палюлин, *ДАН*, **252**, 111 (1980).
- G. M. Sheldrick, *Computational Crystallography*, Oxford Univ. Press, New York, Oxford, 1982, 506.

Кубанский государственный технологический университет, Краснодар 350072, Россия e-mail: organics@kubstu.ru Поступило 17.10.2005