В. В. Ткачев, С. М. Алдошин, Н. А. Санина, Б. С. Лукъянов^a, В. И. Минкин^a, А. Н. Утенышев, К. Н. Халанский^a, Ю. С. Алексеенко^a

ФОТО- И ТЕРМОХРОМНЫЕ СПИРАНЫ 29*. НОВЫЕ ФОТОХРОМНЫЕ ИНДОЛИНОСПИРОПИРАНЫ, СОДЕРЖАЩИЕ ХИНОЛИНОВЫЙ ФРАГМЕНТ

Синтезирован новый фотохромный спиропиран индолинового ряда, содержащий хинолиновый фрагмент. Изучены фотохромные свойства полученного спиропирана и его иодметилата. Особенности молекулярного строения соединений определены методом РСА. Установлено, что пиридопирановые фрагменты катионов в кристалле иодметильной соли, в отличие от таковых в кристалле нейтрального спиропирана, выходят из 2₁-стопок, расположенных совместно с ионами Г, что обусловливает их более высокую подвижность и способствует протеканию обратимых фотопревращений при УФ облучении в растворах.

Ключевые слова: индолиноспиропиран, хинолиновый фрагмент, РСА, фотохромизм.

Синтез солей спиропиранов (SP⁺X⁻), исследование их молекулярного, кристаллического строения и фотохромных превращений в твердой фазе вызывают огромный интерес [2–7] в связи с созданием на их основе новых полифункциональных материалов, сочетающих в одной кристаллической решетке несколько полезных свойств (фотовключаемые нелинейные оптические свойства [8] или фотомагнетизм [9]) и открывающих перспективу применения кристаллических гибридов в миниатюрных электронных приборах.

Фотохромные превращения нейтральных спиропиранов, связанные с разрывом связи С_{спиро}–О и последующей изомеризацией молекулы, требуют большого свободного объема и поэтому в кристаллах чрезвычайно затруднены в силу плотной упаковки молекул в решетке. Как правило, нейтральные спиропираны в монокристаллах и микрокристаллических порошках в условиях стационарного облучения не проявляют фотоокрашивания, обусловленного образованием плоских открытых фотомероцианиновых структур [10], как это наблюдается в растворах или в аморфном состоянии.

Исследование ультратонких спрессованных микрокристаллических образцов солевых спиропиранов и спироксазинов с N-метилированными пиранопиридиновыми циклами [6, 11, 12] показало, что при постоянном

^{*} Сообщение 28 см. [1].

УФ облучении (365 нм) они обратимо окрашиваются с появлением широкой 690

полосы поглощения между 500 и 650 нм, как это наблюдается и в растворах. Фотохромные превращения обратимы, и монокристаллы выдерживают несколько десятков циклов без структурных и спектральных изменений. Для установления особенностей молекулярной и кристаллической структуры, которая обеспечивает обратимые фотохромные превращения солей спиропиранов в условиях кристаллической упаковки, нами проведены синтез и систематическое исследование строения новых солей различных классов спиропиранов [5, 6, 12, 13].

Изучаемые в данной работе спиро(1,3,3-триметилиндолино-2,3'-3H-пирано[3,2-*f*]хинолин) (**3**) и его производное – иодид спиро(1,3,3,7'-тетраметилиндолино-2,3'-3H-пирано[3,2-*f*]хинолиния) (**4**), содержащий кватернизованный атом азота, синтезированы по приведенной схеме:

