Ф. З. Макаев, О. М. Радул, И. Н. Штербец, С. И. Погребной, Н. С. Сукман, С. Т. Малиновский, А. Н. Барба, М. Гданец^а

СИНТЕЗ И СТРУКТУРА НОВЫХ ОКСОИНДОЛОВ

Осуществлен синтез и изучено строение новых оксиндолов. Методом РСА установлена молекулярная, кристаллическая структура и стереохимия атома C(3) 1,2-диацетил-5'- фенил(2',4'-дигидроспиро[3H-индол-3,3'-[3H]-пиразол]-2(1H)-она.

Ключевые слова: оксиндол, 3-(2-оксо-2-арилэтилиден)-2-индолиноны, спиро-оксиндолы, РСА.

Широкое распространение в природе производных индола, имеющих первостепенную важность для живых систем, а также использование соединений данного класса в качестве лекарственных препаратов, не экстрагируемых из природного сырья, по-прежнему является стимулом в развитии новых методов синтеза как известных, так и новых производных индола [1–5]. Особое место занимают 3-(2-оксо-2-арилэтилиден)-2-индолиноны и продукты их гетероциклизации, проявляющие различные виды физиологической активности [6–14].

С целью расширения списка соединений в ряду оксиндола с потенциальной биологической активностью и в продолжение наших исследований по синтетическим превращениям индолин-2,3-диона (1) [15–18], нами изучены удобные пути его превращений в 1-алкилиндолин-2,3дионы 2–7 и вещества 8–33.

Ранее сообщалось [9], что при конденсации изатина 1 с ацетофеноном в сухом EtOH образуется 3-гидрокси-3-(2-оксо-2-фенилэтил)индолин-2-он (8). Нами установлено, что обсуждаемый переход может быть также осуществлен в смеси H_2O -*i*-PrOH-Et₂NH, что обеспечивает простоту процесса, не снижая выхода. Использование указанных условий реакции позволило синтезировать продукты 9, 10 (табл. 1).

Известно, что присутствие в молекуле атомов галогена ведет к увеличению или проявлению биоактивности [9, 19, 20]. Оксиндолы 11–17 с 2,4-дихлорфенильным фрагментом были синтезированы из N-алкилизатинов 4–7 и 2,4-дихлорацетофенона. Отмечено незначительное увеличение выходов альдолей 11–13 по сравнению с их аналогами 8–10 (табл. 2).

Стандартная процедура дегидратации спиртов 8–17 смесью соляной и уксусной кислот привела к новым α , β -ненасыщенным кетонам 18–27, среди аналогов которых известны вещества, биоактивные по отношению к *Plasmodium falciparum* [13].

1,8,11,18,19,28,29 R = H, **2,9,12,20,21,30** R = Me, **3,10,13,22,23,31,33** R = Et, **4,14,24** R = *n*-Bu, **5,15,25** R = *n*-C₆H₁₃, **6,16,26** R = *n*-C₉H₁₉, **7,17,27** R = *n*-C₁₀H₂₁, **32** R = Ac; **8–10,18,20,22,28,32** R¹ = H, **11–17, 19,21, 23–27, 29–31, 33** R¹ = Cl; **28–31** R² = H, **32,33** R² = Ac

Взаимодействие енона **18** с гидразингидратом проходит с образованием спирана **28**, в спектре ЯМР ¹Н которого имеются сигналы метиленовой группы и ароматических протонов, а также двух протонов групп NH пиразолинового (7.92 м. д.) и индолинонового (10.4 м. д.) циклов соответственно. Следует отметить, что в работе [9] указано противоположное отнесение сигналов. Сравнительный анализ спектров ЯМР ¹Н соединений **28–31** говорит в пользу нашей интерпретации, так как замена амидного протона на алкильный заместитель ведет к исчезновению в спектрах продуктов **28, 29** сигналов при 10.40 и 10.53 м. д. и сохранению сигналов при 8.16 и 7.98 м. д. соответственно.

Данные об исследовании стереохимии узлового атома C(3) спиропродукта **28** методом PCA в литературе отсутствуют [21]. Наши попытки приготовить монокристаллы соединения **28**, пригодные для проведения PCA, успехом не увенчались. В этой связи вещество **28** было переведено в ацетилпроизводное **32**. Исследование методом PCA монокристалла состава $C_{20}H_{17}N_3O_3$ показало, что его молекулярная структура образована четырьмя циклами: двумя фенильными, пирролидиноновым и пиразолиновым (рис. 1). Ароматические ядра расположены практически в одной плоскости с прилегающими к ним пиразолиновым и пирролидиноновым фрагментами, составляя при этом диэдральные углы 1.9(1) и $1.6(1)^{\circ}$ соответственно.

