А. Л. Алексеенко, С. В. Попков

ПОЛУЧЕНИЕ 4-(АЗОЛ-1-ИЛ)БУТАНОВЫХ КИСЛОТ ВЗАИМОДЕЙСТВИЕМ АЗОЛОВ С у-БУТИРОЛАКТОНОМ

Изучено взаимодействие солей имидазола, 1,2,4-триазола, бензимидазола и 2-бензилбензимидазола с ү-бутиролактоном. Квантово-химические расчеты *ab initio* показали преимущество N-алкилирования при взаимодействии азолатов с ү-бутиролактоном.

Ключевые слова: 2-бензилбензимидазол, бензимидазол, γ-бутиролактон, имидазол, 1,2,4-триазол, N-алкилирование азолов, квантово-химические расчеты.

Известно, что многие азолилалкановые кислоты обладают высокой биологической активностью, например, 8-(имидазол-1-ил)октановая кислота проявляет антиагрегационные свойства [1, 2]. 4-(Имидазол-1-ил)бутановая кислота является агонистом ГАМК [3]. Высокую иммуномодулирующую активность проявляет эстимулоцел – 3-(бензимидазол-2-ил)пропионовая кислота [4]. ω -Азолилалкановые кислоты служат исходными соединениями для синтеза антиагрегационных препаратов [5].

Давно известно получение азолилалкановых кислот взаимодействием азолатов и эфиров ω -галогеналкановых кислот с последующим гидролизом [1–3, 6]. Для N-алкилирования гетероциклов сравнительно редко используют их взаимодействие с γ -бутиролактоном [7–11]. Направление расщепления лактона по связи ацил–кислород или алкил–кислород определяется кислотно-основными свойствами азола. Преимущественному разрыву связи алкил–кислород способствует использование более нуклеофильного, чем азол азолата, либо повышение температуры [7]. Таким образом, получены продукты N-алкилирования гетероциклов – имидазол-1-ил-, пиррол-1-ил- и индол-1-илбутановые кислоты [8–10].

В данной работе изучена конденсация имидазола, 1,2,4-триазола, бензимидазола и 2-бензилбензимидазола с γ-бутиролактоном.

Взаимодействие имидазола с γ -бутиролактоном в присутствии сульфата натрия, катализируемое концентрированной серной кислотой, при температуре 180 °С по аналогии с приведенной в патенте [12] методикой, привело к значительному осмолению реакционной массы. Перегонкой в глубоком вакууме был выделен с незначительным выходом (16%) имидазолид 4-(имидазол-1-ил)бутановой кислоты, при гидролизе которого получена соответствующая кислота с выходом 15%. При взаимодействии натриевой соли имидазола с небольшим избытком γ -бутиролактона в отсутствие растворителя при температуре 120 °С образуется 4-(имидазол-1-ил)бутановая кислота (**2a**) с выходом 50%. Использование калиевой соли имидазола не привело к увеличению выхода. При проведении взаимодействия в кипящей смеси ксилолов выход кислоты **2a** возрастает до 67%.

4-(Бензимидазол-1-ил)- и 4-(2-бензилбензимидазол-1-ил)бутановые 910

кислоты (**2d**,**e**) получены аналогично, взаимодействием натриевых солей бензимидазола и 2-бензилбензимидазола с γ -бутиролактоном в отсутствие растворителя при температуре 180 °C с выходами 52 и 42% соответственно (схема 1).