В ИК спектрах соединений 3 и 4 имеются полосы поглощения v_{C=C} 2H-хроменового фрагмента при 1593-1673 и 1527-1600 см⁻¹ (для соединений **3** и **4** соответственно). В спектрах ЯМР ¹Н полученных спиропиранов сигналы протонов H-1' и H-2' представляют собой АВ системы (соединение **3** при 5.97 (H-1') и 7.50 (H-2'), $J_{1',2'} = 10.4$ и соединение 4 при 6.10 (H-1') и 7.72 м. д. (H-2'), J_{1'2'} = 10.6 Гц). Сигналы метильной группы при атоме азота (N-CH₃) в положении 3 индолинового фрагмента проявляются в виде синглетного трехпротонного сигнала при 2.73 и 2.74 м. д., а в соединении 4 отмечен трехпротонный синглетный сигнал при 4.83 м. д. метильной группы при четвертичном атоме азота. гем-Диметильные группы в положении 3 индолинового фрагмента представляют собой удобную диастереотопную метку, отражающую спиропирановую структуру соединений. Наличие в спектре ЯМР ¹Н двух синглетных сигналов гем-диметильных групп (гем-(СН₃)₂) при 1.20, 1.32 и 1.23, 1.32 м. д. для соединений 3 и 4, соответственно, обусловленных наличием в молекуле асимметрического атома углерода, подтверждает спироциклическую структуру соединений.

Рис. 1. Общий вид соединения 3, по данным РСА

Для более детального изучения структуры синтезированных спиропиранов экспериментальным подбором растворителей (EtOH для соединения **3** и смесь MeOH–H₂O, 5:1, для соединения **4**) были выращены их монокристаллы и проведен PCA (табл. 1–4).

Молекулярные структуры обоих соединений аналогичны друг другу и другим ранее исследованным спиропиранам [13]. В молекуле соединения **3** (рис. 1) и в молекулярном катионе соединения **4** (рис. 2) индолиновый и пиранопиридиновый фрагменты расположены почти ортогонально друг к другу (угол 88.7° в соединении **3** и 89.2° в соединении **4**). Каждый из этих фрагментов непланарен. Индолиновый фрагмент имеет перегиб по линии $N_{(1)}$ – $C_{(3)} \phi = 32.8°$ в соединении **3** и $\phi = 29.2°$ в соединении **4** (угол между плоскостями $N_{(1)}$ – $C_{(3)}$ – $C_{(3)}$ и $N_{(1)}$ – $C_{(3)}$ – $C_{(3)}$ – $C_{(3)}$ и $N_{(1)}$ – $C_{(3)}$ –

Рис. 2. Общий вид соединения 4, по данным РСА

Таблица 1

Основные кристаллографические данные и характеристики эксперимента для соединений 3 и 4

Параметр	Соединение		
Параметр	3	4	
Брутто-формула	$C_{22}H_{20}N_2O$	C ₂₃ H ₂₃ IN ₂ O	
M	328.4	470.3	
Температура, К	293	293	
Сингония	Моноклинная	Моноклинная	
Пространственная группа	P2(1)/c	P2(1)/n	
<i>a</i> , Å	11.912(2)	7.925(1)	
b, Å	11.601(2)	11.338(2)	
<i>c</i> , Å	13.793(4)	23.147(5)	
β, град.	115.00(2)	98.14(3)	
V, Å ³	1727.5(7)	2058.9(7)	
Z	4	4	
$\rho_{\rm BbI4}, \Gamma/cm^3$	1.263	1.517	
л, мм ⁻¹	0.08	1.570	
Область сканирования	1.89-24.97	1.78-25.05	
Количество			
измеренных отражений	3037	3659	
отражений с интенсивностями $I > 2\sigma(I)$	2037	2021	
уточняемых параметров	287	272	
₹ ₁	0.0439	0.0453	
R_w	0.1279	0.1191	
GOOF	1.070	0.975	