Диэдральный угол, образованный пирролидиноновым и пиразолиновым циклами, имеющими спиросочленение по атому C(3), составляет 89.2(1)°. Различные способы компоновки пятичленных циклов с бензольными ядрами, а именно: смежное сочленение по атомам C(8)–C(9) и через

Таблица 1

Соеди- нение	Брутто-формула	<u>Найдено, %</u> Вычислено, %				Т пл ⁰С*	Выход,
		С	Н	CI	Ν	1. Iui., C	%
8	C ₁₆ H ₁₃ NO ₃	$\frac{71.90}{71.68}$	$\frac{4.90}{4.73}$	-	<u>5.24</u> 5.21	178–180	79
9	$C_{17}H_{15}NO_3$	<u>72.58</u> 72.49	<u>5.37</u> 5.06	-	<u>4.98</u> 4.90	172–175	75
10	$C_{18}H_{17}NO_3$	<u>73.20</u> 73.24	<u>5.80</u> 5.70	-	<u>4.74</u> 4.60	120-121	68
11	$C_{16}H_{11}Cl_2NO_3$	<u>57.17</u>	$\frac{3.30}{2.00}$	$\frac{21.09}{21.28}$	$\frac{4.17}{4.07}$	164–165	41
12	$C_{17}H_{13}Cl_2NO_3$	<u>58.31</u> 58.18	$\frac{3.09}{3.74}$	$\frac{21.28}{20.25}$	$\frac{4.00}{4.12}$	161–164	90
13	$C_{18}H_{15}Cl_2NO_3$	<u>59.36</u> 59.30	<u>4.15</u> 3.91	$\frac{19.47}{19.39}$	$\frac{3.85}{4.00}$	135–138	62
14	$C_{20}H_{19}Cl_2NO_3$	$\frac{61.24}{60.77}$	<u>4.88</u> 4.74	<u>18.08</u> 18.13	<u>3.57</u> 3.71	Масло	95
15	$C_{22}H_{23}Cl_2NO_3$	$\frac{62.86}{62.41}$	<u>5.52</u> 5.82	<u>16.87</u> 16.88	<u>3.33</u> 3.30	Масло	91
16	$C_{25}H_{29}Cl_2NO_3$	<u>64.94</u> 64.82	<u>6.32</u> 6.21	<u>15.33</u> 15.28	$\frac{3.03}{2.96}$	Масло	94
17	$C_{26}H_{31}Cl_2NO_3$	<u>65.54</u> 64.97	<u>6.56</u>	$\frac{14.88}{14.83}$	$\frac{2.94}{3.13}$	Масло	97
18	$C_{16}H_{11}NO_2$	<u>77.10</u> 76.99	$\frac{4.45}{4.77}$	-	<u>5.62</u> 5.38	195–197	88
19	$C_{16}H_9Cl_2NO_2$	$\frac{60.40}{60.33}$	$\frac{2.85}{2.90}$	$\frac{22.29}{22.17}$	$\frac{4.40}{4.32}$	226–227	59
20	$C_{17}H_{13}NO_2$	<u>77.55</u> 77.53	$\frac{4.98}{4.87}$	-	<u>5.32</u> 5.19	131-132	85
21	$C_{17}H_{11}Cl_2NO_2$	$\frac{61.47}{60.99}$	$\frac{3.34}{3.59}$	$\frac{21.35}{21.17}$	<u>4.22</u> 4.45	175–176	94
22	$C_{18}H_{15}NO_2$	<u>77.96</u> 77.93	<u>5.45</u> 5.44	-	<u>5.05</u> 4.91	131–132	79
23	$C_{18}H_{13}Cl_2NO_2$	<u>62.45</u> 62.51	<u>3.78</u> 3.78	$\frac{20.48}{20.52}$	$\frac{4.05}{4.39}$	98–100	98
24	$C_{20}H_{17}Cl_2NO_2$	$\frac{64.18}{64.02}$	<u>4.58</u> 4.41	<u>18.95</u> 18.99	<u>3.74</u> 3.90	Масло	94
25	$C_{22}H_{21}Cl_2NO_2$	<u>65.68</u> 65.81	<u>5.26</u> 5.10	<u>17.62</u> 17.59	<u>3.48</u> 3.37	Масло	97
26	$C_{25}H_{27}Cl_2NO_2$	<u>67.57</u> 67.89	<u>6.12</u> 6.14	<u>15.96</u> 15.83	$\frac{3.15}{3.30}$	Масло	93
27	$C_{26}H_{29}Cl_2NO_2$	$\frac{68.12}{68.00}$	$\frac{6.38}{6.47}$	<u>15.47</u> 15.39	$\frac{3.06}{2.87}$	Масло	96
28	$C_{16}H_{13}N_{3}O$	<u>72.99</u> 72.78	<u>4.98</u> 4.76	-	<u>15.96</u> 16.07	202–208	66
29	$C_{16}H_{11}Cl_2N_3O$	<u>57.85</u> 58.01	<u>3.34</u> 3.66	<u>21.35</u> 21.22	<u>12.65</u> 12.37	224–225	38
30	$C_{17}H_{13}Cl_2N_3O$	<u>58.98</u> 58.75	<u>3.78</u> 3.77	<u>20.48</u> 20.59	<u>12.14</u> 12.25	200–201	34
31	$C_{18}H_{15}Cl_2N_3O$	$\frac{60.01}{60.00}$	$\frac{4.20}{4.34}$	<u>19.68</u> 19.71	<u>11.66</u> 11.78	161–164	35
32	$C_{20}H_{17}N_3O_3$	<u>69.15</u> 69.01	<u>4.93</u> 4.90	-	<u>12.10</u> 11.97	173–174	80
33	$C_{20}H_{17}Cl_2N_3O_2\\$	<u>59.71</u> 59.73	<u>4.26</u> 4.39	<u>17.63</u> 17.54	<u>10.45</u> 10.26	204–207	69

