И. Стракова, М. Петрова^а, С. Беляков^а, А. Страков

2-ЗАМЕЩЕННЫЕ [1]БЕНЗОПИРАНО[4,3-d]ПИРИМИДИН-5-ОНЫ

Разработан новый метод синтеза 2-R-замещенных [1]бензопирано[4,3-*d*]пиримидин-5онов (R = *n*-фенил-, *n*-хлорфенил-, *n*-карбамоилфенил-, пиридин-3-ил-, пиридин-4-ил-, пиразин-2-ил-, пирролидино-, морфолино-, 3,5-диметилпиразол-1-ил) взаимодействием 3формил-4-хлоркумарина с солями соответствующих амидинов RC(=NH)NH₂HX в ДМФА в присутствии пиперидина или триэтиламина. Из 3-формил-4-хлоркумарина и 2-аминобензимидазола получен [1]бензопирано[3,4:3',4']пиримидо[1,2-*a*]бензимидазол-6-он, строение которого подтверждено данными PCA.

Ключевые слова: 2-замещенные [1]бензопирано[4,3-*d*]пиримидин-5-оны, С- и N-карбамидины бензольного и гетероциклического рядов, 3-формил-4-хлоркумарины.

Ранее нами из 3-формил-4-хлоркумарина (1) и арилгидразинов, замещенных анилинов [1], а также аминопиридинов [2, 3] были синтезированы соответствующие 3,4-гетероаннелированные кумарины. В развитие этих исследований в настоящей работе изучено взаимодействие кумарина 1 с солями амидинов 2а–i, а также с несимметричным аналогом амидина – 2-аминобензимидазолом.

2, **3** а R = фенил; **b** R = *n*-хлорфенил; **c** R = *n*-карбамоилфенил; **d** R = пиридин-3-ил; **e** R = пиридин-4-ил; **f** R = пиразин-2-ил; **g** R = 1-пирролидино; **h** R = морфолино; **i** R = 3,5-диметилпиразол-1-ил

Реакции соединения 1 с солями 2а–і проводились в ДМФА в присутствии 5-кратного избытка пиперидина (в случае солей 2а–h) или триэтиламина (с солью 2i), при этом с выходами 36–71% были синтезированы соответствующие 2-R-замещенные [1]бензопирано[4,3-*d*]пиридин-5-оны 3а–i (табл. 1). Ранее некоторые подобные соединения ($R = NH_2$, пирролидин-1-ил) были получены в две стадии исходя из 4-оксо-4Hхромен-3-карбальдегида [4, 5]. В результате взаимодействия кумарина 1 с 2-аминобензимидазолом в присутствии триэтиламина в растворе ТГФ с выходом 36% был получен бензопиранопиримидобензимидазолон 4.

Строение бензопиранопиримидинонов **3** подтверждено спектральными данными (табл. 2). В ИК спектрах поглощение группы C=O кумаринового фрагмента обнаруживается в интервале 1750–1728 см⁻¹. Наличие группы NH₂ в соединении **3с** подтверждают полосы поглощения при 3470 и 3180 см⁻¹. В спектрах ЯМР ¹Н присутствуют сигналы протонов всех структурных частей молекул продуктов **3**. Характерный для них сигнал протона H-4 наблюдается в диапазоне 9.07–9.71 м. д. Такое низко- польное поглощение может быть обусловлено как структурными особенностями молекулы, так и анизотропным влиянием неподеленной электронной пары атома кислорода карбонильной группы. Сигналы протонов гетарильного заместителя, как правило, сливаются в общие мультиплеты с сигналами ароматических протонов, однако, в спектре соединеия **3d** (R = пиридин-3-ил) отчетливо видны сигналы протонов пиридинового цикла. В спектрах соединений **3g** (R = пирролидино) и **3h** (R = морфолино) присутствуют мультиплеты протонов групп CH₂.