Таблица 2

Длины связей (l) в молекуле спиропиранов 3 и 4

Связь	l, Å		Срязі	l, Å	
	3	4	Связь	3	4
O _(4') –C _(13')	1.361(2)	1.359(6)	C _(14') –C _(6')	1.420(3)	1.404(7)
O _(4') –C(23')	1.474(2)	1.467(6)	$C_{(6')} - C_{(5')}$	1.357(3)	1.342(7)
$N_{(1)} - C_{(8)}$	1.404(3)	1.398(7)	$C_{(5')} - C_{(13')}$	1.410(2)	1.416(7)
N ₍₁₎ -C _(23')	1.446(3)	1.446(7)	$C_{(10')} - C_{(9')}$	1.366(3)	1.343(8)
$N_{(1)} - C_{(12)}$	1.454(3)	1.447(10)	$C_{(9')} - C_{(8')}$	1.392(3)	1.367(9)
N _(7') –C _(8')	1.318(3)	1.330(7)	$C_{(3)} - C_{(9)}$	1.508(3)	1.500(8)
N _(7') -C _(14')	1.369(2)	1.369(6)	$C_{(3)} - C_{(11)}$	1.511(3)	1.531(9)
C _(23') –C _(2')	1.489(3)	1.519(7)	$C_{(3)} - C_{(10)}$	1.551(3)	1.538(9)
$C_{(23')} - C_{(3)}$	1.562(3)	1.553(8)	$C_{(9)} - C_{(4)}$	1.383(3)	1.363(8)
C _(2') –C _(1')	1.317(3)	1.301(7)	$C_{(9)} - C_{(8)}$	1.385(3)	1.389(8)
$C_{(1')} - C_{(12')}$	1.460(3)	1.476(7)	$C_{(4)} - C_{(5)}$	1.393(3)	1.394(10)
$C_{(12')} - C_{(13')}$	1.367(2)	1.348(7)	$C_{(5)} - C_{(6)}$	1.364(4)	1.392(11)
$C_{(12')} - C_{(11')}$	1.426(2)	1.410(7)	$C_{(6)} - C_{(7)}$	1.378(4)	1.359(10)
C _(11') –C _(10')	1.412(3)	1.409(7)	$C_{(7)} - C_{(8)}$	1.383(3)	1.390(8)
C _(11') -C _(14')	1.416(3)	1.415(6)	N _(7') -C _(15')		1.492(8)

