И. В. Украинец, Е. В. Колесник, Л. В. Сидоренко, О. В. Горохова, А. В. Туров^а

4-ГИДРОКСИХИНОЛОНЫ-2

113*. СИНТЕЗ И ПРОТИВОТУБЕРКУЛЕЗНАЯ АКТИВНОСТЬ N-R-АМИДОВ 4-ГИДРОКСИ-6-МЕТИЛ-2-ОКСО-1-ПРОПИЛ-1,2,5,6,7,8-ГЕКСАГИДРОХИНОЛИН-3-КАРБОНОВОЙ КИСЛОТЫ

Разработан препаративный метод получения и осуществлен синтез анилидов и гетериламидов 4-гидрокси-6-метил-2-оксо-1-пропил-1,2,5,6,7,8-гексагидрохинолин-3-карбоновой кислоты. Проведен сравнительный анализ строения и противотуберкулезных свойств синтезированных соединений с их незамещенными в хинолоновом ядре аналогами.

Ключевые слова: амиды, 4-гидрокси-2-оксохинолин-3-карбоновые кислоты, противотуберкулезная активность, РСА, термолиз.

Выявление структурно-биологических закономерностей в том или ином ряду химических соединений, их накопление и детальный анализ лежат в основе целенаправленного синтеза лекарственных средств с заданными фармакологическими свойствами [2].

В продолжение проводимых нами исследований по поиску потенциальных противотуберкулезных препаратов среди амидированных производных 1-R-4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот, данное сообщение посвящено анилидам и гетариламидам 4-гидрокси-6-метил-2-оксо-1-пропил-1,2,5,6,7,8-гексагидрохинолин-3-карбоновой кислоты **1а–h** (табл. 1).

Синтез целевых амидов 1 осуществлен на основе 4-метилциклогексанона (2). Этот алициклический кетон легко вступает в сложноэфирную конденсацию с диэтилоксалатом, образуя β-кетощавелевый эфир 3, который, в свою очередь, после декарбонилирования превращается в этиловый эфир 5-метил-2-оксоциклогексанкарбоновой кислоты (4). В дальнейшем синтетическая схема аналогична описанному ранее получению N-R-амидов 4-гидрокси-2-оксо-1,2,5,6,7,8-гексагидрохинолин-3-карбоновой кислоты [3].

Основное отличие синтезированных амидов **1а–h** от описанных ранее неметилированных аналогов [3] с точки зрения их структуры состоит в том, что они содержат дополнительный центр хиральности – атом углерода в положении 6 хинолонового ядра. Фактически такие соединения представляют собой смеси диастереомеров, что обычно приводит к удвоению количества сигналов в их спектрах ЯМР ¹Н или, при близком их расположении, к усложнению вида мультиплетов. Действительно,

^{*} Сообщение 112 см. [1].

1 а R = 3-фторфенил, b R = 3-хлорфенил, c R = пиридин-3-ил, d R = 4-(адамантил-1)тиазол-2-ил, e R = бензтиазол-2-ил, f R = 6-бромбензтиазол-2-ил, g R = 1,3,4-тиадиазол-2-ил, h R = 5-метил-1,3,4-тиадиазол-2-ил

наблюдаемые спектры ЯМР ¹Н амидов **1а–h** (точнее их алифатическая часть) оказались достаточно сложными для однозначной интерпретации (табл. 2). Предпринятая на примере амида **1b** попытка упростить спектр путем нагревания раствора исследуемого образца до 100 °C успеха не принесла. В то же время, применение методики двумерной спектроскопии ЯМР ¹H (COSY) позволило достоверно произвести отнесение резонансных сигналов протонов N-пропильного и гексагидрохинолонового фрагментов в спектре этого соединения. Найденные при этом кросс-пики показаны в виде стрелок.

Интересные особенности в строении амидов 1 отмечены и по данным PCA. Так, например, установлено, что в отличие от исследованного ранее неметилированного аналога 8 [3], в симметрически независимой части элементарной ячейки кристалла 4-(адамантил-1)тиазол-2-иламида 4-гидрокси-6-метил-2-оксо-1-пропил-1,2,5,6,7,8-гексагидрохинолин-3-карбоновой кислоты (1d) находится только одна молекула (рисунок, табл. 3, 4).