Свойства и характеристики синтезированных соединений 8–33

^{*} Растворитель для перекристаллизации: EtOH (соединения **8**, **10**, **13**, **21–23**, **30**), *i*-PrOH (соединения **9**, **11**, **12**, **18**, **19**, **28**, **29**, **32**, **33**), бензол (соединения **20**, **31**)

Рис. 1. Молекулярная структура соединения 32

Рис. 2. Кристаллическая структура соединения 32 вдоль направления [010]

связь C(16)–C(21), приводят углерод-углеродную к различиям в копланарности этих циклов. Выход атомов из среднеквадратичной плоскости пиразолинового цикла, проведенной МНК, составляет: С(3) 0.005, C(2) -0.005, N(1) 0.003, C(8) 0 и C(9) -0.003 Å. Выход атомов из плоскости пирролидинонового цикла составляет: C(3) 0.031, N(14) -0.023, N(15) 0.001, C(16) 0.021, C(17) -0.031 Å. Очевидно, что в обоих случаях наблюдается тенденция к реализации конформации искаженного конверта. Карбонильный атом О(10) копланарен с плоскостью пирролидинонового цикла с точностью до 0.017 Å, в то время как атомы O(12) и C(13) отклоняются от последней на -0.206 и 0.256 Å, торсионный угол O(10)-C(2)-C(3)-C(9) составляет 0.8°. Ацетильные группы не лежат в плоскости циклов, торсионные углы C(8)-N(1)-C(11)-O(12) и C(3)-N(14)-C(18)-O(19) равны, соответственно, -10.9 и 4.6°. Выход атомов O(19) и C(20) из плоскости пирролидинонового фрагмента составляет -0.377 и -0.421 Å

Таблица 2

Соеди- нение	ν, cm ⁻¹
8	1670, 1690 (C=O), 3240 (NH), 3270–3350 (OH)
9	1650, 1685 (C=O), 3330–3400 (OH)
10	1655, 1690 (C=O), 3320–3390 (OH)
11	780 (C–Cl), 1645, 1680 (C=O), 3100 (NH), 3290–3350 (OH)
12	775 (C–Cl), 1645, 1680 (C=O), 3330–3390 (OH)
13	775 (C–Cl), 1655, 1690 (C=O), 3200–3400 (OH)
14	775 (C–Cl), 1645, 1680 (C=O), 3230–3400 (OH)
15	780 (C–Cl), 1655, 1675 (C=O), 3300–3400 (OH)
16	770 (C–Cl), 1650, 1685 (C=O), 3240–3400 (OH)
17	780 (C–Cl), 1660, 1685 (C=O), 3380 (OH)
18	1670, 1675 (C=O), 3440 (NH)
19	770 (C–Cl), 1670, 1675 (C=O), 3150 (NH)
20	1665, 1675 (C=O), 3280 (NH)
23	780 (C–Cl), 1670, 1685 (C=O),
24	770 (C–Cl), 1655, 1675 (C=O)
25	785 (C–Cl), 1665, 1670 (C=O)
26	770 (C–Cl), 1655, 1685 (C=O)
27	780 (C–Cl), 1660, 1685 (C=O)
28	1630 (C=N), 3300–3150 (NH)
29	1635 (C=N), 3350–3150 (NH)
30	1630 (C=N), 3300–3150 (NH)
31	780 (C–Cl), 1620 (C=N), 1685 (C=O), 3280 (NH)
32	1635 (C=N), 1655, 1680 (C=O)
33	780 (C–Cl), 1625 (C=N), 1675 (C=O)