Угол	ω, град.		Vaca	ω, град.	
	3	4	УГОЛ	3	4
C _(13') -O _(4') -C _(23')	122.53(13)	120.2(4)	O _(4') -C _(13') -C _(12')	123.51(16)	123.8(4)
$C_{(8)}$ - $N_{(1)}$ - $C_{(23')}$	107.01(15)	107.5(5)	O _(4') -C _(13') -C _(5')	114.60(15)	115.2(4)
$C_{(8)} - N_{(1)} - C_{(12)}$	118.9(2)	122.4(5)	$C_{(12')}$ - $C_{(13')}$ - $C_{(5')}$	121.89(17)	121.0(5)
$C_{(23')} = N_{(1)} = C_{(12)}$	117.8(2)	120.6(5)	C _(9') -C _(10') -C _(11')	119.50(19)	121.0(5)
$C_{(8')} = N_{(7')} = C_{(14')}$	117.06(18)	121.7(5)	$C_{(10')}$ - $C_{(9')}$ - $C_{(8')}$	119.2(2)	120.7(5)
$N_{(1)}$ - $C_{(23')}$ - $O_{(4')}$	106.62(14)	105.5(4)	$N_{(7')} - C_{(8')} - C_{(9')}$	124.3(2)	120.3(5)
$N_{(1)}-C_{(23')}-C_{(2')}$	112.16(17)	112.1(5)	$C_{(9)}-C_{(3)}-C_{(11)}$	115.42(16)	112.8(5)
$O_{(4')} - C_{(23')} - C_{(2')}$	111.29(16)	109.3(4)	$C_{(9)}$ - $C_{(3)}$ - $C_{(10)}$	108.55(16)	109.5(5)
N ₍₁₎ -C _(23') -C ₍₃₎	103.11(15)	103.4(4)	$C_{(11)}$ - $C_{(3)}$ - $C_{(10)}$	108.93(18)	108.6(5)
$O_{(4')} - C_{(23')} - C_{(3)}$	106.36(14)	108.7(4)	C ₍₉₎ -C ₍₃₎ -C _(23')	99.75(14)	101.5(4)
$C_{(2')} - C_{(23')} - C_{(3)}$	116.53(16)	117.1(5)	C ₍₁₁₎ -C ₍₃₎ -C _(23')	113.56(17)	113.0(5)
$C_{(1')} - C_{(2')} - C_{(23')}$	124.33(18)	123.3(5)	$C_{(10)}$ - $C_{(3)}$ - $C_{(23')}$	110.28(16)	111.3(5)
$C_{(2')} - C_{(1')} - C_{(12')}$	121.08(18)	120.2(5)	$C_{(4)}$ - $C_{(9)}$ - $C_{(8)}$	119.55(19)	120.1(6)
$C_{(13')} - C_{(12')} - C_{(11')}$	118.90(16)	119.5(4)	$C_{(4)}$ - $C_{(9)}$ - $C_{(3)}$	131.56(19)	131.4(6)
$C_{(13')} - C_{(12')} - C_{(1')}$	116.89(17)	116.8(4)	$C_{(8)}$ - $C_{(9)}$ - $C_{(3)}$	108.88(16)	108.4(5)
$C_{(11')} - C_{(12')} - C_{(1')}$	124.20(16)	123.7(4)	$C_{(9)}$ - $C_{(4)}$ - $C_{(5)}$	118.8(2)	119.4(7)
$C_{(10')} - C_{(11')} - C_{(14')}$	116.86(17)	116.8(5)	$C_{(6)}$ - $C_{(5)}$ - $C_{(4)}$	120.7(2)	119.5(6)
$C_{(10')} - C_{(11')} - C_{(12')}$	123.65(17)	123.7(4)	$C_{(5)} - C_{(6)} - C_{(7)}$	121.4(2)	121.7(6)
$C_{(14')} - C_{(11')} - C_{(12')}$	119.48(16)	119.5(4)	$C_{(6)} - C_{(7)} - C_{(8)}$	117.9(2)	118.1(7)
$N_{(7')}$ – $C_{(14')}$ – $C_{(11')}$	123.03(17)	119.5(4)	$C_{(7)}$ - $C_{(8)}$ - $C_{(9)}$	121.7(2)	121.2(6)
$N_{(7')}$ - $C_{(14')}$ - $C_{(6')}$	117.81(17)	121.4(4)	$C_{(7)}$ - $C_{(8)}$ - $N_{(1)}$	128.3(2)	128.3(6)
$C_{(11')} - C_{(14')} - C_{(6')}$	119.16(17)	119.1(5)	$C_{(9)}$ - $C_{(8)}$ - $N_{(1)}$	110.03(16)	110.4(5)
$C_{(5')} - C_{(6')} - C_{(14')}$	120.58(18)	120.3(4)	$C_{(8')} = N_{(7')} = C_{(15')}$		118.6(5)
$C_{(6')} - C_{(5')} - C_{(13')}$	119.97(17)	120.6(5)	$C_{(14')} - N_{(7')} - C_{(15')}$		119.7(4)