1,2 $\mathbf{a} \mathbf{X} = \mathbf{CH}, \mathbf{b} \mathbf{X} = \mathbf{N}, \mathbf{d} \mathbf{R} = \mathbf{H}, \mathbf{e} \mathbf{R} = \mathbf{CH}_2\mathbf{Ph}$

При алкилировании соли 1,2,4-триазола γ -бутиролактоном с выходом 89% образуется смесь 4-(1,2,4-триазол-1-ил)бутановой (2b) и 4-(1,2,4-триазол-4-ил)бутановой кислот (2c) (93:7, согласно данным ЯМР ¹H), разделить которую не удалось. Индивидуальные кислоты 2b и 2c были получены классическим методом через этиловые эфиры в две стадии (схема 2). На первой стадии при взаимодействии 1,2,4-триазола с этил-4-бромбутаноатом в присутствии поташа образуется продукт как 1-, так и 4-замещения в соотношении 10:1 (согласно данным ЯМР ¹H). При попытке разделить эфиры 3b и 3c фракционированием в вакууме удалось выделить лишь эфир 3b. По-видимому, при этом продукт 4-алкилирования 3c частично переходит в более термодинамически устойчивый 1-изомер 3b.

Таблица 1

Со- еди- не- ние	Брутто- формула	Найдено, % Вычислено, % С Н N		Т. пл., ℃,	Условия проведения реакции <i>t</i> , °С т, ч		Вы- ход, %	
2a	C ₇ H ₁₀ N ₂ O ₂	<u>54.58</u> 54.54	<u>6.80</u> 6.54	<u>17.98</u> 18.17	134–136 (138 [7])	120 140*	3 2.5	50 67
2b	$C_6H_9N_3O_2$	<u>46.42</u> 46.45	<u>5.70</u> 5.85	<u>27.27</u> 27.08	142–143 132–133**	100 140	2 2	79 89
2c	$C_6H_9N_3O_2$	<u>46.40</u> 46.45	<u>5.78</u> 5.85	<u>27.16</u> 27.08	145–146	100	2	55
2d	$C_{11}H_{12}N_2O_2$	<u>64.79</u> 64.69	<u>5.97</u> 5.92	$\frac{13.70}{13.72}$	146–147	180	0.5	52
2e	$C_{18}H_{18}N_2O_2$	<u>73.73</u> 73.45	<u>6.42</u> 6.16	<u>9.44</u> 9.52	153–154	180	1.5	42
3b	$C_8H_{13}N_3O_2$	<u>52.55</u> 52.45	<u>7.09</u> 7.15	<u>22.89</u> 22.94	_***	80	8	75
3c	$C_8H_{13}N_3O_2$	<u>52.40</u> 52.45	<u>7.12</u> 7.15	<u>23.14</u> 22.94		80	8	_* ⁴

Характеристики соединений 2а-е, 3b,с

* Реакцию проводят в смеси ксилолов.

** Смесь кислот **2b** и **2c** в соотношении 93:7.

*** Т. кип. 139–142 °С (0.08 мм рт. ст.)

^{*4} Смесь эфиров до фракционирования состоит из **3b** и **3c** в соотношении 91: 9.

Как известно, при алкилировании 1,2,4-триазола в основном образуются продукты 1-замещения, как наиболее термодинамически стабильные [13]. Квантово-химический расчет методом *ab initio* в базисе RHF/6-31G* [14] изомерных этилтриазолилбутиратов показал большую стабильность (на 25.14 кДж/моль) 4-(1,2,4-триазол-1-ил)бутирата **3b** по сравнению с 4-(1,2,4-триазол-4-ил)бутиратом **3c**. По экспериментально полученным данным устойчивость 1,1-дифенил-2-(1,2,4-триазол-1-ил)этанола выше на 17.45 кДж/моль, чем у 1,1-дифенил-2-(1,2,4-триазол-4-ил)этанола [13]. Неудивительно, что в условиях перегонки при температуре выше 100 °С из смеси изомеров отгоняется преимущественно продукт 1-замещения **3b**.

Продукт **3с** выделен из смеси методом колоночной хроматографии. При гидролизе этиловых эфиров **3b** и **3c** в соляной кислоте были получены кислоты **2b** и **2c** с выходом 89 и 55% соответственно.