Соеди-	Брутто-	<u>Найдено, %</u> Вычислено, %			Т. пл., °С	Выход,
нение	формула	С	Н	Ν	,	%
3 a	$C_{17}H_{10}N_2O_2$	<u>74.35</u>	<u>3.68</u>	<u>10.19</u>	210-211	50
		74.44	3.68	10.21		
3b	C ₁₇ H ₉ ClN ₂ O ₂	<u>66.30</u>	<u>2.91</u>	<u>9.10</u>	255-257	65
		66.14	2.94	9.07		
3c	$C_{18}H_{11}N_3O_3$	<u>68.41</u>	<u>3.54</u>	<u>13.21</u>	365–367	56
		68.13	3.50	13.24		
3d	$C_{16}H_9N_3O_2$	<u>69.80</u>	<u>3.29</u>	<u>15.23</u>	240–241	55
_	a	69.81	3.30	15.27		24
3e	$C_{16}H_9N_3O_2$	<u>69.73</u>	<u>3.32</u>	<u>15.38</u>	285-287	36
20		69.81	3.30	15.27	277.279	5.4
3f	$C_{15}H_8N_4O_2$	<u>65.01</u>	$\frac{3.02}{2.02}$	<u>20.09</u>	277-278	54
2		65.22	2.92	20.28	201 202	<i></i>
3g	$C_{15}H_{13}N_3O_2$	<u>67.29</u>	<u>4.85</u>	$\frac{15.6}{15.72}$	201-202	57
21	CUNO	67.40	4.90	15.72	101 102	71
3n	$C_{15}H_{13}N_3O_3$	$\frac{03.43}{62.60}$	$\frac{4.03}{4.62}$	$\frac{14.79}{14.92}$	191–193	/ 1
2:	СЧМО	65.68	4.02	14.85	196 197	40
31	$C_{16} \Pi_{12} \Pi_4 O_2$	<u>05.08</u> 65.74	$\frac{4.17}{4.14}$	$\frac{19.21}{10.17}$	100-10/	40
4	CHNO	03./4	4.14	19.17	240 242	26
4	$C_{17} \Gamma_{19} \Gamma_{3} O_{2}$	$\frac{71.13}{71.07}$	$\frac{5.10}{3.16}$	$\frac{14.32}{14.63}$	240-242	
		/1.0/	5.10	14.05		

Характеристики соединений 3 и 4

Таблица 1

Соеди- нение	ИК спектр, $v_{CO} (v_{NH2}), cm^{-1}$	Спектр ЯМР ¹ Н, δ, м. д. (КССВ, <i>J</i> , Гц)
3a	1740	7.45 (6H, м, H _{аром}); 8.62 (3H, м, H _{аром}); 9.56 (1H, с, H-4)
3b	1743	7.44 (5H, м, H _{аром}); 8.61 (3H, м, H _{аром}); 9.51 (1H, с, H-4)
3c	1738, 1710; (3470, 3180)	8.71 (10H, м, 8H _{аром} , NH ₂); 9.51 (1H, с, H-4)
3d	1748	7.44 (3H, M, H _{apon}); 8.04 (1H, \exists , \exists , $J = 6.0$, $J = 8.0$, H _{Het} -5); 8.71 (1H, \exists , \exists , $J_1 = 8.0$, $J_2 = 2.0$, H _{apon} -10); 8.98 (1H, \exists , \exists , $J_1 = 8.0$, $J_2 = 2.0$, H _{Het} -4); 9.58 (1H, \exists , \exists , $J_1 = 6.0$, $J_2 = 2.0$, H _{Het} -6); 9.62 (1H, c, H-4); 10.02 (1H, \exists , $J = 2.0$, H _{Het} -2)
3e	1745	7.56–7.82 (3H, м, H _{аром}); 8.53–8.84 (5H, м, H _{аром}); 9.62 (1H, с, H-4)
3f	1750	7.76–7.81 (3H, м, H _{аром}); 8.58 (3H, м, H _{аром}); 9.71 (1H, с, H-4); 9.91 (1H, д, <i>J</i> = 1.5, H _{Het} -3)
3g	1728	2.02 (4H, м, 2CH ₂); 3.71 (4H, м, 2CH ₂); 7.24–7.61 (3H, м, H _{аром}); 8.33 (1H, д. д, J ₁ = 8.0, J ₂ = 1.5, H-10); 9.07 (1H, с, H-4)
3h	1736	3.73–4.02 (8H, м, 4CH ₂); 7.18–7.62 (3H, м, H _{аром}); 8.31 (1H, д. д, <i>J</i> = 8, <i>J</i> = 1.5, H _{аром}); 9.07 (1H, с, H-4)
3i	1746	2.28 (3H, c, CH ₃); 2.81 (3H, c, CH ₃); 6.11 (1H, c, H _{Het} -2); 7.26– 7.33 (3H, м, H _{аром}); 8.38 (1H, д. д, J ₁ = 8.0, J ₂ = 1.5, H-10); 9.51 (1H, c, H-4)
4	1738	7.38–8.11 (7Н, м, Н _{аром}); 8.56 (1Н, д. д, <i>J</i> = 8, <i>J</i> = 1.5, Н _{аром}); 9.13 (1Н, с, Н-7)

