И. В. Украинец, Н. Л. Березнякова, В. А. Паршиков, С. В. Шишкина^а

4-ГИДРОКСИХИНОЛОНЫ-2

114*. СИНТЕЗ И СТРОЕНИЕ 6-R-5-ГИДРОКСИ-2,4-ДИОКСО-2,3,4,6-ТЕТРАГИДРОБЕНЗО[*c*][2,7]НАФТИРИДИН-1-КАРБОНИТРИЛОВ

Гидратация этиловых эфиров 1-R-4-дицианометил-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот приводит к соответствующим замещенным цианацетамидам, которые в присутствии водных щелочей легко и количественно циклизуются в 6-R-5-гидрокси-2,4диоксо-2,3,4,6-тетрагидробензо[*c*][2,7]нафтиридин-1-карбонитрилы.

Ключевые слова: бензонафтиридин, малононитрил, 4-хлор-3-этоксикарбонилхинолин-2-он, цианацетамид, гидролиз, РСА.

Щелочной гидролиз 1-R-3-карбэтокси-2-оксо-4-(цианоэтоксикарбонилметил)-1,2-дигидрохинолинов с одновременным или последующим декарбоксилированием представляет собой удобный в препаративном отношении способ получения 4-метилзамещенных 1-R-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот [2, 3]. Ключевой стадией этого синтеза, определяющей эффективность метода в целом, является обмен атома галогена в 1-R-2-оксо-4-хлор-3-этоксикарбонил-1,2-дигидрохинолинах **1** на остаток циануксусного эфира. И хотя эти реакции проходят с хорошими выходами, несомненно интересной представляется замена циануксусного эфира другими метиленактивными соединениями. Например, хорошо известна избирательность и высокая реакционная способность в реакциях со многими гетарилгалогенидами малононитрила [4]. Данное обстоятельство и предопределило настоящее исследование.

Как оказалось, 4-хлорхинолины 1 с малононитрилом в системе ДМФА– K_2CO_3 реагируют весьма энергично – реакция проходит с заметным выделением тепла. Предполагалось, что после разбавления реакционной смеси водой и подкисления будут получены соответствующие хинолинмалононитрилы 2. Однако в спектрах ЯМР ¹Н выделенных соединений помимо сигналов, обусловленных протонами бензольной части молекулы, 4-CH, 3-COOEt и 1-N-алкильных групп с типичной для них мультиплетностью, обнаруживаются два "лишних" синглета интенсивностью 1Н каждый в ароматической области, что явно не соответствует ожидаемой структуре.

^{*} Сообщение 113 см. [1].

1–6 a R = Me, **b** R = Et, **c** R = Pr

По данным РСА одного из образцов удалось установить, что в действительности полученные вещества являются не малононитрилами **2**, а замещенными цианацетамидами **4** (табл. 1). Следовательно "лишние" сигналы в спектрах ЯМР ¹Н принадлежат магнитно-неэквивалентным протонам амидной группы (табл. 2). На примере этилового эфира 4-(карбамоилцианометил)-2-оксо-1-этил-1,2-дигидрохинолин-3-карбоновой кислоты (**4b**) показано, что пиридоновый цикл в таких соединениях находится в конформации сильно уплощенная *ванна* (параметры складчатости: *S* = 0.1, θ = 84.2, Ψ = 3.6 [5]). Отклонения атомов C₍₇₎ и N₍₁₎ от средне-квадратичной плоскости остальных атомов цикла составляют –0.07 и –0.05 Å соответственно (рис. 1, табл. 3, 4). Непланарность гетероцикла, а также скрученность двойной связи C₍₇₎–C₍₈₎ (торсионный угол C₍₆₎–C₍₇₎–C₍₈₎–C₍₉₎–6.0(2)°) и удлинение связей C₍₇₎–C₍₈₎ 1.360(2) (среднее значение 1.326 [6]), C₍₇₎–C₍₁₃₎ 1.541(2) (1.510), C₍₈₎–C₍₁₀₎ 1.505(2) (1.488) и C₍₁₃₎–C₍₁₄₎ 1.556(2) Å (1.514 Å) обусловлены, по всей видимости, достаточно сильным