В ИК спектрах полученных азолилбутановых кислот **2а–е** полоса поглощения карбонильной группы наблюдается при 1680–1712 см⁻¹, гидроксильной – при 3390–3410 см⁻¹. Анализируя спектры ЯМР изомерных кислот **2b** и **2c**, следует отметить, что триазольный метиновый протон продукта 4-замещения проявляется синглетом 8.54 м. д. двойной интенсивности, так же как $C_{(5)}$ Н метиновый протон (8.50 м. д.) кислоты **2b**, аналогично расположенный между атомами азота пиридинового и пиррольного типов. В спектре ЯМР ¹³С сигнал метиленовой группы, связанной с азолом, изомерных бутановых кислот **2b** и **2c** наблюдается в более слабом поле (47.38 м. д.) для продукта 1-замещения по сравнению с кислотой **2c** (43.64 м. д.). Данные элементного анализа и ЯМР и ИК спектроскопии, приведенные в экспериментальной части, подтверждают

строение полученных соединений.

C

С целью определения применимости квантово-химического метода для предсказывания направления взаимодействия азолов с γ -бутиролактоном, приводящего к продуктам N-алкилирования или N-ацилирования, были проведены квантово-химические расчеты энергетических характеристик молекул ($\Delta H_{\rm f}, E_{\rm totan}$). Расчеты проводили полуэмпирическим методом PM3 по программам из пакета HyperChem 6.03 [15] с полной оптимизацией геометрии молекул. Для определения ΔH реакций этот метод наиболее применим, так как параметризуемым свойством является теплота образования [14]. Более точный расчет структур соединений проводили *ab initio* методом Хартри–Фока в базисе 6-31G^{*}. Для молекул с закрытыми

Таблица 2

соеди- нение	ИК спектр, v , см ⁻¹	Спектр ЯМР ¹³ С, б, м. д.*
2a	3390 (ОН), 1680 (С=О), 1518 (СН=N азол.), 1282 (С-О)	26.16 (С ₍₃₎), 30.66 (С ₍₂₎), 45.28 (С ₍₄₎), 119.28 (С ₍₅₎ имидаз.), 128.29 (С ₍₄₎ имидаз.), 137.22 (С ₍₂₎ имидаз.), 173.83 (С ₍₁₎)
2b	3400 (ОН), 1705 (С=О), 1516 (СН=N азол.), 1288 (С-О)	24.42 (C ₍₃₎), 29.93 (C ₍₂₎), 47.38 (C ₍₄₎), 143.58 (C ₍₅₎ триаз.), 150.96 (C ₍₃₎ триаз.), 173.26 (C ₍₁₎)
2c	3410 (ОН), 1712 (С=О), 1522 (СН=N азол.), 1290 (С-О)	25.66 (C ₍₃₎), 30.49 (C ₍₂₎), 43.64 (C ₍₄₎), 143.24 (C ₍₃₎ , C ₍₅₎ триаз.), 173.61 (C ₍₁₎)
2d*	3400 (ОН), 1700 (С=О), 1500 (СН=N азол.), 1270 (С-О)	24.99 (С ₍₃₎), 30.66 (С ₍₂₎), 43.41 (С ₍₄₎), 110.32 (С ₍₇₎ бензимидаз.), 119.46 (С ₍₄₎ бензимидаз.), 121.50 (С ₍₅₎ бензимидаз.), 122.32 (С ₍₆₎ бензимидаз.), 133.75 (С ₍₇₎ бензимидаз.), 143.39 (С ₍₃₎ бензимидаз.), 143.96 (С ₍₂₎ бензимидаз.), 173.77 (С ₍₁₎)
2e	3400 (ОН), 1708 (С=О), 1512 (СН=N азол.), 1286 (С-О)	24.56 (С ₍₃₎), 30.41 (С ₍₂₎), 32.85 (СС ₆ Н ₅), 42.35 (С ₍₄₎), 110.08 (С ₍₇₎ бензимидаз.), 118.54 (С ₍₄₎ бензимидаз.), 121.50 (С ₍₅₎ бензимидаз.), 121.89 (С ₍₆₎ бензимидаз.), 126.62 (С ₍₄₎ аром.), 128.52 (С ₍₂₎ , С ₍₆₎ аром.), 128.71 (С ₍₃₎ , С ₍₅₎ аром.), 134.96 (С ₍₁₎ аром.), 136.92 (С ₍₇₎ бензимидаз.), 142.06 (С ₍₃₎ бензимидаз.), 153.22 (С ₍₂₎ бензимидаз.), 173.86 (С ₍₁₎)
3b	1728 (C=O), 1270, 1138 (C–O)	14.122 (ОСН <u>2</u> СН ₃), 24.947 (C ₍₃₎), 30.543 (C ₍₂₎), 48.403 (C ₍₄₎), 60.633 (О <u>С</u> H ₂ CH ₃), 143.150 (C ₍₅₎ триаз.), 152.033 (C ₍₃₎ триаз.), 172.322 (C ₍₁₎)
3c	1730 (C=O), 1270, 1142 (C–O)	_