ИК спектры соединений 8-33

Соеди-	Спектр ЯМР ¹ Н, б, м. д. (<i>J</i> , Гц)				
8	3.58 (1H, c, OH), 3.84, 3.95 (2H, д, д, J = 10.8, J = 15.2, CH ₂), 6.15–7.94 (9H, м, аром.), 10.31 (1H, NH)				
9	3.18 (3H, c, CH ₃), 3.51, 3.62 (2H, д, д, J = 8, J = 14.8, CH ₂), 4.31 (1H, c, OH), 6.10–7.74 (9H, м, аром.)				
10	1.30 (3H, т, <i>J</i> = 7.2, CH ₃), 3.46–4.01 (4H, м, 2CH ₂), 4.78 (1H, с, OH), 6.61–7.92 (9H, м, аром.)				
11	3.58, 3.68 (2H, д, д, J = 11.2, J = 14.5, CH ₂), 6.19 (1H, с, OH), 6.76–7.62 (7H, м, аром.), 10.32 (1H, NH)				
12	3.18 (3H, c, CH ₃), 3.51, 3.62 (2H, д, д, <i>J</i> = 11.5, <i>J</i> = 18.3, CH ₂), 4.31 (1H, c, OH), 6.10–7.74 (9H, м, аром.)				
13	1.27 (3H, т, <i>J</i> = 7.2, CH ₃), 3.44–3.94 (4H, м, 2CH ₂), 4.65 (1H, с, OH), 6.78–7.52 (7H, м, аром.)				
14	0.97–1.34 (7H, м, CH ₃ (CH ₂) ₂), 3.26-4.01 (4H, м, CH ₃ C <u>H₂</u> , NCH ₂), 4.63 (1H, с, OH), 6.71–7.73 (7H, м, аром.)				
15	0.87–1.47 (11H, м, CH ₃ (CH ₂) ₄), 3.20–3.89 (4H, м, CH ₃ C <u>H₂</u> , NCH ₂), 4.57 (1H, с, OH), 6.61–7.79 (7H, м, аром.)				
16	0.80–1.25 (15H, м, CH ₃ (CH ₂) ₇), 3.23–3.92 (4H, м, CH ₃ C <u>H₂</u> , NCH ₂), 4.70 (1H, с, OH), 6.80–7.71 (7H, м, аром.)				
17	0.92–1.46 (17H, м, CH ₃ (CH ₂) ₈), 3.01–3.93 (4H, м, CH ₃ C <u>H₂</u> , NCH ₂), 4.57 (1H, с, OH), 6.78–7.67 (7H, м, аром.)				
18	6.83-8.14 (9H, м, аром.), 7.71 (1H, с, C=CH), 10.83 (1H, NH)				
19	6.84–8.35 (7Н, м, аром.), 7.75 (1Н, с, C=CH), 10.86 (1Н, NH)				
20	3.15 (3H, с, CH ₃), 6.64–8.27 (9H, м, аром.), 7.78 (1H, с, C=CH)				
23	1.20 (3H, т, <i>J</i> = 7.2, CH ₃), 3.70 (2H, к, <i>J</i> = 7.2, CH ₂), 6.69–8.52 (7H, м, аром.), 7.51 (1H, с, C=CH)				
24	0.90–1.31 (7H, м, CH ₃ (CH ₂) ₂), 3.06–3.96 (4H, м, CH ₃ C <u>H₂</u> , NCH ₂), 6.71–7.73 (7H, м, аром.), 7.76 (1H, с, C=CH)				
25	0.71–1.32 (11H, м, CH ₃ (CH ₂) ₄), 3.40–3.59 (4H, м, CH ₃ C <u>H₂</u> , NCH ₂), 6.60–7.84 (8H, м, аром., C=CH)				
26	0.67–1.33 (15H, м, CH ₃ (CH ₂) ₇), 3.87–3.90 (4H, м, CH ₃ C <u>H₂</u> , NCH ₂), 6.80–7.77 (8H, м, аром., C=CH)				
27	0.82–1.26 (17Н, м, CH ₃ (CH ₂) ₈), 2.85–3.91 (4Н, м, CH ₃ C <u>H</u> ₂ , NCH ₂), 6.78–7.67 (8Н, м, аром., C=CH)				
28	3.15–3.95 (2H, м, CH ₂), 6.82–7.84 (9H, м, аром.), 7.92 (1H, с, NNH), 10.40 (1H, CONH)				
29	3.18–3.65 (2H, м, CH ₂), 6.85–7.76 (7H, м, аром.), 8.21 (1H, с, NNH), 10.53 (1H, CONH)				
30	3.14 (3H, c, CH ₃), 3.37–3.61 (2H, м, CH ₂), 6.97–7.78 (7H, м, аром.), 8.16 (1H, c, NNH)				
31	1.25 (3H, т, <i>J</i> =7.2, CH ₃), 3.40–4.01 (4H, м, 2CH ₂), 6.95–7.84 (7H, м, аром.), 7.98 (1H, с, NNH)				
32*	2.26, 2.59 (6H, c, c, 2CH ₃), 3.68, 3.75 (2H, д, д, <i>J</i> = 8, <i>J</i> = 13.3, CH ₂), 7.12–8.21 (7H, м, аром.)				
33	1.25 (3H, т, <i>J</i> = 7.2, CH ₃), 2.26 (3H, с, COCH ₃), 3.46–4.01 (4H, м, 2CH ₂), 6.95– 7.84 (7H, м, аром.)				