727

отталкиванием между пространственно сближенными заместителями при атомахС₍₇₎ и С₍₈₎ и атомами водорода ароматического цикла [укороченные внутримолекулярные контакты Н₍₅₎...С₍₁₃₎ 2.69 (сумма ван-дер-ваальсовых радиусов 2.87 [7]), H₍₅₎...C₍₁₄₎ 2.36 (2.87), H₍₁₃₎...C₍₁₀₎ 2.43 Å (2.87 Å)]. Сложноэфирный заместитель при атоме С₍₈₎ развернут относительно эндоциклической двойной связи (торсионный угол С(7)-С(8)-С(10)-О(2) 61.5(2)°), а этильная группа находится в +sc-конформации относительно связи $C_{(10)}$ – $O_{(3)}$ (торсионный угол $C_{(10)}$ – $O_{(3)}$ – $C_{(11)}$ – $C_{(12)}$ 74.9(2)°). Такая ориентация сложноэфирной группы дополнительно стабилизирована слабой внутримолекулярной водородной связью С(13)-Н(13)...О(2) Н...О 2.27 Å, C-H...O 137°. Нитрильная группа практически перпендикулярна бициклическому фрагменту (торсионный угол $C_{(8)}$ — $C_{(7)}$ — $C_{(13)}$ — $C_{(15)}$ —92.2(2)°), а ацетамидная группа находится в -ас-положении относительно связи С(7)-С(8) и развернута таким образом, что атом О(4) имеет - ac-ориентацию относительно связи C₍₇₎-C₍₁₃₎ (торсионные углы C₍₈₎-C₍₇₎-C₍₁₃₎-C₍₁₄₎-140.6 (2)°, $C_{(7)} - C_{(13)} - C_{(14)} - O_{(4)} - 122.7(2)^{\circ}$.

Этильная группа при атоме $N_{(1)}$ расположена практически перпендикулярно плоскости бицикла (торсионный угол $C_{(1)}$ – $N_{(1)}$ – $C_{(16)}$ – $C_{(17)}$ 88.5(2)°), а связи $N_{(1)}$ – $C_{(9)}$ 1.373(2), $N_{(1)}$ – $C_{(1)}$ 1.398(2) и $N_{(1)}$ – $C_{(16)}$ 1.483(2) Å несколько удлинены по сравнению с их средними значениями 1.355, 1.371 и 1.469 Å, соответственно, что является следствием отталкивания между заместителем при атоме $N_{(1)}$ и соседними карбонильной группой и атомом водорода в *пери*-положении бензольного кольца [укороченные внутримолекулярные контакты $H_{(2)}$... $C_{(16)}$ 2.51 (2.87), $H_{(2)}$... $H_{(16b)}$ 2.12 (2.34), $H_{(16b)}$... $C_{(2)}$ 2.61 (2.87), $H_{(16a)}$... $O_{(1)}$ 2.32 Å (2.46 Å)].

Таблица 1

Соеди- нение	Брутто- формула	<u>Найдено, %</u> Вычислено, % С Н N		Т. пл., °С	Выход, %	
4a	C ₁₆ H ₁₅ N ₃ O ₄	<u>61.48</u> 61.34	<u>4.95</u> 4.83	<u>13.33</u> 13.41	182 (разл.)	72
4b	$C_{17}H_{17}N_3O_4$	<u>62.30</u> 62.38	<u>5.32</u> 5.23	<u>12.71</u> 12.84	190 (разл.)	74
4c	$C_{18}H_{19}N_3O_4$	<u>63.46</u> 63.33	<u>5.73</u> 5.61	<u>12.44</u> 12.31	193 (разл.)	77
6a	$C_{14}H_9N_3O_3$	<u>62.82</u> 62.92	<u>3.27</u> 3.39	<u>15.64</u> 15.72	> 335	98
6b	$C_{15}H_{11}N_3O_3$	<u>64.13</u> 64.05	<u>3.99</u> 3.94	<u>14.85</u> 14.94	> 335	97
6c	$C_{16}H_{13}N_3O_3$	<u>65.01</u> 65.08	<u>4.38</u> 4.44	<u>14.30</u> 14.23	> 335	98