Таблица 1

Со- еди- не- ние	Брутто- формула	Найдено, % Вычислено, % С Н N		% N	Т. пл., °С (разл.)	Выход, %	Противо- туберку- лезная активность*
1a	$C_{20}H_{23}FN_2O_3$	<u>67.18</u> 67.02	<u>6.56</u> 6.47	<u>7.67</u> 7.82	117–119	82	7
1b	$C_{20}H_{23}ClN_2O_3$	<u>64.20</u> 64.08	<u>6.09</u> 6.18	<u>7.58</u> 7.47	149–151	80	5
1c	$C_{19}H_{23}N_3O_3$	<u>66.71</u> 66.84	<u>6.63</u> 6.79	<u>12.22</u> 12.31	143–145	84	8
1d	$C_{27}H_{35}N_3O_3S$	<u>67.21</u> 67.33	<u>7.40</u> 7.32	<u>8.84</u> 8.72	281–283	77	2
1e	$C_{21}H_{23}N_3O_3S$	<u>63.33</u> 63.46	<u>5.72</u> 5.83	<u>10.66</u> 10.57	223–225	80	10
1f	$C_{21}H_{22}BrN_3O_3S$	<u>52.82</u> 52.95	<u>4.76</u> 4.65	<u>8.90</u> 8.82	241–243	82	10
1g	$C_{16}H_{20}N_4O_3S\\$	<u>55.03</u> 55.16	<u>5.88</u> 5.79	<u>16.16</u> 16.08	190–192	75	0
1h	$C_{17}H_{22}N_4O_3S$	<u>56.44</u> 56.34	<u>6.27</u> 6.12	<u>15.34</u> 15.46	226–228	76	0

Характеристики N-R-амидов 4-гидрокси-6-метил-2-оксо-1-пропил-1,2,5,6,7,8-гексагидрохинолин-3-карбоновой кислоты 1а-h

* Угнетение роста (%) *Mycobacterium tuberculosis H37Rv* ATCC 27294 в концентрации 6.25 мкг/мл.

Спектры ЯМР ¹Н (200 МГц) амидов 1

Таблица 2

	Химические сдвиги, б, м. д. (Ј, Гц)										
Соеди- нение	4-OH (1H, c)	CONH (1H, c)	NCH ₂ (2Н, м)	8-СН ₂ (2Н, м)	Н-5 (1Н, д. д)	H-7 + H-5 (2Н, м)	H-6 + NCH ₂ C <u>H</u> ₂ (3H, м)	Н-7 (1Н, м)	6-CH ₃ (3H, д)	СН ₃ в N–Pr (3Н, т)	R
1a	15.20	12.86	3.92	2.78	2.61 (J = 16.2, J = 4.3)	1.90	1.62	1.36	1.01 (<i>J</i> = 6.4)	0.90 (<i>J</i> = 7.3)	7.62 (1H, д. т, <i>J</i> = 11.2 и <i>J</i> = 2.2, H-2'); 7.43 (1H, д, <i>J</i> = 8.2, H-6'); 7.32 (1H, т. д, <i>J</i> = 8.2 и <i>J</i> = 1.7, H-5'); 6.95 (1H, т. т, <i>J</i> = 8.6 и <i>J</i> = 2.1, H-4')
1b	15.18	12.86	3.93	2.80	2.63 (J = 16.6, J = 4.5)	1.92	1.63	1.37	1.02 (<i>J</i> = 6.4)	0.91 (<i>J</i> = 7.3)	7.85 (1H, c, H-2'); 7.45 (1H, д. т, <i>J</i> = 8.2 и <i>J</i> = 1.6, H-6'); 7.37 (1H, т, <i>J</i> = 7.9, H-5'); 7.18 (1H, д. т, <i>J</i> = 7.7 и <i>J</i> = 1.6, H-4')
1c	15.18	12.80	3.94	2.81	2.63 (J = 16.4, J = 4.7)	1.92	1.63	1.38	1.02 (<i>J</i> = 6.4)	0.91 (<i>J</i> = 7.3)	8.78 (1H, д, J = 2.6, H-2'); 8.34 (1H, д. д, J = 4.7 и J = 1.4, H-4'); 8.08 (1H, д. т, J = 8.3 и J = 1.7, H-6'); 7.39 (1H, т, J = 6.4, H-5')