Спект	ральные	характе	ристики	соелинен	ний 2а-е	. 3b.c
~~~~						,

* Имидаз. – имидазол, триаз. – триазол, бензимидаз. – бензимидазол.

Таблица З

#### Спектральные характеристики соединений 2ae, 3b,с

Соеди- нение	Спектр ЯМР ¹ Н, б, м. д. ( <i>J</i> , Гц)
2a	1.91 (2H, кв, <i>J</i> = 6.8, <u>CH</u> ₂ CH ₂ CO); 2.15 (2H, т, <i>J</i> = 6.8, <u>CH</u> ₂ CO); 3.97 (2H, т, <i>J</i> = 7.2, CH ₂ N); 6.89 (1H, с, H-4 имидаз.); 7.16 (1H, с, H-5 имидаз.); 7.62 (1H, с, H-2 имидаз.); 9.5 (1H, уш. с, COOH)
2b	1.99 (2H, кв, <i>J</i> = 7.0, <u>CH₂CH₂CO</u> ); 2.21 (2H, т, <i>J</i> = 6.4, <u>CH₂CO</u> ); 4.20 (2H, т, <i>J</i> = 7.0, CH ₂ N); 7.96 (1H, с, H-3 триаз.); 8.50 (1H, с, H-5 триаз.); 12.21 (1H, уш. с, COOH)
2c	1.98 (2H, кв, <i>J</i> = 7.5, <u>CH₂CH₂CO</u> ); 2.20 (2H, т, <i>J</i> = 7.5, <u>CH₂CO</u> ); 4.05 (2H, т, <i>J</i> = 7.0, CH ₂ N), 8.54 (2H, с, H-3,5 триаз.), 12.25 (1H, уш. с, COOH)
2d*	2.02 (2H, кв, <i>J</i> = 7.0, <u>CH₂CH₂CO</u> ); 2.23 (2H, т, <i>J</i> = 7.0, <u>CH₂CO</u> ); 4.26 (2H, т, <i>J</i> = 7.0, CH ₂ N); 7.12–7.35 (2H, м, H-5,6, бензимидаз.); 7.63 (2H, т, H-4,7, бензимидаз., <i>J</i> = 8.7); 8.21 (1H, с, H-2 бензимидаз.); 12.22 (1H, уш. с, COOH)
2e	1.75 (2H, кв, <i>J</i> = 7.3, <u>CH₂CH₂CO</u> ); 2.26 (2H, т, <i>J</i> = 6.9, <u>CH₂CO</u> ); 4.18 (2H, т, <i>J</i> = 7.7, CH ₂ N); 4.31 (2H, c, CH ₂ Ph); 7.12–7.26 (3H, м, 3CH аром.); 7.27–7.40 (4H, м, 2CH аром., 2CH бензимидаз.); 7.48–7.67 (2H, м, H-4,7, бензимидаз.)
3b	1.19 (3H, т, <i>J</i> = 7.4 <u>CH₃CH₂O</u> ); 2.15 (2H, кв, <i>J</i> = 7.4, <u>CH₂CH₂CO</u> ); 2.25 (2H, т, <i>J</i> = 6.6, <u>CH₂CO</u> ); 4.07 (2H, кв, <i>J</i> = 7.4, CH ₂ O); 4.20 (2H, т, <i>J</i> = 6.6, CH ₂ N); 7.88 (1H, c, H-3 триаз.), 8.00 (1H, c, H-5 триаз.)
3c	1.26 (3H, т, $J$ = 7.4, <u>CH₃CH₂O</u> ); 2.15 (2H, кв, $J$ = 6.6, <u>CH₂CH₂CO</u> ); 2.33 (2H, т, $J$ = 6.6, <u>CH₂CO</u> ); 4.13 (2H, к, $J$ = 7.4, CH ₂ O); 4.23 (2H, т, $J$ = 6.6, CH ₂ N); 8.16 (2H, с, H-3,5 триаз.)

* Имидаз. – имидазол, триаз. – триазол, бензимидаз. – бензимидазол.

электронными оболочками использовали формализм ограниченного метода Хартри–Фока (RHF). Расчет анионов проводили неограниченным методом Хартри–Фока (UHF).