Характеристики цианацетамидов 4 и бензонафтиридинов 6

Таблица 2

Соеди- нение	Спектр ЯМР ¹ Н, б, м. д. (<i>J</i> , Гц)
4a	7.86 (1H, д. д, $J = 8.0$ и $J = 1.2$, H-5); 7.77 (1H, c, NH); 7.72 (1H, т. д, $J = 7.7$ и $J = 1.3$, H-7); 7.65 (1H, д. д, $J = 8.2$ и $J = 1.0$, H-8); 7.39 (1H, т. д, $J = 7.3$ и $J = 1.3$, H-6); 7.29 (1H, c, NH); 5.60 (1H, c, 4-CH); 4.34 (2H, к, $J = 7.1$, OCH ₂); 3.65 (3H, c, NCH ₃); 1.27 (3H, т, $J = 7.1$, OCH ₂ CH ₃)
4b	7.88 (1H, д, $J = 8.1$, H-5); 7.79 (1H, c, NH); 7.71–7.67 (2H, м, H-7,8); 7.39 (1H, т. д, $J = 7.1$ и $J = 1.2$, H-6); 7.31 (1H, c, NH); 5.59 (1H, c, 4-CH); 4.41–4.18 (4H, м, OCH ₂ + NCH ₂); 1.32–1.12 (6H, м, OCH ₂ C <u>H</u> ₃ + NCH ₂ C <u>H</u> ₃)
4c	7.85 (1H, д, $J = 8.1$, H-5); 7.77 (1H, c, NH); 7.73–7.66 (2H, м, H-7,8); 7.38 (1H, т. д, $J = 7.0$ и $J = 1.1$, H-6); 7.31 (1H, c, NH); 5.59 (1H, c, 4-CH); 4.34 (2H, к, $J = 7.2$, OCH ₂); 4.19 (2H, т, $J = 7.7$, NCH ₂); 1.63 (2H, м, NCH ₂ C <u>H₂</u>); 1.28 (3H, т, $J = 7.2$, OCH ₂ C <u>H₃</u>); 0.96 (3H, т, $J = 7.3$, NCH ₂ CH ₂ C <u>H₃</u>)
6a	12.90 (1H, уш. с, NH); 9.08 (1H, д, <i>J</i> = 8.1, H-10); 7.87–7.68 (2H, м, H-7,8); 7.43 (1H, т, <i>J</i> = 7.1, H-9); 3.53 (3H, с, CH ₃)
6b	12.98 (1H, уш. с, NH); 9.13 (1H, д, <i>J</i> = 8.2, H-10); 7.90–7.73 (2H, м, H-7,8); 7.48 (1H, т, <i>J</i> = 7.0, H-9); 4.31 (2H, к, <i>J</i> = 7.1, NCH ₂); 1.26 (3H, т, <i>J</i> = 7.0, CH ₃)
6c	12.93 (1H, уш. с, NH); 9.12 (1H, д, <i>J</i> = 8.1, H-10); 7.88–7.70 (2H, м, H-7,8); 7.46 (1H, т, <i>J</i> = 7.1, H-9); 4.19 (2H, т, <i>J</i> = 7.5, NCH ₂); 1.65 (2H, м, NCH ₂ C <u>H₂</u>); 0.94 (3H, т, <i>J</i> = 7.4, CH ₃);

Спектральные характеристики синтезированных соединений*

В кристалле молекулы цианацетамида **4b** образуют стопки вдоль кристаллографического направления (1 0 0), связанные между собой межмолекулярными водородными связями $N_{(3)}$ - $H_{(3Na)}$... $O_{(1)}$ (-*x*, 1-*y*, 1-*z*) H...O 2.07 Å, N–H...O 159°; $N_{(3)}$ - $H_{(3Nb)}$... $O_{(1)}$ (*x*-1, *y*, *z*) H...O 2.13 Å, N–H...O 151°. Также в кристалле обнаружены укороченные межмолекулярные контакты $H_{(2)}$... $N_{(2)}$ (-*x*, 1-*y*, -*z*) 2.59 (2.67) и $H_{(13)}$... $N_{(2)}$ (-*x*, 2-*y*, 1-*z*) 2.58 Å (2.67 Å).

Наблюдаемая легкость присоединения молекулы воды, а также факт гидратации лишь одной из двух цианогрупп позволяют сделать вывод, что подобно трицианометану (цианоформу) [8] первоначально образующиеся хинолинмалононитрилы 2 существуют в кетениминной таутомерной форме 3, которая собственно и реагирует с водой.

Поскольку амиды являются типичными полупродуктами гидролиза нитрилов до карбоновых кислот [9], то цианацетамиды 4 можно рассматривать (по крайней мере, теоретически) как первый этап превращения динитрилов 2 в 1-R-4-метил-2-оксо-1,2-дигидрохинолин-3-карбоновые кислоты. Тем не менее, дальнейшие исследования показывают, что практическая реализация указанной трансформации невозможна.