408

				1		1	1		1		1
1d	14.25	13.74	3.94	2.82	2.63 (J = 16.3, J = 4.1)	1.93	1.63	1.37	1.01 (<i>J</i> = 6.2)	0.91 (<i>J</i> = 7.3)	 6.79 (1Н, с, H-5'); 2.01 (3Н, с, γ-Н адамантана); 1.83 (6Н, с, δ-Н адамантана); 1.72 (6Н, с, β-Н адамантана)
1e	14.00	13.96	3.90	2.78	2.58 (J = 16.4, J = 4.2)	1.83	1.60	1.28	0.97 (<i>J</i> = 6.3)	0.91 (<i>J</i> = 7.3)	7.95 (1H, д, J = 7.6, H-7'); 7.73 (1H, д, J = 7.6, H-4'); 7.43 (1H, т. д, J = 7.3 и J = 1.4, H-6'); 7.30 (1H, т. д, J = 7.8 и J = 1.0, H-5')
1f	14.09	13.88	3.95	2.82	2.61 (J = 16.3, J = 4.4)	1.90	1.65	1.35	1.02 (<i>J</i> = 6.4)	0.93 (<i>J</i> = 7.3)	8.23 (1Н, д, <i>J</i> = 2.0, Н-7'); 7.69 (1Н, д, <i>J</i> = 8.5, Н-4'); 7.56 (1Н, д. д, <i>J</i> = 8.6 и <i>J</i> = 1.8, Н-5')
1g	14.20	13.85	3.96	2.83	2.63 (J = 16.4, J = 4.2)	1.92	1.64	1.38	1.02 (<i>J</i> = 6.3)	0.92 (<i>J</i> = 7.4)	9.25 (1H, c, H-5')
1h	14.01	13.87	3.94	2.83	2.58 (J = 16.3, J = 4.6)	1.89	1.62	1.35	1.00 (<i>J</i> = 6.4)	0.92 (<i>J</i> = 7.3)	2.66 (3H, c, CH ₃)

Строение молекулы амида 1d с нумерацией атомов. Пунктиром показаны внутримолекулярные водородные связи

Таблица З

Связь	<i>l</i> , Å	Связь	<i>l</i> , Å	Связь	<i>l</i> , Å
S ₍₁₎ -C ₍₁₁₎	1.706(3)	C _(3A) -C _(4A)	1.536(4)	$C_{(17)} - C_{(18)}$	1.528(3)
$S_{(1)} - C_{(13)}$	1.709(3)	C _(4A) -C ₍₅₎	1.490(4)	$C_{(18)} - C_{(23)}$	1.529(3)
O ₍₁₎ –C ₍₉₎	1.256(3)	C _(4A) -C _(27A)	1.541(4)	$C_{(18)} - C_{(19)}$	1.536(3)
O ₍₂₎ –C ₍₇₎	1.334(3)	C ₍₅₎ -C ₍₆₎	1.510(3)	$C_{(20)} - C_{(21)}$	1.534(3)
O ₍₃₎ -C ₍₁₀₎	1.239(3)	C ₍₆₎ -C ₍₇₎	1.413(3)	C ₍₂₁₎ -C ₍₂₃₎	1.528(3)
N ₍₁₎ -C ₍₉₎	1.368(3)	C ₍₇₎ –C ₍₈₎	1.394(3)	C ₍₂₁₎ -C ₍₂₂₎	1.531(3)
N ₍₁₎ -C ₍₁₎	1.394(3)	C ₍₈₎ -C ₍₉₎	1.424(3)	C _(15A) -C _(16A)	1.530(2)
N ₍₁₎ -C ₍₂₄₎	1.486(3)	C ₍₈₎ -C ₍₁₀₎	1.468(3)	C _(16A) -C _(22A)	1.531(3)
N ₍₂₎ -C ₍₁₀₎	1.363(3)	$C_{(12)} - C_{(13)}$	1.343(4)	C _(16A) -C _(17A)	1.535(3)
N ₍₂₎ -C ₍₁₁₎	1.397(3)	C ₍₁₂₎ -C ₍₁₄₎	1.527(3)	C _(17A) -C _(18A)	1.534(3)
N ₍₃₎ -C ₍₁₁₎	1.311(3)	$C_{(14)} - C_{(19)}$	1.523(2)	C _(18A) -C _(23A)	1.532(3)
N ₍₃₎ -C ₍₁₂₎	1.400(3)	C ₍₁₄₎ -C ₍₂₀₎	1.527(2)	C _(18A) -C _(19A)	1.535(2)
C ₍₁₎ -C ₍₆₎	1.351(3)	$C_{(14)} - C_{(15)}$	1.534(2)	C _(20A) -C _(21A)	1.534(2)
C ₍₁₎ -C ₍₂₎	1.521(3)	C ₍₁₄₎ -C _(19A)	1.536(2)	C _(21A) -C _(22A)	1.532(3)
C ₍₂₎ -C _(3A)	1.480(4)	C ₍₁₄₎ -C _(20A)	1.538(2)	C _(21A) -C _(23A)	1.534(3)
C ₍₂₎ -C ₍₃₎	1.505(3)	C ₍₁₄₎ -C _(15A)	1.538(2)	C ₍₂₄₎ -C ₍₂₅₎	1.533(4)
C ₍₃₎ -C ₍₄₎	1.532(4)	C ₍₁₅₎ -C ₍₁₆₎	1.533(3)	C ₍₂₅₎ -C ₍₂₆₎	1.527(4)
C ₍₄₎ -C ₍₅₎	1.487(3)	C ₍₁₆₎ -C ₍₂₂₎	1.529(3)		
C ₍₄₎ -C ₍₂₇₎	1.541(3)	$C_{(16)} - C_{(17)}$	1.531(3)		