Валентные углы (ф) в молекуле соединений 3 и 4

Таблица 3

Пиранопиридиновый фрагмент в соединении 3 почти плоский, а в соединении 4 неплоский: перегибы по линиям $C_{(2')}-O_{(4')}$ и $C_{(1')}-O_{(4')}$ $\alpha = 4.30$, β = 3.5° в **3** и α = 18.90, β = 14.6° в **4** соответственно. По-видимому, в этом причина того, что молекула соединения 3 и молекулярный катион 4 значительно отличаются друг от друга при совмещении их на плоскость индолинового фрагмента (рис. 3). Максимальное отклонение между атомами $C_{(8')}$ в соединениях **3** и **4** составляет 3.4 Å. Длина связи $C_{(23')}$ — $O_{(4')}$ в соединении **3** 1.474(2), в **4** – 1.467(6) Å, что больше обычных значений: 1.41–1.43 (1) Å [14]. Выход атома N₍₁₎ из плоскости, проведенной через связанные с ним атомы $C_{(23')}$, $C_{(8)}$, $C_{(12)}$, 0.33 в соединении **3** и 0.26 Å – в **4**, а сумма валентных углов при N₍₁₎ 343.7 в 3 и 350.5° в 4, что свидетельствует о пирамидальной конфигурации атома азота и заметном sp³ характере неподеленной электронной пары атома N₍₁₎. Ориентация валентных связей при атоме N₍₁₎ в соединениях 3 и 4 соответствует *транс*-положению неподеленной электронной пары атома азота к связи С(23')-О(4'). Угол между вектором связи С(23')-О(4') и плоскостью, проведенной через атомы, которые образуют основание пирамиды с вершиной N₍₁₎, составляет 170.8 и 169.2° для соединений 3 и 4 соответственно. Подобная ориентация делает возможным орбитальное взаимодействие неподеленной электронной атома N₍₁₎ с разрыхляющей от*-орбиталью C_(23')-O_(4'). пары Это взаимодействие 694

Рис. 3. Совмещенные молекула 3 и молекулярный катион 4

приводит к ослаблению связи C_(23')–O_(4') и ее удлинению, что делает возможным эффективный разрыв этой связи в фотовозбужденном состоянии.

Аналогично ранее изученным соединениям данного класса [5] монокристаллы нейтрального спиропирана **3** и его солевого производного **4** имеют пространственные группы P2(1)/c Z = 4 и P2(1)/n Z = 4, соответственно, с плотностью 1.263 и 1.517 г/см³.

Кристаллическая структура соединения **3** представлена на рис. 4. Общая энергия кристаллической решетки -31.4 ккал/моль. Основной вклад в общую энергию дает энергия межмолекулярных парных взаимодействий между молекулами, связанными винтовой осью второго порядка, равная -8.6 ккал/моль. Между молекулами, связанными центром симметрии, возникают слабые межмолекулярные водородные связи типа С–Н...N (рис. 5) с параметрами: $N_{(7')}$...H-6'a 2.70, $N_{(7')}$...C_(6'a) 3.637 Å, $N_{(7')}$ –H-6'a–C_(6'a) 167.7°. Атом $N_{(7')}$ имеет межмолекулярный контакт 2.92 Å с атомом водорода метильной группы C₍₁₂₎ молекулы, которая связана винтовой осью второго порядка с трансляциями 0–10.

Рис. 4. Фрагмент кристаллической структуры соединения 3

Рис. 5. Молекулы соединения 3, связанные межмолекулярными водородными связями

Кристаллическая структура соли 4 представлена на рис. 6–8. Катионы соединения 4 образуют блочную упаковку. Вдоль оси кристаллографического направления *x* органические катионы связаны трансляционно (рис. 6) и образуют каналы, в которых локализуются анионы иода.

Рис. 6. Фрагмент кристаллической структуры соединения 4 вдоль оси х

Рис. 7. Фрагмент кристаллической структуры соединения 4 вдоль оси у

Анионы Г примерно одинаково удалены от положительно заряженных атомов азота пиранопиридиновых фрагментов катионов, трансляционно связанных, на расстояния 4.04 и 4.19 Å для связей $\Gamma_{(16')}$... $N_{(7')}$ в соединениях **3** и **4** соответственно (рис. 9). Эти расстояния больше аналогичных расстояний для одной соли и соответствуют для другой (в работе [5] соответственно 3.75 и 4.10 Å). Наименьшее расстояние, образуемое анионом иода и реализуемое между анионом $\Gamma_{(16')}$ и атомом $C_{(10')}$, равно 3.762 Å. Вдоль оси *у* можно выделить стопки, образованные органическими катионами (рис. 7). В стопках катионы связаны винтовыми осями второго порядка (рис. 10). В 2₁-стопках катионы упакованы индолиновыми фрагментами, а пиридопирановые выходят из стопок в разные стороны