^{*} Масс-спектр, m/z (I_{0TH} , %): **6a** – 268 [M+H]⁺ (12), 267 [M]⁺ (100), 252 [MCH₃]⁺ (18), 179 (14), 127 (23), 76 (17); **6b** – 282 [M+H]⁺ (14), 281 [M]⁺ (100), 266 [M–CH₃]⁺ (22), 253 [M–C₂H₄]⁺ (47), 179 (12), 149 (27), 127 (10), 76 (14); **6c** – 296 [M+H]⁺ (9), 295 [M]⁺ (36), 266 [M–C₂H₅]⁺ (22), 253 [M–C₃H₆]⁺ (100), 225 (10), 179 (10), 170 (38), 165 (22), 153 (46), 127 (52).

Рис. 1. Строение молекулы цианацетамида 4b с нумерацией атомов

Выделенные в чистом виде цианацетамиды 4 представляют собой бесцветные кристаллические вещества. В то же время их растворы в водных щелочах имеют интенсивную желтую окраску, очевидно за счет образования илиденовой формы 5. При нагревании таких растворов до температуры кипения окраска сразу же исчезает и выпадает бесцветный осадок, который в дальнейшем не претерпевает никаких изменений.

Рис. 2. Строение молекулы бензонафтиридина **6с** с нумерацией атомов. Пунктиром показана внутримолекулярная водородная связь

Из спектров ЯМР ¹Н следует, что участие в данной реакции принимают сложноэфирная и карбамидная группировки. Сильный (в среднем на 1.25 м. д.) сдвиг в слабое поле сигнала протона H-5 хинолонового ядра можно рассматривать как результат гетероциклизации, по причине которой указанный протон оказывается в непосредственной близости от обладающей сильной магнитной анизотропией группы C=N. В исходных цианацетамидах **4** вследствие свободного вращения такой близости нет и соответствующий сигнал расположен в более сильном поле.

Масс-спектры показывают уменьшение массы исходных цианацетамидов **4** на 46 а. е. м., что фактически соответствует удивительно легкому замыканию диоксопиридинового цикла с выделением этанола и образованию в конечном итоге практически с количественными выходами 6-R-5гидрокси-2,4-диоксо-2,3,4,6-тетрагидробензо[*c*][2,7]нафтиридин-1-карбонитрилов (**6**).

Подтверждением именно такого направления изучаемой реакции послужил PCA 6-N-пропильного производного **6c** (рис. 2, табл. 3, 4). При этом выявлено, что пиридиндионовый фрагмент бензонафтиридина **6c** плоский с точностью 0.01 Å. Гидроксипиридиновый цикл находится в конформации *софа*. Отклонение атома C₍₇₎ от среднеквадратичной плоскости остальных атомов цикла составляет 0.11 Å. Неплоская конформация гидроксипиридинового цикла обусловлена, вероятно, достаточно сильным отталкиванием между нитрильной группой при атоме C₍₈₎ и атомами бензольного кольца [внутримолекулярные укороченные контакты H₍₅₎...C₍₈₎ 2.80 (сумма ван-дер-ваальсовых радиусов 2.87 [7]), H₍₅₎...C₍₁₆₎ 2.32 (2.87), H₍₅₎...N₍₂₎ 2.58 (2.67), C₍₁₆₎...C₍₅₎ 2.97 Å (3.42 Å)]. Следует отметить также некоторую нелинейность цианогруппы (валентный угол N₍₂₎-C₍₁₆₎-C₍₈₎ 176.4(2)°).

Положение атома водорода гидроксигруппы Н₍₁₀₎ выявлено объективно из разностного синтеза электронной плотности и уточнено в изотропном приближении. Это позволяет утверждать, что бензонафтиридин 6с существует преимущественно в виде 5-гидрокси-таутомера. Однако выравненность длин связей O₍₁₎-C₍₁₂₎ 1.299(3) и O₍₂₎-C₍₁₀₎ 1.282(3), с одной стороны, и С₍₁₁₎-С₍₁₂₎ 1.425(3) и С₍₁₁₎-С₍₁₀₎ 1.429(3) Å, с другой, позволяет предположить, что исследуемая структура может быть описана как суперпозиция двух таутомеров 6с и 7с. С этим предположением согласуется также наличие очень сильной внутримолекулярной водородной связи O₍₁₎-H₍₁₀₎...O₍₂₎ (H...O 1.38 Å, O-H...O 155°), предполагающей достаточно низкий барьер переноса протона между атомами кислорода. Кроме того, каждый таутомер может быть описан тремя резонансными структурами. На вклад резонансных структур 6.1с и 7.1с указывает укорочение длин связей N₍₁₎-C₍₁₂₎ 1.345(3) и N₍₃₎-C₍₁₀₎ 1.344(3) по сравнению с их средним значением 1.385 Å [6]. Выравненность длин связей C₍₇₎–C₍₈₎ 1.405(3) (среднее значение 1.326) и C₍₇₎–C₍₁₁₎ 1.405(3) Å (1.455 Å) позволяет утверждать о вкладе резонансных структур 6.2c и 7.2c.