Длины связей (*l*) в структуре амида 1d

410

Валентные углы (ω) в структуре амида 1d

Таблица 4

VEOT	(i) ED24	Vrot	(i) FD 3 I
	0, град. 97.6(1)		0, Град. 108 5(2)
$C_{(11)} - S_{(1)} - C_{(13)}$	87.0(1) 122.0(2)	$C_{(12)} - C_{(14)} - C_{(15)}$	108.3(2) 100.5(2)
$C_{(9)} = N_{(1)} = C_{(1)}$	122.9(2) 116.1(2)	$C_{(20)} - C_{(14)} - C_{(15)}$	109.3(2) 22 3(2)
$C_{(9)} = N_{(1)} = C_{(24)}$	1210(2)	$C_{(19)} = C_{(14)} = C_{(19A)}$	109.8(2)
$C_{(10)} - N_{(2)} - C_{(11)}$	124.7(2)	$C_{(12)} = C_{(14)} = C_{(19A)}$	129.4(2)
$C_{(11)} - N_{(3)} - C_{(12)}$	108.8(2)	$C_{(15)} - C_{(14)} - C_{(19A)}$	90.1(2)
$C_{(6)} - C_{(1)} - N_{(1)}$	120.2(2)	$C_{(19)} - C_{(14)} - C_{(20A)}$	87.7(2)
$C_{(6)} - C_{(1)} - C_{(2)}$	120.4(2)	$C_{(12)}-C_{(14)}-C_{(20A)}$	108.1(2)
$N_{(1)} - C_{(1)} - C_{(2)}$	119.4(2)	$C_{(20)}-C_{(14)}-C_{(20A)}$	25.0(2)
$C_{(3A)} - C_{(2)} - C_{(3)}$	29.6(3)	$C_{(15)}-C_{(14)}-C_{(20A)}$	129.4(2)
$C_{(3A)} - C_{(2)} - C_{(1)}$	115.1(2)	$C_{(19A)} - C_{(14)} - C_{(20A)}$	108.8(2)
$C_{(3)} - C_{(2)} - C_{(1)}$	112.8(2)	$C_{(19)}-C_{(14)}-C_{(15A)}$	124.9(2)
$C_{(2)} - C_{(3)} - C_{(4)}$	110.7(2)	$C_{(12)} = C_{(14)} = C_{(15A)}$	111.8(2)
$C_{(5)} = C_{(4)} = C_{(2)}$	110.2(2)	$C_{20} = C_{14} = C_{15A}$	87 2(2)
$C_{(3)} = C_{(4)} = C_{(3)}$	110.2(2)	$C_{(20)} = C_{(14)} = C_{(15A)}$	23.0(2)
$C_{(5)} C_{(4)} C_{(27)}$	108.4(3)	$C_{(15)} = C_{(14)} = C_{(15A)}$	109.1(2)
$C_{(3)} - C_{(4)} - C_{(27)}$	100.+(3) 111.1(2)	$C_{(19A)} - C_{(14)} - C_{(15A)}$	109.1(2) 109.2(2)
$C_{(2)} - C_{(3A)} - C_{(4A)}$	111.1(5)	$C_{(20A)} - C_{(14)} - C_{(15A)}$	109.2(2)
$C_{(5)} - C_{(4A)} - C_{(3A)}$	110.8(3)	$C_{(14)} - C_{(15)} - C_{(16)}$	108.9(2)
$C_{(5)} - C_{(4A)} - C_{(27A)}$	110.2(4)	$C_{(22)} - C_{(16)} - C_{(17)}$	109.6(2)
$C_{(3A)}$ - $C_{(4A)}$ - $C_{(27A)}$	108.0(3)	$C_{(22)}-C_{(16)}-C_{(15)}$	109.3(2)
$C_{(4)} - C_{(5)} - C_{(4A)}$	27.3(3)	$C_{(17)} - C_{(16)} - C_{(15)}$	109.5(2)
$C_{(4)} - C_{(5)} - C_{(6)}$	114.9(2)	$C_{(18)}-C_{(17)}-C_{(16)}$	109.8(2)
$C_{(4A)} - C_{(5)} - C_{(6)}$	112.6(2)	$C_{(17)} - C_{(18)} - C_{(23)}$	109.7(2)
$C_{(1)} - C_{(6)} - C_{(7)}$	118.4(2)	$C_{(17)}$ - $C_{(18)}$ - $C_{(19)}$	109.0(2)