Расчеты показали, что при взаимодействии у-бутиролактона с нейтральными азолами алкилирование более выгодно, чем ацилирование, хотя в целом значения  $\Delta H_p$  не превышают 30 кДж/моль. Поэтому в подобных условиях наряду с 4-(имидазол-1-ил)бутановыми кислотами авторами статьи [7] получены и выделены продукты ацилирования азолов – имидазолиды 4-гидроксибутановых кислот. Исходя из вычисленных зарядов на атомах  $C_{(2)}$  и  $C_{(5)}$  лактона ( $q_2 = 0.787, q_5 = 0.004$ ) продукт N-ацилирования является продуктом кинетического контроля, так как нуклеофильное раскрытие лактонного цикла происходит, вероятно, в результате атаки по наиболее электроположительному атому С(2) лактона. При последующем нагревании образуется более стабильный продукт N-алкилирования; в случае имидазола, например, его устойчивость больше на 16.76 кДж/моль (метод 6-31G*). При расчетах взаимодействия азолат-ионов с у-бутиролактоном значительно возрастают (почти на порядок) тепловые эффекты. В этих условиях реакция ацилирования становится энергетически невыгодной: увеличение энтальпии составляет от 58 до 156 кДж/моль в зависимости от типа азолат-иона и, наоборот, существенное понижение энтальпии происходит при алкилировании азолат-ионов: выигрыш составляет от 57 до 96 кДж/моль. Очевидно.

Таблица 4

		$\Delta H_{\rm p}/\Delta E_{\rm total}$	$\Delta\Delta H_{ m p}/\Delta\Delta E_{ m totan},$ кДж/моль $*$			
Соединение	Алкилирования				Ацилирования	
	PM3	6-31G*	PM3	6-31G*	PM3	6-31G*
Нейтральные молекулы						
<b>1</b> a	-24.83	-7.54	2.53	9.22	-27.36	-16.76
1b	-25.58	-21.37	14.64	28.91	-40.23	-50.28
1d	-26.69	-7.54	0.88	7.95	-27.57	-15.49
Ионы						
1a'**	-196.22	-96.37	-179.82	115.23	-16.40	-211.60
1b'	31.07	-77.10	-4.37	156.71	35.44	-233.80
1d'	35.75	-57.82	66.26	58.14	-30.51	-115.96

Квантово-химические расчеты взаимодействия γ-бутиролактона с азолами и азолатами полуэмпирическими и неэмпирическими методами (PM3 и 6-31G*)

*  $\Delta\Delta H_{\rm p}/\Delta\Delta E_{\rm тотал} = \Delta H_{\rm p}/\Delta E_{\rm тотал (алкилирования)} - \Delta H_{\rm p}/\Delta E_{\rm тотал (ацилирования)}.$ ** **1a',b',d'** – азолаты азолов **1a,b,d** соответственно.

это связано с устойчивостью конечных анионов: 4-азолилбутираты стабилизированы за счет делокализации отрицательного заряда в карбоксилат-анионе, в отличие от неустойчивых изомерных анионов - 4-оксо-4азо- лилбутилатов. Таким образом, при взаимодействии у-бутиролактона с азолатами в результате термодинамического контроля образуются продукты алкилирования азолов. Результаты полуэмпирических (PM3) и неэмпирических *ab initio* (базис 6-31G*) расчетов сильно различаются. При взаимодействии с имидазолатом или бензимидазолатом алкилирование выгоднее ацилирования на 16 и 30 кДж/моль соответственно. В случае триазолат-аниона полуэмпирический расчет показывает, что ацилирование энергетически выгоднее алкилирования на 35 кДж/моль. Уточненный неэмпирический метод расчета (6-31G*) свидетельствует о значительном энергетическом выигрыше в случае алкилирования по сравнению с ацилированием анионов имидазола, 1,2,4-триазола и бензимидазола, при этом ΔΔЕтотал составляет -212, -234 и -115 кДж/моль соответственно.

## ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С записывали на приборе Bruker AC200 (200 и 50 МГц соответственно) в (CD₃)₂SO, сдвиги измеряли относительно ТМС. ИК спектры получали на приборе Specord M-80 между призмами в тонкой пленке в вазелиновом масле. Протекание реакций и чистоту продуктов контролировали методом TCX на пластинках Silufol UV-254 в системе хлороформ-метанол, 10:1. Пятна обнаруживали при облучении УФ светом и обрабатывали парами иода и модифицированным реактивом Драгендорфа [16]. Для хроматографирования на колонке использовали силикаrель Acros 35/70. Физико-химические константы описанных ранее соединений близки или совпадают с литературными данными.

Взаимодействие имидазола с у-бутиролактоном. А. К 9.0 г (0.1 моль) свежеполученного имидазолата натрия [17] добавляют 10.32 г (0.12 моль) у-бутиролактона, перемешивают при 110–120 °С в течение 3 ч, нейтрализуют расчетным количеством 16.7 мл (0.1 моль) 20% соляной кислоты, растворитель отгоняют досуха, остаток перекристаллизовывают из изопропилового спирта. Получают 3.9 г (30%) 4-(имидазол-1-ил)бутановой кислоты (2а).

Б. К 9.0 г (0.1 моль) свежеполученного имидазолата натрия [16] добавляют 9.46 г

915

(0.11 моль) γ-бутиролактона, 20 мл смеси ксилолов, перемешивают при кипячении в течение 2.5 ч. Выделяют аналогично. Получают 8.6 г (67%) соединения **2a**.

Соединения 2d,е получают аналогично (см. табл. 1).

Взаимодействие этил 4-бромбутирата с 1,2,4-триазолом. А. К 17.25 г (0.25 моль) 1,2,4-триазола добавляют 34.5 г (0.25 моль) свежепрокаленного карбоната калия в 175 мл ацетонитрила и нагревают до кипения растворителя. При перемешивании по каплям добавляют 35.8 мл (48.77 г, 0.25 моль) этил-4-бромбутирата, кипятят при перемешивании в течение 8 ч, охлаждают, осадок отфильтровывают, промывают ацетонитрилом (2 × 20 мл). Фильтрат упаривают, остаток перегоняют в вакууме, собирая фракцию с т. кип. 139–142 °С (0.08 мм рт. ст.). Получают 34.32 г (75.0%) этилового эфира 4-(1,2,4-триазол-1-ил)бутановой кислоты (3b) с  $n_D^{20}$  1.4735. Часть реакционной массы (5.0 г) разделяют методом колоночной хроматографии (элюент хлороформ–метанол, 10:1). Получают 0.44 г соединения 3с с  $n_D^{20}$  1.4826.