Отталкивание между заместителем при атоме $N_{(1)}$ и соседними карбонильной группой и атомом водорода в *пери*-положении бензольного кольца [внутримолекулярные укороченные контакты $H_{(2)}...C_{(13)}$ 2.49 (2.87), $H_{(2)}...H_{(13a)}$ 1.99 (2.34), $H_{(13a)}...C_{(2)}$ 2.58 (2.87), $H_{(13b)}...O_{(1)}$ 2.21 Å (2.46 Å)] приводит к тому, что пропильная группа расположена перпендикулярно плоскости дигидроцикла (торсионный угол $C_{(12)}-N_{(1)}-C_{(14)}-98.6(2)^{\circ}$).

В кристалле молекулы бензонафтиридина **6с** образуют центросимметричные димеры за счет межмолекулярной водородной связи $N_{(3)}$ – $H_{(3N)}...O_{(3)'}$ (-*x*, -*y*, -*z*) H...O 1.88 Å, N–H...O 177°, что приводит также к удлинению связи $O_{(3)}$ – $C_{(9)}$ 1.239(3) Å (среднее значение 1.210 Å). В кристалле также обнаружены слабая межмолекулярная водородная связь $C_{(2)}$ – $H_{(2)}...N_{(2)'}$ (-*x*, 0.5+*y*, 0.5-*z*) H...N 2.46 Å, C–H...N 164° и межмолекулярные укороченные контакты $H_{(3N)}...C_{(9)'}$ (-*x*, -*y*, -*z*) 2.80 (2.87), $H_{(15a)}...C_{(9)'}$ (0.5–*x*, 0.5+*y*, *z*) 2.83 Å (2.87 Å).

Связь	l, Å	Связь	l, Å	
Цианацетамид 4b		Бензонафтиридин 6с		
O ₍₁₎ -C ₍₉₎	1.246(2)	N ₍₁₎ -C ₍₁₂₎	1.345(3)	
$O_{(3)} - C_{(10)}$	1.328(2)	$N_{(1)}-C_{(13)}$	1.489(3)	
$O_{(4)} - C_{(14)}$	1.219(2)	$N_{(3)}-C_{(10)}$	1.344(3)	
$N_{(1)} - C_{(1)}$	1.398(2)	$O_{(1)} - C_{(12)}$	1.299(3)	
$N_{(2)} - C_{(15)}$	1.142(2)	O ₍₃₎ –C ₍₉₎	1.239(3)	
$C_{(1)} - C_{(2)}$	1.416(2)	$C_{(1)} - C_{(6)}$	1.418(3)	
$C_{(2)} - C_{(3)}$	1.384(2)	$C_{(3)} - C_{(4)}$	1.399(3)	
$C_{(4)} - C_{(5)}$	1.380(2)	$C_{(5)} - C_{(6)}$	1.405(3)	
$C_{(6)} - C_{(7)}$	1.449(2)	$C_{(7)} - C_{(11)}$	1.405(3)	
$C_{(7)} - C_{(13)}$	1.541(2)	$C_{(8)} - C_{(16)}$	1.428(3)	
$C_{(8)} - C_{(10)}$	1.505(2)	$C_{(10)} - C_{(11)}$	1.429(3)	
$C_{(13)} - C_{(15)}$	1.466(2)	$C_{(13)} - C_{(14)}$	1.525(3)	
$C_{(16)} - C_{(17)}$	1.511(3)	$N_{(1)}-C_{(1)}$	1.412(3)	
$O_{(2)} - C_{(10)}$	1.209(2)	N ₍₂₎ -C ₍₁₆₎	1.158(3)	
$O_{(3)} - C_{(11)}$	1.469(2)	N ₍₃₎ -C ₍₉₎	1.390(3)	
N ₍₁₎ -C ₍₉₎	1.373(2)	$O_{(2)} - C_{(10)}$	1.282(3)	
$N_{(1)} - C_{(16)}$	1.483(2)	$C_{(1)} - C_{(2)}$	1.398(3)	
$N_{(3)} - C_{(14)}$	1.328(2)	C ₍₂₎ -C ₍₃₎	1.369(3)	
$C_{(1)} - C_{(6)}$	1.416(2)	$C_{(4)} - C_{(5)}$	1.379(3)	
$C_{(3)} - C_{(4)}$	1.393(2)	$C_{(6)} - C_{(7)}$	1.472(3)	
$C_{(5)} - C_{(6)}$	1.412(2)	C ₍₇₎ –C ₍₈₎	1.405(3)	
$C_{(7)} - C_{(8)}$	1.360(2)	C ₍₈₎ -C ₍₉₎	1.445(3)	
$C_{(8)} - C_{(9)}$	1.458(2)	$C_{(11)} - C_{(12)}$	1.425(3)	
$C_{(11)} - C_{(12)}$	1.506(3)	$C_{(14)} - C_{(15)}$	1.531(3)	
$C_{(13)} - C_{(14)}$	1.556(2)			