$C_{(1)} - C_{(6)} - C_{(5)}$	123.0(2)	$C_{(23)}-C_{(18)}-C_{(19)}$	109.1(2)
$C_{(7)} - C_{(6)} - C_{(5)}$	118.6(2)	$C_{(14)}-C_{(19)}-C_{(18)}$	109.3(2)
$O_{(2)} - C_{(7)} - C_{(8)}$	120.8(2)	$C_{(14)} - C_{(20)} - C_{(21)}$	109.0(2)
$O_{(2)} - C_{(7)} - C_{(6)}$	116.8(2)	$C_{(23)} - C_{(21)} - C_{(22)}$	109.8(2)
$C_{(8)} - C_{(7)} - C_{(6)}$	122.4(3)	$C_{(23)} - C_{(21)} - C_{(20)}$	109.4(2)
$C_{(3)} = C_{(0)} = C_{(0)}$	117.8(2)	$C_{(23)} = C_{(21)} = C_{(20)}$	109.0(2)
$C_{(7)} = C_{(8)} = C_{(10)}$	117.0(2) 118.7(2)	$C_{(22)} = C_{(21)} = C_{(20)}$	109.6(2)
$C_{(1)} C_{(8)} C_{(10)}$	123 A(2)	$C_{(16)} = C_{(22)} = C_{(21)}$	109.0(2) 109.9(2)
$C_{(9)} - C_{(8)} - C_{(10)}$	123.4(2) 119.5(2)	$C_{(21)} - C_{(23)} - C_{(18)}$	109.9(2) 100.7(2)
$O_{(1)} - C_{(9)} - N_{(1)}$	110.3(2) 122.2(2)	$C_{(16A)} - C_{(15A)} - C_{(14)}$	109.7(2) 100.8(2)
$U_{(1)} - U_{(9)} - U_{(8)}$	123.2(2)	$C_{(15A)} - C_{(16A)} - C_{(22A)}$	109.8(2)
$N_{(1)} - C_{(9)} - C_{(8)}$	118.3(2)	$C_{(15A)} - C_{(16A)} - C_{(17A)}$	109.7(2)
$O_{(3)} - C_{(10)} - N_{(2)}$	121./(2)	$C_{(22A)} - C_{(16A)} - C_{(17A)}$	109.2(2)
$O_{(3)} - C_{(10)} - C_{(8)}$	122.5(2)	$C_{(18A)} - C_{(17A)} - C_{(16A)}$	109.3(2)
$N_{(2)} - C_{(10)} - C_{(8)}$	115.8(3)	$C_{(23A)} - C_{(18A)} - C_{(19A)}$	109.5(2)
$N_{(3)}-C_{(11)}-N_{(2)}$	118.7(2)	$C_{(23A)} - C_{(18A)} - C_{(17A)}$	109.7(2)
$N_{(3)}-C_{(11)}-S_{(1)}$	117.1(2)	$C_{(19A)} - C_{(18A)} - C_{(17A)}$	109.3(2)
$N_{(2)} - C_{(11)} - S_{(1)}$	124.2(2)	$C_{(18A)} - C_{(19A)} - C_{(14)}$	110.0(2)
$C_{(13)} - C_{(12)} - N_{(3)}$	113.8(2)	$C_{(21A)} - C_{(20A)} - C_{(14)}$	109.9(2)
$C_{(13)}$ - $C_{(12)}$ - $C_{(14)}$	129.2(2)	$C_{(22A)} - C_{(21A)} - C_{(23A)}$	109.6(2)
$N_{(3)}-C_{(12)}-C_{(14)}$	116.9(2)	$C_{(22A)} - C_{(21A)} - C_{(20A)}$	109.6(2)
$C_{(12)} - C_{(13)} - S_{(1)}$	112.6(2)	$C_{(23A)} - C_{(21A)} - C_{(20A)}$	109.3(2)
$C_{(19)} - C_{(14)} - C_{(12)}$	111.4(2)	$C_{(16A)} - C_{(27A)} - C_{(21A)}$	109.4(2)
$C_{(19)} - C_{(14)} - C_{(20)}$	110.5(2)	$C_{(18A)} - C_{(23A)} - C_{(21A)}$	109.3(2)
$C_{(12)} - C_{(14)} - C_{(20)}$	107.2(2)	N ₍₁₎ -C ₍₂₄₎ -C ₍₂₅₎	109.8(2)
$C_{(19)} - C_{(14)} - C_{(15)}$	109.6(2)	$C_{(26)}-C_{(25)}-C_{(24)}$	110.2(2)