Сспектры ЯМР ¹Н соединений 8–33

^{*} Спектр ЯМР ¹³С, б, м. д.: 175.26, 172.13, 170.42, 167.36, 153.35, 139.70, 130.20, 129.13, 67.45, 26.15, 21.33.

соответственно. Таким образом, учитывая конформацию молекулы в целом и тот факт, что выход атомов N(14) и C(17) пиразолинового цикла из среднеквадратичной плоскости пирролидинонового цикла составляет, соответственно, -1.166(2) и 1.164(3) Å, можно сделать вывод о S-конфигурации атома С(3) в исследуемой структуре 32. Межатомные расстояния и валентные углы в пиразолиновом и пирролидиноновом циклах не эквивалентны, в первом реализуются двойная N(15)-C(16), во втором полуторная N(1)-C(2) связи, которые равны, соответственно, 1.286(2) и 1.407(2) Å, что приводит к частичной делокализации электронной плотности в циклах и прилегающих к ним фрагментах с образованием двойных С=О карбонильных связей. Таким образом, карбонильный атом О(10) пирролидинонового цикла и карбонильные атомы ацетильных групп O(12) и O(13) приобретают исключительно акцепторный характер, за счет чего в структуре реализуется стабилизирующая внутримолекулярная водородная связь C(7)-H(7)...O(12) с параметрами: C(7)-H(7) 0.991, C(7)...O(12) 2.848, H(7)...O(12) 2.329 Å и углом при атоме водорода 111.7°. Последнее позволяет рассматривать появление дополнительного пятого шестичленного C(7), C(8), N(1), C(11), O(12), H(7) "псевдоцикла". Кроме того установлено, что основную роль в образовании кристаллической структуры играет межмолекулярная водородная связь C(7)-H(7)...O(19) [1-x, 0.5+y, 0.5-z] с параметрами: C(7)–O(19) 3.182(2), H(7)...O(19) 2.50(2) Å и углом при атоме водорода 126(1)°, которая объединяет кристаллографически независимую молекулу с симметрично связанным с ней мотивом в центросимметричные димеры. Фрагмент кристаллической структуры вдоль направления [010] представлен на рис. 2. В условиях, аналогичных использованным для 32, было синтезировано вещество 33.

Таким образом, осуществлен синтез новых N-алкилизатинов и продуктов их альдольной конденсации с ацетофеноном и 2,4-дихлорацетофеноном. Показано, что синтезированные 3-(2-оксо-2-арилэтилиден)-2-индолиноны под действием гидразингидрата циклизуются в спиросоединения с S-конфигурацией узлового атома C(3).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С зарегистрированы на спектрометре Bruker AC-80 (80 и 20 МГц) в 2–3% растворах (CD₃)₂SO для соединений **8**, **11**, **18–20**, **28–30**, CDCl₃ для соединений **9**, **10**, **12–17**, **21–27** и CD₃CN для соединений **31**, **33**, внутренний стандарт ТМС. ИК спектры сняты на приборе Specord 74-1 в вазелиновом масле. Экспериментальный набор рентгеноструктурных данных проведен в дифрактометре KM4CCD методом ω -сканирования. Температуры плавления определяли на столиках Boetius. Контроль за ходом реакций и индивидуальностью веществ осуществляли с помощью TCX на пластинках Sorbfil UV-254.