Длины связей (1) в структурах цианацетамида 4b и бензонафтиридина 6с

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н синтезированных соединений записаны на приборе Varian Mercury-VX-200 (200 МГц), растворитель ДМСО-d₆, внутренний стандарт ТМС. Масс-спектры бензонафтиридинов 6 зарегистрированы на спектрометре Varian 1200L в режиме полного сканирования в диапазоне 35-700 m/z, ионизация ЭУ 70 эВ, прямой ввод.

Этиловые эфиры 1-R-4-(карбамоилцианометил)-2-оксо-1,2-дигидрохинолин-3карбоновых кислот 4 (общая методика). Смешивают 0.01 моль этилового эфира соответствующей 1-R-2-оксо-4-хлор-1,2-дигидрохинолин-3-карбоновой кислоты (1), 0.72 г (0.011 моль) малононитрила и 2 г К₂СО₃ в 15 мл ДМФА. Через несколько минут реакционная смесь начинает заметно разогреваться. Для полного завершения реакции перемешивание продолжают 3-4 ч при 50 °С. Охлаждают, разбавляют холодной водой и подкисляют HCl до pH 4. Выделившийся осадок цианацетамида 4 отфильтровывают, промывают водой, сушат. Кристаллизуют из этанола.

> Таблица 4 733

Угол	ω, град.	Угол	ω, град.	
Цианаце	тамид 4b	Бензонафтиридин 6с		
$C_{(10)} - O_{(3)} - C_{(11)}$	116.1(1)	$C_{(12)} - N_{(1)} - C_{(1)}$	120.4(2)	
$C_{(9)} - N_{(1)} - C_{(16)}$	116.4(1)	$C_{(1)} - N_{(1)} - C_{(13)}$	121.3(2)	
$N_{(1)}-C_{(1)}-C_{(2)}$	120.4(1)	$C_{(2)} - C_{(1)} - N_{(1)}$	119.6(2)	
$C_{(2)} - C_{(1)} - C_{(6)}$	119.2(1)	$N_{(1)}-C_{(1)}-C_{(6)}$	120.9(2)	
$C_{(2)} - C_{(3)} - C_{(4)}$	121.1(2)	$C_{(2)} - C_{(3)} - C_{(4)}$	120.4(2)	
$C_{(4)} - C_{(5)} - C_{(6)}$	121.5(2)	$C_{(4)} - C_{(5)} - C_{(6)}$	121.7(2)	
$C_{(5)} - C_{(6)} - C_{(7)}$	123.0(1)	$C_{(5)} - C_{(6)} - C_{(7)}$	122.8(2)	
$C_{(8)} - C_{(7)} - C_{(6)}$	119.1(1)	$C_{(11)} - C_{(7)} - C_{(8)}$	118.2(2)	
$C_{(6)} - C_{(7)} - C_{(13)}$	121.7(1)	$C_{(8)} - C_{(7)} - C_{(6)}$	125.8(2)	
$C_{(7)} - C_{(8)} - C_{(10)}$	122.2(1)	$C_{(7)} - C_{(8)} - C_{(9)}$	120.8(2)	
$O_{(1)} - C_{(9)} - N_{(1)}$	121.2(1)	$O_{(3)} - C_{(9)} - N_{(3)}$	118.9(2)	
$N_{(1)}-C_{(9)}-C_{(8)}$	117.0(1)	$N_{(3)} - C_{(9)} - C_{(8)}$	116.8(2)	
$O_{(2)} - C_{(10)} - C_{(8)}$	124.0(2)	$O_{(2)} - C_{(10)} - C_{(11)}$	122.8(2)	
$O_{(3)}-C_{(11)}-C_{(12)}$	112.1(2)	$C_{(7)} - C_{(11)} - C_{(12)}$	122.5(2)	