Как и в структуре **8**, у амида **1d** наблюдается образование внутримолекулярных водородных связей $N_{(2)}$ –H...O₍₁₎ (H...O 1.88 Å, N–H...O 139°, $N_{(2)}$...O₍₁₎ 2.60 Å) и O₍₂₎–H...O₍₃₎ (H...O 1.78 Å, O–H...O 147°, O₍₂₎...O₍₃₎ 2.51 Å), приводящее к заметному удлинению связей C₍₉₎=O₍₁₎ и C₍₁₀₎=O₍₃₎ и укорочению связи C₍₇₎–O₍₂₎ (табл. 3), для которых средние значения равны, соответственно, 1.210 и 1.362 Å [5]. В то же время, межмолекулярные водородные связи (в отличие от соединения **8**) не обнаружены. Как и у амида **8**, в молекуле 6-метилированного производного **1d** суще-ствует укороченный внутримолекулярный контакт O₍₃₎...S₍₁₎ 2.78 Å (сумма вандер-ваальсовых радиусов 3.09 Å [6]), приводящий к увеличению валентного угла C₍₁₁₎–N₍₂₎–C₍₁₀₎ до 124.7°.

У 6-метилзамещенного хинолона **1d** наблюдается разупорядочение не только тетрагидроцикла циклогексенового фрагмента (как у соединения **8**), но еще и адамантанового заместителя. Из нескольких разупорядоченных конформаций циклогексенового кольца, найденных для двух базисных молекул в структуре **8**, в соединении **1d** наблюдается только одна – асимметричное *полукресло*. Отклонения атомов C₍₃₎, C₍₄₎, C_(3A) и C_(4A) от средней плоскости атомов C₍₁₎, C₍₂₎, C₍₅₎ и C₍₆₎ равны +0.47, –0.27, –0.29 и +0.43 Å соответственно. При этом две конформации циклогексенового фрагмента в амиде **1d** имеют различную заселенность, равную 0.73 для атомов C₍₃₎, C₍₄₎ и C₍₂₇₎ и 0.27 для атомов C_(3A), C_(4A) и C_(27A).

