Т. А. Неволина, Т. А. Строганова, М. В. Шевляков, А. В. Бутин

СИНТЕЗ АМИНОВ РЯДА ДИ- И ТРИФУРИЛМЕТАНА

Предложены методы синтеза перспективных для производства полимеров и макроциклических молекул аминов ряда ди- и трифурилметана на основе 2-(2-фурилметил)-1,3-изоиндолиндиона.

Ключевые слова: ди- и трифурилметаны, 2-(2-фурилметил)-1,3-изоиндолиндион, карбонильные соединения, гидразинолиз, кислотно-катализируемая конденсация.

Фурановые соединения благодаря уникальным свойствам фуранового ядра находят применение во многих областях химии: для получения различных карбо- и гетероциклических систем, в синтезе полимерных материалов и макромолекул. Не последнее место среди производных фурана занимают дифурилметаны. Дифурилметановые структуры привлекают внимание исследователей, занимающихся химией полимерных соединений, так как представляют собой доступные заменители дифенилметанов, используемых в синтезе полимеров [1–4]. Диамины ряда дифурилметана находят применение в производстве эпоксидных смол [5], а синтезированные на их основе дифурфурилдиизоцианаты используются для получения полиуретановых систем [6–8].

Традиционным способом синтеза дифурилметановых структур является катализируемая кислотами конденсация карбонильных соединений с производными фурана, описано применение концентрированной серной кислоты [9, 10], ионообменных смол [11, 12], кислых цеолитов [13], фосфорной кислоты [14], концентрированной хлорной кислоты [15]. Однако легкость взаимодействия аминогруппы фурфуриламина с карбонильными соединениями предполагает некоторые особенности проведения конденсации. Для предотвращения побочных превращений требуется защита аминофункции.

Оригинальный способ синтеза диаминов дифурилметанового ряда, позволяющий избежать введения защитной группы, включает проведение конденсации фурфуриламина и карбонильных соединений в соляной кислоте [16–19]. Последняя в данном случае выступает в качестве катализатора и растворителя, а также дезактивирует аминогруппу, тем самым предотвращая протекание нежелательных побочных реакций по аминогруппе. Существенным недостатком этого метода является проведение процесса без растворителя, что не позволяет вводить в реакцию кристаллические вещества.

Таким образом, катализируемая кислотами конденсация карбонильных 505

соединений с N-замещенным фурфуриламином представляет собой наиболее удобный и универсальный путь синтеза диаминов ряда дифурилметана, поскольку позволяет использовать любые реагенты, независимо от их агрегатного состояния.

Для синтеза дифуриларилметанов на основе фурфуриламина нами использован 2-(2-фурилметил)-1,3-изоиндолиндион – продукт взаимодействия фурфуриламина с фталевым ангидридом.

Это соединение легко вступает в реакцию с различными ароматическими альдегидами в диоксане при 40–50 °C в присутствии каталитических количеств 70% хлорной кислоты (табл. 1, 2).

2 a Ar = Ph, b Ar = 4-BrC₆H₄, c Ar = 4-ClC₆H₄, d Ar = 4-O₂NC₆H₄, e Ar = 4-Me₂NC₆H₄, f Ar = 3-O₂NC₆H₄, g Ar = 3,4-(MeO)₂C₆H₃

Поскольку целью синтеза дифурилметановой структуры является получение диаминов, мы провели снятие защитных групп взаимодействием метанов **2a**–**d** с гидразингидратом.