$C_{(15)} - C_{(13)} - C_{(14)}$	110.4(1)	$C_{(12)} - C_{(11)} - C_{(10)}$	116.4(2)	
$O_{(4)}-C_{(14)}-N_{(3)}$	125.9(2)	$O_{(1)} - C_{(12)} - C_{(11)}$	120.5(2)	
$N_{(3)}-C_{(14)}-C_{(13)}$	113.2(1)	$N_{(1)}-C_{(13)}-C_{(14)}$	111.1(2)	
$N_{(1)}-C_{(16)}-C_{(17)}$	113.5(2)	$N_{(2)} - C_{(16)} - C_{(8)}$	176.4(2)	
$C_{(9)}-N_{(1)}-C_{(1)}$	122.3(1)	$C_{(12)} - N_{(1)} - C_{(13)}$	118.4(2)	
$C_{(1)} - N_{(1)} - C_{(16)}$	121.3(1)	$C_{(10)} - N_{(3)} - C_{(9)}$	124.6(2)	
$N_{(1)}-C_{(1)}-C_{(6)}$	120.3(1)	$C_{(2)} - C_{(1)} - C_{(6)}$	119.5(2)	
$C_{(3)} - C_{(2)} - C_{(1)}$	120.1(2)	$C_{(3)} - C_{(2)} - C_{(1)}$	121.0(2)	
$C_{(5)}-C_{(4)}-C_{(3)}$	119.4(2)	$C_{(5)} - C_{(4)} - C_{(3)}$	119.3(2)	
$C_{(5)} - C_{(6)} - C_{(1)}$	118.7(1)	$C_{(5)} - C_{(6)} - C_{(1)}$	118.0(2)	
$C_{(1)} - C_{(6)} - C_{(7)}$	118.3(1)	$C_{(1)} - C_{(6)} - C_{(7)}$	119.1(2)	
$C_{(8)}$ - $C_{(7)}$ - $C_{(13)}$	119.1(1)	$C_{(11)} - C_{(7)} - C_{(6)}$	116.0(2)	
$C_{(7)}$ - $C_{(8)}$ - $C_{(9)}$	122.4(1)	$C_{(7)}$ - $C_{(8)}$ - $C_{(16)}$	126.0(2)	
$C_{(9)}$ - $C_{(8)}$ - $C_{(10)}$	115.4(1)	$C_{(16)} - C_{(8)} - C_{(9)}$	113.1(2)	
$O_{(1)} - C_{(9)} - C_{(8)}$	121.8(1)	$O_{(3)} - C_{(9)} - C_{(8)}$	124.3(2)	
$O_{(2)} - C_{(10)} - O_{(3)}$	125.2(2)	$O_{(2)} - C_{(10)} - N_{(3)}$	119.0(2)	
$O_{(3)} - C_{(10)} - C_{(8)}$	110.7(1)	$N_{(3)}-C_{(10)}-C_{(11)}$	118.3(2)	
$C_{(15)} - C_{(13)} - C_{(7)}$	111.2(1)	$C_{(7)}$ - $C_{(11)}$ - $C_{(10)}$	121.1(2)	
$C_{(7)} - C_{(13)} - C_{(14)}$	116.0(1)	$O_{(1)} - C_{(12)} - N_{(1)}$	119.1(2)	
$O_{(4)} - C_{(14)} - C_{(13)}$	120.9(2)	$N_{(1)} - C_{(12)} - C_{(11)}$	120.4(2)	
$N_{(2)}-C_{(15)}-C_{(13)}$	176.2(2)	$C_{(13)}$ - $C_{(14)}$ - $C_{(15)}$	111.0(2)	

Валентные углы (ω) в структурах цианацетамида 4b и бензонафтиридина 6с

6-R-5-Гидрокси-2,4-диоксо-2,3,4,6-тетрагидробензо[с][2,7]нафтиридин-1-карбонитрилы 6 (общая методика). Растворяют 0.01 моль цианацетамида **4** в 30 мл 10% водного раствора КОН, нагревают до кипения и кипятят 15–20 мин. Первоначально интенсивная желтая окраска раствора быстро исчезает и выпадает бесцветный осадок. Реакционную смесь охлаждают, осадок бензонафтиридина **6** отфильтровывают, промывают водой, сушат. Кристаллизуют из ДМФА.