Адамантановый фрагмент разупорядочен по двум положениям, различающимся углом поворота вокруг связи $C_{(12)}-C_{(14)}$. Заселенность конформеров составляет 0.56 для атомов $C_{(15A)}-C_{(22A)}$ и 0.44 для атомов $C_{(15)}-C_{(22)}$. Первый из разупорядоченных фрагментов расположен так, что одна из связей С–С находится в плоскости тиазольного кольца, а второй повернут относительно него (торсионные углы $C_{(13)}-C_{(12)}-C_{(14)}-C_{(15A)}$ и $C_{(13)}-C_{(12)}-C_{(14)}-C_{(15)}$ равны 2.8(4) и –21.4(4)° соответственно).

В обеих исследованных молекулах соединений **1d** и **8** можно выделить два планарных с точностью 0.02 Å фрагмента. Первый из них включает 1,2-дигидропиридиновое кольцо и атомы $O_{(1)}$, $O_{(2)}$, $O_{(3)}$, $C_{(10)}$, во второй входят тиазольный цикл и атомы $N_{(2)}$, $C_{(14)}$. У амида **1d** угол между этими фрагментами несколько меньше и составляет 8.8°.

При изучении противотуберкулезных свойств N-R-амидов 4-гидрокси-2-оксо-1,2,5,6,7,8-гексагидрохинолин-3-карбоновой кислоты [3] отмечаось, что восстановление бензольной части хинолона, как правило, приводит к заметному спаду активности по сравнению с негидрированными аналогами. В случае же амидов **1а–h** (табл. 1) можно утверждать, что метильная группа в положении 6 таких соединений практически полностью дезактивирует молекулу.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н синтезированных соединений записаны на приборе Varian Mercury-VX-200 (200 МГц). Спектр ЯМР ¹Н COSY амида **1b** зарегистрирован на спектрометре Varian Mercury-400 (400 МГц). Во всех случаях растворитель ДМСО- d_6 , внутренний стандарт ТМС. В работе использован коммерческий 4-метилциклогексанон фирмы Fluka. Этиловый эфир 5-метил-2-оксоциклогексанкарбоновой кислоты (4). К раствору этилата натрия [из 2.3 г (0.1 моль) металлического натрия и 50 мл абсолютного спирта] при энергичном перемешивании прибавляют 14.6 г (0.1 моль) диэтилоксалата, а затем 11.2 г (0.1 моль) 4-метилциклогексанона. Перемешивание прекращают, реакционную массу оставляют при комнатной температуре. Через 5 ч прибавляют 200 мл холодной воды и подкисляют разбавленной H_2SO_4 до рН 3. Выделившийся β -кетощавелевый эфир **3** экстрагируют CH₂Cl₂ (3 × 50 мл). Органические вытяжки объединяют, растворитель отгоняют. Остаток нагревают на металлической бане в колбе с дефлегматором под давлением ~15 мм рт. ст., постепенно доводя температуру бани до 170 °C и поддерживая эту температуру до тех пор, пока не прекратится выделение CO. По окончании реакции (через 2 ч – 2 ч 30 мин) реакционную массу перегоняют в вакууме, собирая фракцию с т. кип. 78–80 °C (8 мм рт. ст.). Получают 14.9 г (81%) эфира **4**.

Этиловый эфир 5-метил-2-пропиламиноциклогекс-1-енкарбоновой кислоты (5). Смесь 18.4 г (0.1 моль) соединения 4 и 12.4 мл (0.15 моль) пропиламина перемешивают 5 ч при 45 °C, после чего оставляют при комнатной температуре на 8–10 ч. Выделившуюся воду с избытком пропиламина удаляют в вакууме. Остаток (технический енамин 5) используют в дальнейшем синтезе без дополнительной очистки.

Этиловый эфир 4-гидрокси-6-метил-2-оксо-1-пропил-1,2,5,6,7,8-гексагидрохинолин-3-карбоновой кислоты (7). Неочищенный енамин 5, полученный из 0.1 моль эфира 4 по описанной выше методике, растворяют в 100 мл CH₂Cl₂, прибавляют 15.4 мл (0.11 моль) триэтиламина, а затем при охлаждении и перемешивании добавляют по каплям 16.56 г (0.11 моль) этоксималонилхлорида и оставляют при комнатной температуре на 4–5 ч. Затем реакционную смесь разбавляют водой, органический слой отделяют, сушат безводным CaCl₂. Растворитель отгоняют (в конце в вакууме). К остатку (диэфир 6) прибавляют раствор этилата натрия [из 3.45 г (0.15 моль) металлического натрия и 150 мл абсолютного спирта], кипятят 30 мин ~0 °С, после чего нагревание прекращают и оставляют на 7–8 ч при комнатной температуре. Разбавляют реакционную смесь водой и подкисляют разбавленной (1:1) HCl до pH 4.5–5.0. Выделившийся эфир 7 экстрагируют CH₂Cl₂ (3 × 100 мл). Растворитель отгоняют (в конце в вакууме). Получают 25.2 г (86%) эфира 7 в виде светло-желтой смолообразной массы, используемой в синтезе амидов **1а–h** без дополнительной очистки.