Б. К 14.79 г (80.8 ммоль) этил-4-(1,2,4-триазол-1-ил)бутирата добавляют 126 мл (0.76 моль) 6 М соляной кислоты и кипятят при перемешивании в течение 2 ч, упаривают, растворяют в 35 мл воды и добавляют порциями 10.99 г (80.8 моль) тригидрата ацетата натрия, охлаждают, отфильтровывают, осадок промывают водой (2 × 7 мл), высушивают в эксикаторе над фосфорным ангидридом. Получают 9.89 г (79%) 4-(1,2,4-триазол-1-ил)-бутановой кислоты (2b) с т. пл. 142–143 °С, по данным [18] т. пл. 137–138 °С.

При гидролизе 0.44 г этил 4-(1,2,3-триазол-4-ил)бутирата аналогичным методом получают 0.24 г (55%) 4-(1,2,3-триазол-4-ил)бутановой кислоты (2c).

### СПИСОК ЛИТЕРАТУРЫ

- K. Iizuka, K. Akahane, D. Momose, M. Nakazawa, T. Tanauchi, M. Kauvamura, I. Okyama, I. Kajiwara, Y. Iguchi, T. Okada, K. Taniguchi, T. Miyamoto, M. Hayashi, *J. Med. Chem.*, 24, 1139 (1981).
- 2. T. Kamijo, R. Yamamoto, H. Harada, K. Iizuka, Chem. Pharm. Bull., 312, 1213 (1983).
- 3. M. Varasi, G. Tarzia, F. Luzzani, L. Gallico, D. Barone, Farmaco, 42, 425 (1987).
- С. В. Сибиряк, Ю. В. Сорокин, Р. Ф. Садыков, В. М. Дианов, Хим.-фарм. журн., 24, № 11, 19 (1990).
- 5. В. Н. Журавлев, С. В. Попков, Е. Г. Лобанова, А. Л. Алексеенко, в кн. XII Российский национальный конгресс "Человек и лекарство", Тез. докл., Москва, 2005, с. 753.
- 6. K. Iizuka, K. Akahane, GB Pat. 2016452; Chem. Abstr., 93, 114514 (1980).
- 7. О. К. Шевченко, А. Т. Аюпова, Г. Г. Галустьян, *ХГС*, 1491 (1992). [*Chem. Heterocycl. Comp.*, **28**, 1274 (1992)].
- 8. B. R. Lahue, S.-M. Lo, Z.-K. Wan, G. H. Woo, J. K. Snyder, J. Org. Chem., 69, 7171 (2004).
- 9. J.-H. Li, J. K. Snyder, J. Org. Chem., 58, 516 (1993).
- 10. S. C. Denson, J.-H. Li, J. K. Snyder, J. Org. Chem., 57, 5285 (1992).
- 11. H. Krzikalla, W. Alt, DR Pat. 743661; Chem. Zentralblat, 115, 1152 (1944).
- 12. H. Haussmann, H. Kaltschmidt, DB Pat. 882093; Chem. Zentralblat, 125, 10133 (1954).
- 13. T. W. Bentley, L. M. Howle, P. J. Wareham, Tetrahedron, 48, 7869 (1992).
- 14. В. И. Минкин, Б. Я. Симкин, Р. М. Миняев, Теория строения молекул, "Феникс", Ростов-на Дону, 1997, с. 237.
- 15. HyperChem 6.03. Trial version. http://www.hyper.com
- М. Шаршунова, В. Шварц, Ч. Михалец, Тонкослойная хроматография в фармации и клинической биохимии, ч. 2, Мир, Москва, 1980, с. 583.
- 17. Д. А. Карачев, С. В. Попков, XTC, 1161 (2005). [Chem. Heterocycl. Comp., 41, 987 (2005)].
- A. Baba, N. Kawamura, H. Makina, Y. Ohta, S. Taketomi, T. Sohda, J. Med. Chem., 39, 5176 (1996).

Российский химико-технологический университет им. Д. И. Менделеева, Москва 125047, Россия e-mail: popkovsv@rctu.ru Поступило 25.08.2006