1-Алкилиндолин-2,3-дионы 2–7. Соединения **2** и **3** получают по методике [18]. Соединения **4–7** синтезируют аналогично.

1-Бутилиндолин-2,3-дион (4). Масло красного цвета, *R*_f 0.65 (CHCl₃). ИК спектр, v, см⁻¹: 1735 (C=O). Найдено, %: С 70.81; Н 6.40; N 6.78. С₁₂Н₁₃NO₂. Вычислено, %: С 70.92; Н 6.45; N 6.89.

1-Гексилиндолин-2,3-дион (5). Масло красного цвета, R_f 0.60 (CHCl₃). ИК спектр, v, см⁻¹: 1750 (C=O). Найдено, %: С 72.51; Н 7.44; N 5.97. С₁₄Н₁₇NO₂. Вычислено, %: С 72.70; Н 7.41; N 6.06.

1-Нонилиндолин-2,3-дион (6). Масло красного цвета, R_f 0.63 (CHCl₃). ИК спектр, v, см⁻¹: 1745 (C=O). Найдено, %: С 74.57; Н 8.47; N 5.02. С₁₇Н₂₃NO₂. Вычислено, %: С 74.69; Н 8.48; N 5.12.

1-Децилиндолин-2,3-дион (7). Масло красного цвета, *R_f* 0.66 (CHCl₃). ИК спектр, v, см⁻¹: 1735 (C=O). Найдено, %: С 75.20; Н 8.67; N 4.61. С₁₈Н₂₅NO₂. Вычислено, %: С 75.22; Н 8.77; N 4.87.

Синтез спиртов 8–17 (общая методика). К 0.04 моль изатина 1 или N-алкилизатина 2–7 в смеси 45 мл H₂O и 30 мл *i*-PrOH (ЕtOH или MeCN) при перемешивании последовательно добавляют 0.04 моль ацетофенона (или 2,4-дихлорацетофенона) и 2.92 г (0.04 моль) диэтиламина. Перемешивают 8 ч при комнатной температуре и образовавшийся осадок отфильтро- вывают, промывают (3 × 25 мл) *i*-PrOH (ЕtOH или MeCN). Кристаллический остаток используют для последующих синтезов без очистки. Для аналитических целей образец перекристаллизовывают из подходящего растворителя и получают:

З-гидрокси-З-(2-оксо-2-фенилэтил)индолин-2-он (8), З-гидрокси-1-метил-З-(2-оксо-2-фенилэтил)индолин-2-он (9), 1-этил-З-гидрокси-З-(2-оксо-2-фенилэтил)индолин-2-он (10), З-[2-(2,4-дихлорфенил)-2-оксоэтил]-З-гидроксииндолин-2-он (11), З-[2-(2,4-дихлорфенил)-2оксоэтил]-З-гидрокси-1-метилиндолин-2-он (12), З-[2-(2,4-дихлорфенил)-2оксоэтил]-1-этил-З-гидроксииндолин-2-он (13), 1-бутил-З-[2-(2,4-дихлорфенил)-2-оксоэтил]-З-гидроксииндолин-2-он (14), З-[2-(2,4-дихлорфенил)-2-оксоэтил]-1-гексил-3-гидроксииндолин-2-он (15), З-[2-(2,4-дихлорфенил)-2-оксоэтил]-3-гидрокси-1-нонилиндолин-2-он (16), 1-децил-3-[2-(2,4-дихлорфенил)-2-оксоэтил]-3-гидроксииндолин-2-он (17) (табл. 1).

Получение енонов 18–25 (общая методика). Дегидратацию на основе кетоспиртов **8–17** проводят аналогично методике [9] и получают:

3-(2-оксо-2-фенилэтилиден)-2-индолин-2-он (18), 3-[2-(2,4-дихлорфенил)-2-оксоэтилиден]индолин-2-он (19), 1-метил-3-(2-оксо-2-фенилэтилиден)индолин-2-он (20), 3-[2-(2,4-дихлорфенил)-2-оксоэтилиден]-1-метилиндолин-2-он (21), 1-этил-3-(2-оксо-2-фенилэтилиден)индолин-2-он (22), 3-[2-(2,4-дихлорфенил)-2-оксоэтилиден]-1-этилиндолин-2-он (23), 1-бутил-3-[2-(2,4-дихлорфенил)-2-оксоэтилиден]индолин-2-он (24), 3-[2-(2,4-дихлорфенил)-2-оксоэтилиден]индолин-2-он (24), 3-[2-(2,4-дихлорфенил)-2-оксоэтилиден]индолин-2-он (24), 3-[2-(2,4-дихлорфенил)-2-оксоэтилиден]индолин-2-он (25), 3-[2-(2,4-дихлорфенил)-2-оксоэтилиден]-1-тексилиндолин-2-он (25), 3-[2-(2,4-дихлорфенил)-2-оксоэтилиден]-1-индолин-2-он (26), 1-децил-3-[2-(2,4-дихлорфенил)-2-оксоэтилиден]-индолин-2-он (27), (табл. 1).

Получение пиразолинилоксиндолов 28–31 (общая методика). Смесь 0.005 моль исходного енона и 0.006 моль 98% гидразингидрата в 35 мл абсолютного этанола кипятят с обратным холодильником 4–8 ч до завершения реакции (контроль TCX). Оставляют стоять на ночь, выпавший осадок отделяют, перекристаллизовывают из подходящего растворителя и получают:

5'-фенил-2',4'-дигидроспиро[3H-индол-3,3'-[3H]-пиразол]-2(1H)-он (28), 5'-(2,4-дихлорфенил)-2',4'-дигидроспиро[3H-индол-3,3'-[3H]-пиразол]-2(1H)-он (29), 5'-(2,4-дихлорфенил)-2',4'-дигидроспиро[3H-индол-3,3'-[3H]-пиразол]-1-метил-2(1H)-он (30), 5'-(2,4дихлорфенил)-2',4'-дигидроспиро[3H-индол-3,3'-[3H]-пиразол]-1-этил-2(1H)-он (31) (табл. 1).

Ацетилирование пиразолиноксиндолов (общая методика). К суспензии (0.005 моль) пиразолиноксиндола в 7.65 г (0.0075 моль) Ас₂О добавляют 0.079 г (0.001 моль) пиридина и нагревают при 95–100 °С в течение 5 ч. Охлаждают до комнатной температуры, приливают 2 мл H₂O и после перемешивания в течение 2.5 ч образовавшийся осадок отделяют, промывают 15 мл H₂O, затем 2 мл *i*-PrOH. Остаток сушат над NaOH в вакууме, перекристаллизовывают из подходящего растворителя и получают:

1,2'-диацетил-5'-фенил-2',4'-дигидроспиро[3Н-индол-3,3'-[3H]-пиразол]-2(1H)-он (32), 2'-ацетил-1-этил-5'-(2,4-дихлорфенил)-2',4'-дигидроспиро[3Н-индол-3,3'-[3H]-пиразол]-2(1H)-он (33) (табл. 1).

Рентгеноструктурный анализ. Для проведения рентгеноструктурного исследования после кристаллизации 32 из этанола отобран монокристалл призматического габитуса с линейными размерами $0.1 \times 0.2 \times 0.2$ мм. Кристалл относится к моноклинной сингонии, пространственная группа симметрии $P_{2_1/c}$, параметры элементарной ячейки: a = 14.532(3), b = 8.334(3), c = 15.872(3) Å, $\beta = 112.75(3)^{\circ}$. V = 1772.7 Å³, $d_{\text{выч.}} = 1.302$ г/см³, $C_{20}H_{17}N_3O_3$ при Z = 4. Для определения и уточнения структуры использовано 4454 независимых

отражений с $I \ge 3\sigma(I)$. Структура решена прямым методом в рамках комплекса программ SHELX-93 [22]. Уточнение проведено в анизотропном приближении для атомов С, О, N. Атомы водорода локализованы из разностного Фурье-синтеза и уточнены в изотропном приближении. GOOF (S) = 1.146, заключительный *R*-фактор составил: $R_1 = 0.054$, $wR_2 = 0.139$.

Полные данные РСА можно получить у Ф. З. Макаева.