N-R-Амиды 4-гидрокси-6-метил-2-оксо-1-пропил-1,2,5,6,7,8-гексагидрохинолин-3-карбоновой кислоты 1а-h (общая методика). Смесь 2.93 г (0.01 моль) этилового эфира 7, 0.01 моль соответствующего анилина или гетариламина и 1 мл ДМФА перемешивают и выдерживают 3 мин при 160–170 °С. Охлаждают, прибавляют 20 мл спирта, тщательно перемешивают и фильтруют. Полученный амид 1 промывают на воронке спиртом, сушат. Кристаллизуют из ДМФА.

Рентгеноструктурное исследование. Кристаллы амида 1d, выращенные из ДМФА, моноклинные, при 20 °C a = 12.306(2), b = 14.516(3), c = 14.516(3) Å, $\beta = 112.767(14)^{\circ}$, V = 2455.2(8) Å³, $M_r = 481.64$, Z = 4, пространственная группа $P2_1/c$, $d_{\rm выч} = 1.303$ г/см³, μ (Мо $K\alpha$) = 0.166 мм⁻¹, F(000) = 1032. Параметры элементарной ячейки и интенсивности 4515 отражений (4340 независимых, $R_{\rm int} = 0.086$) измерены на автоматическом четырехкружном дифрактометре Siemens P3/PC (Мо $K\alpha$, графитовый монохроматор, $\theta/2\theta$ -сканирование, $2\theta_{\rm max} = 50^{\circ}$).

Структура расшифрована прямым методом по комплексу программ SHELX97 [7]. Положения атомов водорода рассчитаны геометрически и уточнены по модели "наездника" с $U_{iso} = 1.2 \times U_{eq}$ неводородного атома, связанного с данным водородным. Разупорядоченные фрагменты уточнялись с наложением ограничений на длины связей С–С и валентные углы. Общее число геометрических ограничений составило 618. Структура уточнена по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов до $wR_2 = 0.0892$ по 4340 отражениям ($R_1 = 0.064$ по 1704 отражениям с $F > 4\sigma(F)$, S = 0.905). Полная кристаллографическая информация депонирована в Кембриджском банке структурных данных (депонент № ССDC 283260). Межатомные расстояния и валентные углы представлены в табл. 3, 4.

СПИСОК ЛИТЕРАТУРЫ

- 1. И. В. Украинец, Л. В. Сидоренко, О. В. Горохова, С. В. Слободзян, ХГС, 75 (2007).
- Г. И. Жунгиету, В. Г. Граник, Основные принципы конструирования лекарств, Издательско-полиграфический комплекс Государственного университета Молдовы, Кишинев, 2000.
- 3. И. В. Украинец, Е. В. Колесник, Л. В. Сидоренко, О. В. Горохова, А. В. Туров, *XTC*, 874 (2006). [*Chem. Heterocycl. Comp.*, **42**, 765 (2006)].
- 4. H. Gunther, *NMR Spectroscopy: Basic Principles, Concepts, and Applications in Chemistry,* John Wiley & Sons, Chichester, 1995.
- 5. H.-B. Burgi, J. D. Dunitz, Struct. Correl., VCH, Weinheim, 1994, vol. 2, 741 p.
- 6. Ю. В. Зефиров, П. М. Зоркий, Успехи химии, 58, 713 (1989).
- 7. G. M. Sheldrick, SHELX97. PC Version. A System of Computer Programs for the Crystal Structure Solution and Refinement, Rev. 2 (1998).

Национальный фармацевтический университет, Харьков 61002, Украина e-mail: uiv@kharkov.ua Поступило 27.06.2005

^аКиевский национальный университет им. Тараса Шевченко, Киев 01033, Украина e-mail: nmrlab@univ.kiev.ua