Таблица 1

Физико-химические характеристики соединений 2а-д

Соеди-	Ar	Брутто-формула		<u>Найден</u> Вычисло	Т. пл., °С	Выход, %		
нение			С	Н	Ν	Hal		
2a	C ₆ H ₅	$C_{33}H_{22}N_2O_6$	<u>73.08</u> 73.06	$\frac{4.03}{4.09}$	<u>5.19</u> 5.16		180–181	56
2b	4-BrC ₆ H ₄	$C_{33}H_{21}BrN_2O_6$	<u>63.75</u> 63.78	<u>3.45</u> 3.41	<u>4.47</u> 4.51	<u>12.89</u> 12.86	204–205	63
2c	$4-ClC_6H_4$	$C_{33}H_{21}CIN_2O_6$	<u>68.72</u> 68.69	<u>3.61</u> 3.67	<u>4.85</u> 4.86	<u>6.17</u> 6.14	187–188	58
2d	$4-O_2NC_6H_4$	$C_{33}H_{21}N_3O_8$	<u>67.50</u> 67.46	<u>3.62</u> 3.60	<u>7.12</u> 7.15		167–168	67
2e	4- $Me_2NC_6H_4$	$C_{35}H_{27}N_{3}O_{6}$	<u>71.74</u> 71.79	$\frac{4.66}{4.65}$	<u>7.21</u> 7.18		236–237	21
2f	$3-O_2NC_6H_4$	$C_{33}H_{21}N_3O_8$	<u>67.49</u> 67.46	<u>3.58</u> 3.60	<u>7.17</u> 7.15		156–157	67
2g	3,4-(MeO) ₂ C ₆ H ₃	$C_{35}H_{26}N_2O_8$	<u>69.80</u> 69.76	<u>4.37</u> 4.35	$\frac{4.59}{4.65}$		187–188	65

Таблица 2

C										
Соеди-	лимические сдвиги, о, м. д., КССВ (J, I ц)									
нение	CH (1H, c)	CH ₂ (4H, c)	H _{Fur} -3 (2Н, д)	H _{Fur} -4 (2Н, д)	Ar	Phthal (8H, м)				
						· · · · · · · · · · · · · · · · · · ·				
2a	5.47	4.70	5.97 (J = 3.1)	6.24 (J = 3.1)	7.18 (5H, c)	7.83-7.92				
			· · · · · ·							
2b	5.50	4.70	5.99 (J = 3.2)	6.24 (J = 3.2)	7.11 (2H, д, $J = 8.4, 2, 6-H_{Ar}$),	7.84–7.91				
					7.37 (2H, д, <i>J</i> = 8.4, 3,5-H _{Ar})					
•										
2c	5.53	4.70	5.98(J=3.1)	6.25 (J = 3.1)	7.17 (2H, д, $J = 8.6, 2, 6-H_{\rm Ar}$),	7.81-7.90				
					7.25 (2H, д, <i>J</i> = 8.6, 3,5-H _{Ar})					
2.1	5 75	4 71	(07(I-21))	(28 (I - 21))	7.42(211 - 1 - 9.7.2(11))	7 90 7 00				
20	5.75	4./1	6.07 (J = 5.1)	6.28 (J = 3.1)	$7.42 (2H, \mu, J = 8.7, 2.6-H_{Ar}),$	/.80–/.90				
					8.03 (2H, д, $J = 8.7, 3, 5-H_{Ar}$)					
20	5.28	4 70	5.92(I=3.2)	621(I=32)	$652(2H \pi I = 87.26H)$	7 83_7 88				
20	5.20	4.70	5.92 (5 5.2)	0.21 (5 5.2)	(0.7)(211, 4, 5, 0.7, 2, 5, 11)	7.05 7.00				
					$0.97(2\Pi, \mu, J = 8.7, 5, 3 - \Pi_{Ar})$					
2f	5 80	4 70	6.06(J=3.1)	629(I=31)	7 51–7 64 (2Н м 2 6-Ны)	7 81-7 88				
	0.00		0.00 (0 0.1)	0.29 (0 0.1)	$7.98 - 8.05 (2H_{M}, 4.5 - H_{AI})$	1.01 1.00				
					$(1.90, 0.00, (211, M, 4, 0.11_{Af}))$					
2g	5.80	4.70	5.96 (J = 3.1)	6.24 (J = 3.1)	3.59 (3H, c, CH ₃ O), 3.67 (3H, c, CH ₃ O),	7.80-7.91				
8			× ,	, ,	6.64-6.77 (3Н. м. 2.5.6-Нат)					
				I	0.01 0.77 (011, 11, 2,0,0 11 _{AI})					

Спектры ЯМР ¹Н соединений 2а-g

Синтезированные амины **3а-d** представляют собой вязкие маслообразные жидкости (табл. 3, 4).