Рис. 8. Фрагмент кристаллической структуры соединения 4 вдоль оси z

Рис. 9. Расположение молекул соединения **4**, трансляционно связанных, в направлении оси *х*

(рис. 10); при этом индолиновые фрагменты располагаются примерно друг над другом. Угол между средними плоскостями индолиновых фрагментов соседних молекул в 2₁-стопках составляет 47.9°, а между этой плоскостью и осью $2_1 - 156.0^\circ$. Плоскости пиридопирановых фрагментов с осью 2_1 составляют угол 96.9°. В ранее изученных кристаллах солей [5] 2₁-стопки также упакованы вдоль оси *y*.

Таким образом, 2_1 -стопки в кристалле соединения **4**, в отличие от стопок в кристалле соединения **3**, устроены так, что пиридопирановые фрагменты катионов выходят из 2_1 -стопок, расположенных совместно с ионами $I_{(16')}$, и могут обладать достаточно высокой подвижностью. Учитывая, что разрыв связи $C_{спиро}$ –О и дальнейшая изомеризация происходят в пиридопирановом фрагменте спиропирана, можно ожидать, что в монокристаллах солей кристаллическая структура будет способствовать фотопревращению при УФ облучении.

Рис. 10. Расположение молекул соединения 4 в 21-стопках вдоль направления оси у

Рис. 11. Фотоиндуцированные спектральные изменения раствора соединения 3 в этаноле при УФ облучении

Рис. 12. Термическая релаксация системы **4** в этаноле к термодинамическому равновесию после УФ облучения (λ_{max} 546 нм)

Таблица 4

Соединение	λ^{A}_{max} , нм	$ε (λ^{A}_{max}),$ $M^{-1} \cdot c M^{-1}$	λ^{B}_{max} , нм	τ^{B}_{24}, c
3	247	48390	527 (пл.)	0.43
	289	11060	562	
	317 (пл.)	4450		
	336 (пл.)	4000		
	352	4440		
	367 (пл.)	3660		
4	271	42090	534	26.0
	321	4090	564	
	334	3870		
	399	3490		

Спектральные и кинетические характеристики соединений 3 и 4 (A) и их фотоиндуцированных форм (B) в этаноле при 24 °C

Действительно, для соединения **3** (рис. 11) в этаноле наблюдается равновесие с небольшим содержанием мероцианиновой формы, что придает раствору легкий сиреневый оттенок. При селективном возбуждении открытой формы обратная фотореакция не наблюдается, видимо, вследствие конкуренции с гораздо более эффективными термическими процессами. При облучении раствора $365/\Sigma$ -светом наблюдается небольшое увеличение содержания окрашенной формы по сравнению с равновесным. Обратимость обусловлена термической релаксацией к состоянию термодинамического равновесия. Коэффициенты экстинкции формы А (табл. 4) рассчитаны из предположения, что содержание мероцианиновой формы пренебрежимо мало и [C₀] = [A₀]. В соединении **4** (рис. 12), в отличие от соединения **3**, наряду с термическими процессами представлены как прямая, так и обратная фотореакции. Это дает возможность рассчитать коэффициенты экстинкции формы А без дополнительных предположений (см. табл. 4).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на призменном двухлучевом спектрометре Specord IR-71. Калибровка прибора проведена по полистиролу. Электронные спектры исследуемых соединений получены на спектрофотометре Carry Varian. В качестве возбуждающего источника использовалась ртутная лампа ДРШ-250 со светофильтрами, выделяющими свет с λ_{max} 313 и 365 нм. Спектры ЯМР ¹Н зарегистрированы на спектрометре Varian Unity-300 (300 МГц) в CDCl₃, отнесение сигналов проведено относительно остаточных протонов сигнала дейтерорастворителя CDCl₃ (δ 7.26 м. д.).