СПИСОК ЛИТЕРАТУРЫ

- 1. S. Rossiter, Tetrahedron Lett., 43, 4671 (2002).
- 2. J. Bergman, R. Engqvist, C. Stalhandske, H. Wallberg, Tetrahedron, 59, 1033 (2003).
- 3. N. Selvakumar, A. M. Azhagan, D. Srinivas, G. G. Krishna, *Tetrahedron Lett.*, **43**, 9175 (2002).
- 4. V. Nair, K. C. Sheela, N. P. Rath, G. K. Eigendorf, Tetrahedron Lett., 41, 6217 (2000).
- 5. A. A. Esmaili, A. Bodaghi, Tetrahedron, 59, 1169 (2003).
- H. N. Bramson, J. Corona, S. T. Davis, S. H. Dickerson, M. Edelstein, S. V. Frye, R. T. Gampe, P. A. Harris, Jr., A. Hassell, W. D. Holmes, R. N. Hunter, K. E. Lackey, B. Lovejoy, M. J. Luzzio, V. Montana, W. J. Rocque, D. Rusnak, L. Shewchuk, J. M. Veal, D. H. Walker, L. F. Kuyper, *J. Med. Chem.*, 44, 4339 (2001).
- 7. S. K. Sridhar, S. N. Pandeya, J. P. Stables, A. Ramesh, Eur. J. Pharm. Sci., 16, 129 (2002).
- 8. S. N. Pandeya, D. Sriram, G. Nath, E. De Clercq, Eur. J. Med. Chem., 35, 249 (2000).
- 9. K. C. Joshi, A. Dandia, S. Bhagat, J. Indian Chem. Soc., 67, 753 (1990).
- 10. J. Azirian, A. V. Morady, S. Soozangarzadeh, A. Asadi, Tetrahedron Lett., 43, 9721 (2002).
- 11. G. Palmisano, R. Annunziata, G. Papeo, M. Sisti, Tetrahedron: Asymmetry, 7, 1 (1996).
- 12. A. A. Raj, R. Raghunathan, M. R. S. Kumarib, N. Ramanb, *Bioorg. Med. Chem.*, **11**, 407 (2003).
- C. L. Woodard, Z. Li, A. K. Kathcart, J. Terrell, L. Gerena, M. Lopez-Sanchez, D. E. Kyle, A. K. Bhattacharjee, D. A. Nichols, W. Ellis, S. T. Prigge, J. A. Geyer, N. C. Waters, *J. Med. Chem.*, 46, 3877 (2003).
- 14. A. A. S. El-Ahl, Pol. J. Chem., 70, 27 (1996).
- М. А. Рехтер, Б. А. Рехтер, И. Г. Язловецкий, А. А. Панасенко, Ф. З. Макаев, *XTC*, 275 (1998). [*Chem. Heterocycl. Comp.*, **34**, 250 (1998)].
- М. А. Рехтер, Ф. З. Макаев, Ф. В. Бабилев, Г. Н. Грушецкая, С. В. Рудаков, XTC, 483 (1996). [Chem. Heterocycl. Comp., 32, 418 (1996)].
- 17. О. М. Радул, С. М. Буханюк, М. А. Рехтер, *XTC*, 1131 (1985). [*Chem. Heterocycl. Comp.*, **21**, 948 (1985)].
- О. М. Радул, Г. И. Жунгиету, М. А. Рехтер, С. М. Буханюк, ХГС, 353 (1983). [Chem. Heterocycl. Comp., 19, 286 (1983)].
- 19. G. J. Tanoury, R. Hett, H. S. Wilkinson, S. A. Wald, C. H. Senanayake, *Tetrahedron:* Asymmetry, 14, 3487 (2003).
- T. R. De Cory, G. B. Mullen, J. T. Mitchell, S. D. Allen, V. S. Georgiev, *Eur. J. Med. Chem.*, 24, 543 (1989).
- 21. Cambridge Structural Database System V5.24
- 22. G. M. Sheldrick, SHELX93: Program for the Refinement of Crystal Structure, Univ. of Göttingen, Göttingen, 1993.

Институт химии АН Республики Молдова, Кишинев MD-2028 e-mail: flmacaev@cc.acad.md Поступило 01.03.2004 После доработки 24.10.2006

^аУниверситет им. А. Мицкевича, Химический факультет, Познань 60-780, Польша e-mail: magdan@main.amu.edu.pl F. Z. Macaev, O. M. Radul, I. N. Sterbet, S. I. Pogrebnoi, N. S. Sucman, S. T. Malinovskii, A. N. Barba, M. Gdaniec^a Synthesis and structure of new oxindoles Institute of Chemistry of the Academy of Sciences of Moldova,

Academiei str. 3, MD-2028, Chisinau, Moldova

Tel. +373-22/ 739-754; Fax+373-22/ 739954

E-mail: <u>flmacaev@cc.acad.md</u>

* A. Mickiewicz University, Faculty of Chemistry

60-780 Poznan, Poland

E-mail: <u>magdan@main.amu.edu.pl</u>