Для синтеза симметричного триамина формилированием 2-(2-фурилметил)-1,3-изоиндолиндиона (1) получен фурфурол 4.

Конденсация полученного альдегида с фураном **1** в диоксане в присутствии хлорной кислоты в качестве катализатора приводит к трифурилметану **5** с выходом 49%.

Нами разработан [20] удобный одностадийный способ получения симметричных трифурилметанов реакцией 5-R-фурфурола с этиленгликолем в присутствии ионообменной смолы Amberlyst 15. Проведение реакции альдегида 4 с этиленгликолем в бензоле, катализируемое катионитом Amberlyst 15 (50% от массы фурфурола), позволяет синтезировать симметричный трифурилметан 5 с выходом 80%. Кипячение последнего с гидразингидратом дает триамин 6.

Физико-химические характеристики соединений За-d

Соеди-	Брутто-формула		<u>Найде</u> Вычис.	Выход, %	Т. пл., °С, оксалата		
нение		С	Н	Ν	Hal		
3a	$C_{17}H_{18}N_2O_2$	<u>72.35</u> 72.32	<u>6.47</u> 6.43	<u>9.96</u> 9.92		47	164–165
3b	$C_{17}H_{17}BrN_2O_2$	<u>56.48</u> 56.52	<u>4.79</u> 4.74	<u>7.77</u> 7.75	<u>22.08</u> 22.12	57	198–199
3c	$C_{17}H_{17}CIN_2O_2$	<u>64.43</u> 64.46	<u>5.43</u> 5.41	<u>8.88</u> 8.84	<u>11.12</u> 11.19	53	160–161
3d	$C_{17}H_{17}N_3O_4$	<u>62.42</u> 62.38	<u>5.26</u> 5.23	$\frac{12.80}{12.84}$		57	154–155

Таблица 4

Таблица З

Спектры ЯМР ¹Н соединений За-d

Соеди-	Химические сдвиги, б, м. д., КССВ (Ј, Гц)								
нение	CH (1H, c)	CH ₂ (4H, c)	H _{Fur} -3 (2Н, д)	Н _{Fur} -4 (2Н, д)	Ar	другие (8Н, уш. с)			
3 a	5.59	4.02	6.21 (<i>J</i> = 2.6)	6.47 (J = 2.6)	7.22–7.28 (5Н, м)	7.09 (NH ₃ ⁺ + <u>HO</u> OCCOO ⁻)			
3b	5.60	4.04	6.22 (J = 2.5)	6.47 (J = 2.5)	7.29 (2H, д, <i>J</i> = 8.3, H _{Ar} -2,6), 7.54 (2H, д, <i>J</i> = 8.3, H _{Ar} -3,5)	5.29 (NH ₃ ⁺ + <u>HO</u> OCCOO ⁻)			
3c	5.62	4.03	6.21 (<i>J</i> = 2.5)	6.46 (J = 2.5)	7.30–7.38 (4Н, м)	7.24 (NH ₃ ⁺ + <u>HO</u> OCCOO ⁻)			
3d	5.60	4.03	6.22 (J = 2.6)	6.47 (J = 2.6)	7.29 (2H, д, <i>J</i> = 8.3, H _{Ar} -2,6), 7.54 (2H, д, <i>J</i> = 8.3, H _{Ar} -3,5)	5.37 (NH ₃ ⁺ + <u>HO</u> OCCOO ⁻)			

Таким образом, нами предложены способы синтеза диаминов дифурилметанового ряда и симметричного триамина трифурилметанового ряда – соединений, перспективных для использования в химии полимерных материалов и макроциклов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н записаны на спектрометре Bruker AC-200 (200 МГц) в ДМСО-d₆, внутренний стандарт ГМДС (δ 0.055 м. д.). ТСХ выполнена на пластинах Silufol и СОРБФИЛ, проявители пары иода, брома, раствор 2,4-ДНФГ.