Спектральные характеристики соединений За-і и 4

Рис. 1. Пространственная модель молекулы соединения 4 с обозначениями атомов, циклов и эллипсоидами тепловых колебаний

Таблица З

Связь	<i>d</i> , Å	Связь	d, Å
O(1)–C(2)	1.388(7)	C(9)–C(10)	1.394(6)
O(1)–C(9)	1.390(6)	C(12)–N(13)	1.305(7)
C(2)–O(11)	1.191(7)	N(13)–C(14)	1.338(7)
C(2)–C(3)	1.441(8)	C(14)–N(15)	1.288(7)
C(3)–C(4)	1.382(6)	C(14)–N(22)	1.429(6)
C(3)-C(12)	1.441(8)	N(15)-C(16)	1.391(7)
C(4)-C(10)	1.446(6)	C(16)–C(17)	1.411(9)
C(4)-N(22)	1.374(5)	C(16)–C(21)	1.399(6)
C(5)-C(6)	1.386(6)	C(17)–C(18)	1.375(9)
C(5)-C(10)	1.399(6)	C(18)–C(19)	1.353(8)
C(6)–C(7)	1.387(8)	C(19)-C(20)	1.379(7)
C(7)–C(8)	1.366(9)	C(20)–C(21)	1.381(7)
C(8)-C(9)	1.388(8)	C(21)–N(22)	1.412(6)
	1		

Основные длины связей (d) в молекуле соединения 4

Основные валентные углы	(ω)	в молекуле	соединения 4
-------------------------	-----	------------	--------------