Спиро(1,3,3-триметилиндолино-2,3'-3Н-пирано[3,2-*f*]хинолин) (3). К кипящей смеси 2.74 г (10 ммоль) перхлората 1,2,3,3-тетраметилиндоленилия 1 и 1.90 г (11 ммоль) 6-гидроксихинолин-5-альдегида 2 [15] в 15 мл 2-пропанола прибавляют по каплям 1.073 г (~1.1 мл, 13 ммоль) пиперидина. Реакционную смесь кипятят 15 мин и оставляют на ночь при комнатной температуре. Выпавшие кристаллы отфильтровывают и перекристаллизовывают из гексана. Т. пл. 162 °С, выход 65%. Найдено, %: С 80.32; Н 6.23; N 8.47. С₂₂H₂₀N₂O. Вычислено, %: С 80.46; Н 6.14; N 8.53.

Иодид спиро(1,3,3,7'-тетраметилиндолино-2,3'-3H-пирано[3,2-f]хинолиния) (4). Смесь 0.328 г (1 ммоль) соединения 3 и 0.213 г (~ 0.09 мл, 1.5 ммоль) МеІ в 15 мл абсолютного ацетона кипятят 3 ч, оставляют на 2 дн, выпавший осадок отфильтровывают и промывают абсолютным ацетоном. Т. пл. >250 °С (из ацетона), выход 80%. ИК спектр (тонкий слой), v, см⁻¹: соединение **3** – 1673, 1633, 1593 (C=C); соединение **4** – 1600, 1580, 1533 (C=C). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): соединение **3** – 1.20 (3H, с, *гем.* (CH₃)₂); 1.32 (3H, с, *гем.* (CH₃)₂); 2.73 (3H, с, N–CH₃); 5.83 (1H, д, *J* = 10.4, H-2'); 6.53 (1H, д, *J* = 8.1, H-6'); 6.85 (1H, т, *J* = 7.3, H-5); 7.09 (1H, д, *J* = 6.1, H-7); 7.16–7.22 (2H, м, H-6,4); 7.39 (1H, к, *J* = 8.5, H-9'); 7.50 (1H, д, *J* = 10.4, H-1'); 7.86 (1H, д, *J* = 9.3, H-10'); 8.34 (1H, д, *J* = 8.1, H-5'); 8.74 (1H, д, *J* = 4.2, H-8'); соединение **4** – 1.23 (3H, с, *гем.* (CH₃)₂); 1.32 (3H, с, *гем.* (CH₃)₂); 2.74 (3H, с, N₍₁₎–CH₃); 4.83 (3H, с, N₍₇₎–CH₃); 6.10 (1H, д, *J* = 10.6, H-2'); 6.57 (1H, д, *J* = 7.8, H-7); 6.91 (1H, т, *J* = 7.4, H-5); 7.12–7.22 (2H, м, H-6,4); 7.61 (1H, д, *J* = 9.6, H-6'); 7.72 (1H, д, *J* = 10.6, H-1'); 8.12 (1H, д, *J* = 9.6, H-5'); 8.17 (1H, м, *J* = 8.8, H-9'); 9.35 (1H, д, *J* = 8.8, H-10'); 10.08 (1H, д, *J* = 5.6, H-8'). Найдено, %: C 58.61; H 5.05; N 6.03. C₂₃H₂₃IN₂O. Вычислено, %: C 58.73; H 4.93; N 5.96.