Синтез 2-(5-{арил[5-(1,3-диоксо-2,3-дигидро-1Н-2-изоиндолилметил)-2-фурил]метил}-2-фурилметил)-1,3-изоиндолиндионов 2а–d,f,g. К суспензии 10 ммоль соединения 1 в 5 мл диоксана добавляют 5.5 ммоль соответствующего бензальдегида и 0.7 мл 70% хлорной кислоты, перемешивают реакционную смесь при 40–50 °С. Через 20–40 мин наблюдается полное растворение исходных веществ. Реакционную смесь перемешивают до выпадения осадка продукта и оставляют при комнатной температуре на 3–4 ч. Образовавшийся осадок отделяют фильтрацией, промывают холодным диоксаном, сушат и кристаллизуют из смеси хлористый метилен–петролейный эфир.

Синтез 2-(5-{4-N,N-диметиламинофенил[5-(1,3-диоксо-2,3-дигидро-1H-2-изоиндолилметил)-2-фурил]метил}-2-фурилметил)-1,3-изоиндолиндиона 2е. Реакцию проводят по общей методике синтеза соединений 2, используя избыток хлорной кислоты – 4 мл. Выпавший кристаллический осадок промывают диоксаном, затем тщательно раствором NaHCO₃. Последующая обработка аналогична приведенной в предыдущей методике.

Гидразинолиз соединений 2a-d (общая методика). Синтез арилди(5-аминометил-2-фурил)метанов 3a-d. К раствору 5 ммоль соединения 2a-d в 40 мл этанола добавляют 1 мл гидразингидрата и кипятят смесь до полного исчезновения исходного имида (TCX). Реакционную смесь выливают в воду, отфильтровывают выпавший гидразид, а амины 3ad экстрагируют из фильтрата горячим этилацетатом. Упаривание растворителя при понижен-ном давлении дает диамины 3a-d в виде масел.

5-(1,3-Диоксо-2,3-дигидро-1H-2-изоиндолилметил)-2-фуральдегид (4). К суспензии соединения **1** (2.27 г, 10 ммоль) в 3 мл ДМФА при перемешивании и охлаждении ледяной водой добавляют по каплям 10 мл (100 ммоль) хлороксида фосфора. По окончании прибавления смесь выдерживают 10 мин при комнатной температуре, а затем при 50 °C до полного расходования имида **1** (ТСХ контроль). Охлажденную реакционную смесь выливают на толченый лед и нейтрализуют до рН 8 последовательным добавлением раствора NaOH и твердого гидрокарбоната натрия. Образующийся кристаллический осадок отделяют фильтрацией, промывают водой и сушат. После перекристаллизации из этанола с активированным углем получают 2.11 г (83%) альдегида **4** в виде кремовых кристаллов с т. пл. 136–138 °C (из этанола). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 4.96 (2H, с, CH₂); 6.17 (1H, д, J = 3.2, H_{Fur}-4); 7.22 (1H, д, J = 3.2, H_{Fur}-3); 7.88–8.05 (4H, м, H_{Phth}); 9.40 (1H, с, CHO). Найдено, %: C 65.91; H 3.52; N 5.53. C₁₄H₉NO₄. Вычислено, %: C 65.88; H 3.55; N 5.49.

Трис[(1,3-диоксо-2,3-дигидро-1H-2-изоиндолилметил)-2-фурил]метан (5). Смесь 1.27 г (5 ммоль) фурфурола 4, 0.33 мл (6 ммоль) этиленгликоля и 0.64 г ионообменной смолы Amberlyst 15 (50% от массы фурфурола) в 70 мл бензола кипятят с азеотропной отгонкой воды до полной конверсии фурфурола, отфильтровывают катионит, добавляют 20 мл петролейного эфира и горячий раствор фильтруют через тонкий слой силикагеля. После кристаллизации получают трифурилметан 5 (0.94 г, 80%) в виде белого порошка, т. пл. 168–169 °C (из петролейного эфира). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 4.68 (6H, с, CH₂), 5.56 (1H, с, CH), 5.99 (3H, д, *J* = 3.1, H_{Fur}-3); 6.21 (3H, д, *J* = 3.1, H_{Fur}-4); 7.79–7.89 (12H, м, H_{Phth}). Найдено, %: С 69.43; H 3.67; N 6.12. C₄₀H₂₅N₃O₉. Вычислено, %: С 69.46; H 3.64; N 6.08.