Таблица 4

Основные валентные углы (w) в молекуле соединения 4				
Угол	ω, град.	Угол	ω, град.	
C(2)–O(1)–C(9)	121.5(4)	C(3)-C(12)-N(13)	123.0(6)	
O(1)-C(2)-C(3)	116.6(6)	C(12)-N(13)-C(14)	117.7(5)	
O(1)-C(2)-O(11)	116.2(7)	N(13)-C(14)-N(15)	124.5(5)	
C(3)-C(2)-O(11)	127.0(7)	N(13)-C(14)-N(22)	121.3(5)	
C(2)–C(3)–C(4)	120.3(5)	N(15)-C(14)-N(22)	114.1(6)	
C(2)-C(3)-C(12)	119.5(6)	C(14)-N(15)-C(16)	104.6(4)	
C(4)-C(3)-C(12)	120.2(5)	N(15)-C(16)-C(17)	128.8(5)	
C(3)-C(4)-C(10)	120.0(4)	N(15)-N(16)-C(21)	112.1(5)	
C(3)-C(4)-N(22)	114.5(4)	C(17)-C(16)-C(21)	119.3(6)	
C(10)-C(4)-N(22)	114.5(4)	C(16)-C(17)-C(18)	118.5(5)	
C(6)-C(5)-C(10)	119.5(5)	C(17)-C(18)-C(19)	120.7(6)	
C(5)-C(6)-C(7)	120.0(6)	C(18)-C(19)-C(20)	122.8(6)	
C(6)-C(7)-C(8)	120.9(5)	C(19)-C(20)-C(21)	117.6(5)	
C(7)–C(8)–C(9)	119.6(6)	C(16)-C(21)-C(20)	120.9(5)	
O(1)-C(9)-C(8)	117.9(6)	C(16)-C(21)-N(22)	104.7(5)	
O(1)-C(9)-C(10)	121.7(4)	C(20)-C(21)-N(22)	133.9(4)	
C(8)-C(9)-C(10)	120.4(6)	C(4)-N(22)-C(14)	121.7(5)	
C(4)-C(10)-C(5)	124.5(4)	C(4)-N(22)-C(21)	133.9(4)	
C(4)-C(10)-C(9)	115.9(4)	C(14)-N(22)-C(21)	104.3(4)	
C(5)-C(10)-C(9)	119.3(4)			

В спектре соединения 3і имеются синглетные сигналы двух метильных групп. При взаимодействии кумарина 1 с 2-аминобензимидазолом возможно образование двух изомерных продуктов 4 и 5. Данные РСА свидетельствуют об образовании соединения 4 (рис. 1, табл. 3 и 4).

На рис. 1 представлена пространственная модель молекулы 4 с обозначениями атомов (соединение 4 рассматривается, как производное кумарина, в соответствии с этим проведена нумерация атомов). Указанные расстояния между атомами (табл. 3) свидетельствуют о неравномерном распределении π -электронного облака: связи C(12)–N(13), C(14)–N(15) близки к двойным, тогда как связи C(4)–N(22), C(14)–N(22), C(21)–N(22), N(15)–N(16) приближаются к ординарным.

Молекула 4 состоит из пяти плоских фрагментов (циклов) - A, B, C, D и Е (рис. 1), значения двугранных углов между ними равны: А^AB 11.8(2), A[^]C 25.4(2), A[^]D 33.7(2), A[^]E 38.7(2)^o; B[^]C 14.1(2), B[^]D 22.6(2), B[^]E 27.2(2)°; С^D 8.5(2), С^E 13.3(2)°; D^E 5.4(3)°. Конформация молекулы, очевидно, не может быть плоской из-за отталкивания атомов водорода при атомах С(5) и С(20), поэтому двугранные углы между плоскостями циклов отличаются от нуля. Причем двугранный угол между циклами А и E (A[^]E) фактически равен сумме двугранных углов A[^]B, B[^]C, C[^]D и D[^]E; угол B[^]E равен сумме углов B[^]C, C[^]D и D[^]E и т. д., то есть молекула имеет гелициклическую конформацию: атомы молекулы располагаются на поверхности геликоида, параметр (шаг) которого равен 2.55 Å. Молекулы соединения 4, таким образом, хиральны, хотя асимметрических атомов нет. В кристаллической структуре 4 присутствуют оба энантио- мера, связанные друг с другом элементами симметрии (центрами инверсии и плоскостями скользящего отражения). Проекции кристал- лической структуры соединения 4 на рис. 2.

Рис. 2. Проекции кристаллической структуры соединения **4** на плоскости *уz* (*a*) и *zx* (*b*)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н зарегистрированы на спектрометрах Bruker WH 90/DS (90 МГц) в CDCl₃, внутренний стандарт ТМС. ИК спектры сняты на приборе Specord IR-75 для суспензий веществ в вазелиновом масле (область 1800–1500 см⁻¹) и гексахлорбутадиене (3600–2000 см⁻¹), частоты валентных колебаний связей С–Н в области 3050–2800 см⁻¹ не приведены.