Рентгеноструктурные исследования. Кристаллы цианацетамида **4b**, полученные из 734

этанола, триклинные, при –173 °C: a = 8.414(2), b = 10.282(2), c = 10.594(3) Å, $\alpha = 113.35$ (2), $\beta = 90.77(2)$, $\gamma = 108.05(2)^\circ$, V = 790.3(3) Å³, $M_r = 327.34$, Z = 2, пространственная группа $P\bar{1}$, $d_{выч} = 1.376$ г/см³, μ (Мо $K\alpha$) = 0.100 мм⁻¹, F(000) = 344. Кристаллы бензонафтиридина **6c**, полученные из ДМСО, ромбические, при –173 °C: a = 7.3067(8), b = 17.890(2), c = 20.034(2) Å, V = 2618.8(5) Å³, $M_r = 295.29$, Z = 8, пространственная группа *Pbca*, $d_{выч} = 1.498$ г/см³, μ (Мо $K\alpha$) = 0.106 мм⁻¹, F(000) = 1232. Параметры элементарных ячеек и интенсивности 13 522 отражений (4622 независимых, $R_{int} = 0.052$) для цианацетамида **4b** и 20 752 отражений (2324 независимых, $R_{int} = 0.069$) для бензонафтиридина **6с** измерены на дифрактометре Xcalibur-3 (Мо $K\alpha$, ССD-детектор, графитовый монохроматор, ω -сканирование, $2\theta_{max} = 60$ и 50° соответственно).

Обе структуры расшифрованы прямым методом по комплексу программ SHELXTL [10]. Положения атомов водорода выявлены из разностного синтеза электронной плотности и уточнены изотропно. Структуры уточнены по F^2 полноматричным MHK в анизотропном приближении для неводородных атомов до $wR_2 = 0.185$ по 4541 отражению ($R_1 = 0.071$ по 3422 отражениям с $F > 4\sigma(F)$, S = 1.067) для цианацетамида 4b и до $wR_2 = 0.116$ по 2239 отражениям ($R_1 = 0.053$ по 2113 отражениям с $F > 4\sigma(F)$, S = 1.113) для бензонафтиридина 6c. Полная кристаллографическая информация депонирована в Кембриджском банке структурных данных (цианацетамид 4b – депонент № ССDC 283296; бензонафтиридин 6c – депонент № ССDC 283297).

СПИСОК ЛИТЕРАТУРЫ

- 1. И. В. Украинец, Е. В. Колесник, Л. В. Сидоренко, О. В. Горохова, А. В. Туров, *XГС*, 405 (2007).
- И. В. Украинец, Л. В. Сидоренко, О. В. Горохова, С. В. Шишкина, XTC, 887 (2006). [Chem. Heterocycl. Comp., 42, 776 (2006)].
- 3. И. В. Украинец, О. В. Горохова, Л. В. Сидоренко, Н. Л. Березнякова, *XГС*, 69 (2007). [*Chem. Heterocycl. Comp.*, **43**, 58 (2007)].
- 4. Ю. А. Шаранин, В. К. Промоненков, В. П. Литвинов, в кн. Итоги науки и техники, Органическая химия, Москва, ВИНИТИ, 1991, т. 20, ч. 1, с. 52.
- 5. N. S. Zefirov, V. A. Palyulin, E. E. Dashevskaya, J. Phys. Org. Chem., 3, 147 (1990).
- 6. H.-B. Burgi, J. D. Dunitz, Struct. Correl., VCH, Weinheim, 1994, vol. 2, p. 741.
- 7. Ю. В. Зефиров, Кристаллография, 42, 936 (1997).
- Общая органическая химия, под ред. Д. Бартона и У. Д. Оллиса, Химия, Москва, 1982, т. 3, с. 683.
- 9. П. Сайкс, Механизмы реакций в органической химии, Химия, Москва, 1991.
- G. M. Sheldrick, SHELXTL PLUS. PC Version. A System of Computer Programs for the Determination of Crystal Structure from X-ray Diffraction Data. Rev. 5.1 (1998).

Национальный фармацевтический университет, Харьков 61002, Украина e-mail: uiv@kharkov.ua Поступило 27.06.2005

^аИнститут сцинтилляционных материалов НАН Украины, Харьков 61001 e-mail: sveta@xray.isc.kharkov.com