Трис(5-аминометил-2-фурил)метан (6). Гидразинолиз соединения **5** проводят по методике, приведенной для соединений **2а**-е, получая триамин **6** в виде желтого масла с выходом 54%. Оксалат амина **6** – белый порошок, т. пл. 156–157 °С (из EtOAc). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 4.42 (6H, c, CH₂); 5.56 (1H, c, CH); 6.17 (3H, д, *J* = 3.1, H_{Fur}-3); 6.44 (3H, д, *J* = 3.1, H_{Fur}-4); 7.22 (12H, уш. с, NH₃⁺ + HOOCCOO⁻). Найдено, %: С 63.83; H 6.30;

N 13.99. С₁₆H₁₉N₃O₃. Вычислено, %: С 63.77; Н 6.36; N 13.94. С П И С О К Л И Т Е Р А Т У Р Ы

- 1. S. Gharbi, A. Gandini, J. Soc. Chim. Tunisie, 6, 17 (2004).
- 2. S. Abid, R. El Gharbi, A. Gandini, Polymer, 45, 6469 (2004).
- 3. M. Abid, S. Gharbi, R. El Gharbi, A. Gandini, in *Abstracts of 11th International Conference* "Recent Advances in Environmentally Compatible Polymers", Tsukuba, Jpn, 2001, 27.
- 4. A. Afli, S. Gharbi, R. El Gharbi, Y. Le Bigot, A. Gandini, Eur. Polym. J., 38, 667 (2002).
- 5. X. He, A. H. Canner, J. A. Koutsky, J. Polym. Sci., Polym. Chem. Ed., 30, 533 (1992).
- 6. J. L. Cawse, J. L. Stanford, R. H. Still, Makromol. Chem., 185, 697 (1984).
- 7. J. L. Cawse, J. L. Stanford, R. H. Still, Makromol. Chem., 185, 709 (1984).
- 8. S. Boufi, A. Gandini, M. N. Belgacem, *Polymer*, **36**, 1689 (1995).
- 9. S. Pennanen, G. Nyman, Acta Chem. Scand., 26, 1018 (1972).
- Ю. М. Шапиро, В. Г. Кульневич, в кн. Химия и технология фурановых соединений. Межвуз. сб. науч. тр. Краснодар. политехн. ин-та, Краснодар, 1975, с. 75.
- 11. I. Iovel, Y. Goldberg, M. Shymanska, J. Mol. Catal., 57, 97 (1989).
- 12. И. Иовель, Ю. Гольдберг, М. Шиманская, *ХГС*, 746 (1989). [*Chem. Heterocycl. Comp.*, **25**, 613 (1989)].
- 13. F. Algarra, A. Corma, H. Garcia, J. Primo, Appl. Catal. A: General, 128, 119 (1995).
- 14. R. H. Sieber, P. Hornig, Liebigs Ann. Chem., 743, 144 (1971).
- С. В. Журавлев, В. Г. Кульневич, ХГС, 597 (1983). [Chem. Heterocycl. Comp., 19, 478 (1983)].
- A. Lesimple, Y. Le Bigot, M. Delmas, A. Gaset, G. Roux, Pat. Fr. WO9302072 (1993); Chem. Abstr., 118, 254738 (1993).
- 17. M. S. Holfinger, A. H. Conner, D. R. Holm, C. G. Hill, Jr., J. Org. Chem., 60, 1595 (1995).
- A. Lesimple, Y. Le Bigot, M. Delmas, A. Gaset, G. Roux, Pat. Fr. WO9302071 (1993); Chem. Abstr., 118, 254737 (1993).
- 19. M. Skouta, A. Lesimple, Y. Le Bigot, M. Delmas, Synth. Commun., 24, 2571 (1994).
- 20. A. V. Butin, T. A. Stroganova, L. N. Sorotskaya, V. G. Kul'nevich, Arkivoc, 1, 641 (2000).

Кафедра органической химии и НИИ ХГС Кубанского государственного технологического университета, Краснодар 350072, Россия e-mail: stroganova@kubstu.ru Поступило 19.06.2006