2-Фенил- (3а), 2-(4-хлорфенил)- (3b), 2-(4-аминокарбонилфенил)- (3c), 2-(3-пиридил)- (3d), 2-(4-пиридил)- (3e), 2-пиразинил- (3f), 2-(1-пирролидил)- (3g), 2-(4-морфолил)- (3h) [1]бензопирано[4,3-d]пиримидин-5-оны (общая методика). К раствору 2 ммоль соли амидина 2 и 1.0 мл (10 ммоль) пиперидина в 3 мл ДМФА при 20 °С и перемешивании прибавляют по каплям раствор 2 ммоль альдегида 1 в 5 мл ДМФА. Реакционную смесь выдерживают 2 ч при температуре 60–70 °С, затем прибавляют к ней 2 мл воды и оставляют на 1 сут в холодильнике. Осадок продукта 3 отфильтровывают, промывают на фильтре этанолом и перекристаллизовывают из ДМФА.

2-(3,5-Диметил-1-пиразолил)-[1]бензопирано[4,3-*d***]пиридин-5-он (3i) получают аналогично, используя вместо пиперидина 1 мл триэтиламина.**

[1]Бензопирано[3,4:3',4']пиримидо[1,2-*a*]бензимидазол-6-он (4). Раствор 2 ммоль 2-аминобензимидазола в 5 мл ТГФ прибавляют по каплям при 20 °С и перемешивании к раствору 2 ммоль соединения 1 в 5 мл ТГФ. Перемешивают при 20 °С еще 5 ч, затем осадок продукта 4 отфильтровывают и перекристаллизовывают из этанола.

Рентгеноструктурный анализ соединения 4. Монокристаллы соединения 4, полученные кристаллизацией из этанола, принадлежат моноклинной сингонии. Параметры кристаллической решетки: a = 9.0103(9), b = 7.2441(6), c = 20.841(2) Å, $\beta = 109.276(5)^\circ$; V = 1284.1(2) Å³, F(000) = 592, $\mu = 0.10$ мм⁻¹, $d_{\rm выч} = 1.486$ г·см⁻³, Z = 4, пространственная группа – $P2_1/c$.

Интенсивности 2833 независимых отражений измерены на автоматическом дифрактометре Nonius KappaCCD (молибденовое излучение с $\lambda = 0.71073$ Å, графитовый монохроматор) до $2\theta_{\text{max}} = 55^{\circ}$. В процессе расчетов использовалось 961 отражение с $I > 2\sigma(I)$. Структура расшифрована по методике [6]. Уточнение проведено МНК в полноматричном анизотропном приближении по комплексу программ AREN [7]. Окончательное значение фактора расходимости R = 0.084.

СПИСОК ЛИТЕРАТУРЫ

- И. Стракова, М. Петрова, С. Беляков, А. Страков, ХГС, 1827 (2003). [Chem. Heterocycl. Comp., 39, 1608 (2003)].
- И. Стракова, М. Петрова, С. Беляков, А. Страков, XTC, 660 (2006). [Chem. Heterocycl. Comp., 42, 574 (2006)].
- 3. И. Стракова, М. Петрова, С. Беляков, А. Страков, Latv. Ķīm. Žurn., 269 (2006).
- 4. U. Petersen, H. Heitzer, Liebigs Ann. Chem., 1663 (1976).
- 5. C. K. Ghosh, S. Khan, Indian J. Chem., 18B, 128 (1979).
- 6. А. Ф. Мишнев, С. В. Беляков, Кристаллография, **33**, 835 (1988).
- 7. В. И. Андрианов, Кристаллография, **32**, 228 (1987).

Рижский технический университет, Рига LV-1048, Латвия e-mail: strakovs@com.latnet.lv Поступило 01.02.2005 После доработки 13.02.2006

^аЛатвийский институт органического синтеза, Рига LV-1048, Латвия e-mail: marina@osi.lv