Рентгеноструктурное иследование спиропирана 3 и его соли 4 проведено на монокристаллах светло-розового и коричневого цвета, соответственно, произвольной формы, размерами $0.5 \times 0.4 \times 0.45$ (3) и $0.2 \times 0.2 \times 0.2$ мм (4) при 293 К на дифрактометре КМ4 фирмы KUMA Diffraction (λ (Мо $K\alpha$) = 0.71073 Å, ω /2 θ -сканирование). Кристаллографические данные и основные параметры уточнения представлены в табл. 1. Структуры расшифрованы прямым методом [16]. Позиции и температурные параметры неводородных атомов уточнены в анизотропном приближении полноматричным МНК [17]. Позиции атомов водорода выявлены из разностных синтезов и в дальнейшем уточнялись с наложением ограничений по модели *всадника* [17] с учетом разупорядочения атомов водорода при метильном атоме C₍₁₂₎ по двум позициям, эквивалентно развернутым относительно плоскости кольца. Все расчеты выполнены с использованием комплекса программ SHELXL97 [16].

Авторы благодарят С. О. Безуглого за проведение фотохимических измерений.

Работа выполнена при финансовой поддержке Программы фундаментальных исследований ОХНМ РАН № 1 "Теоретическое и экспериментальное изучение природы химической связи и механизмов важнейших химических реакций и процессов".

СПИСОК ЛИТЕРАТУРЫ

- 1. К. Н. Халанский, Ю. С. Алексеенко, Б. С. Лукьянов, С. О. Безуглый, *Научная мысль Кавказа*, приложение 14, 239 (2006).
- 2. S. Bénard, P. Yu, Adv. Mater., 12, 48 (2000).
- 3. S. Bénard, E. Rivière, P. Yu, K. Nakatani, J. F. Delouis, Chem. Mater., 13, 159 (2001).
- 4. S. Bénard, P. Yu, Chem. Commun., 65 (2000).
- S. M. Aldoshin, L. A. Nikonova, V. A. Smirnov, G. V. Shilov, N. K. Nagaeva, J. Mol. Struct., 750, 158 (2005).
- S. M. Aldoshin, L. A. Nikonova, G. V. Shilov, E. A. Bikanina, N. K. Artemova, V. A. Smirnov, J. Mol. Struct., 794, 1 (2006).
- S. M. Aldoshin, L. A. Nikonova, G. V. Shilov, E. A. Bikanina, N. K. Artemova, V. A. Smirnov, J. Mol. Struct., 794, 103 (2006).
- 8. K. Nakatani, J. A. Delaire, Chem. Mater., 9, 2682 (1997).
- I. Kashima, M. Okubo, Y. Ono, M. Itoi, N. Kida, M. Hikita, M. Enomoto, N. Kojima, *Synth. Met.*, **153**, 473 (2005).
- Y. Futami, M. L. S. Chin, S. Kudooh, M. Takayanagi, M. Nakata, *Chem. Phys. Lett.*, **370**, 460 (2003).
- 11. S. Bénard, E. Rivière, P. Yu, K. Nakatani, J. F. Delouis, Chem. Mater., 13, 159 (2001).
- 12. С. М. Алдошин, Л. А. Никонова, В. А. Смирнов, Г. В. Шилов, Н. К. Нагаева, Изв. АН,

Сер. хим., 1 (2005).

- S. M. Aldoshin, in Organic Photochromic and Thermochromic Compounds, Kluwer Plenum, New York, 1999, vol. 2, p. 297.
- 14. С. М. Алдошин, А. О. Буланов, В. А. Коган, Б. С. Лукьянов, В. И. Минкин, Б. Б. Сафоклов, В. В. Ткачев, *ДАН*, **390**, 51 (2003).
- 15. B. Bobranski, J. Prakt. Chem., 146 (1932).
- G. M. Sheldrick, SHELX-86, Program for R-crystal Structure Determination, Univ. Cambridge, UK, 1986.
- 17. G. M. Sheldrick, *SHELXL-97*, Program for the Solution and Refinement of Crystal Structures, Univ. Göttingen, Göttingen, 1997.

Институт проблем химической физики РАН, Черноголовка 142432, Московская обл. e-mail: sma@icp.ac.ru Поступило 25.11.2006

^аНаучно-исследовательский институт физической и органической химии Ростовского государственного университета, Ростов-на-Дону 344090, Россия e-mail: minkin@ipoc.rsu.ru