А. Л. Михальчук, О. В. Гулякевич, А. В. Барановский, А. А. Ахрем

СИНТЕЗ И СТРУКТУРНЫЕ ИССЛЕДОВАНИЯ 12-ГИДРОКСИИМИНОПРОИЗВОДНЫХ 16,16-ДИМЕТИЛ-8-АЗА-*D*-ГОМОГОНА-1,3,5(10),13-ТЕТРАЕН-12,17*a*-ДИОНА

Взаимодействием 16,16-диметил-8-аза-*D*-гомогона-1,3,5(10),13-тетраен-12,17*а*-диона (3,3-диметил-3,4,6,7,11b,12-гексагидро-1Н-изохино[2,1-*a*]хинолин-1,13(2Н)-дион) с гидрокси- и метоксиаминами в спирте получены 12-гидроксиимино- и 12-метоксиимино-производные. 12-Гидроксииминопроизводное получено также взаимодействием указанного 12,17*а*-диона с гидрохлоридом гидроксиламина и последующим расщеплением обра-зующегося гидрохлорида 12-гидроксииминопроизводного действием оснований. 12-Мет-оксииминопроизводное получено метилированием 12-гидроксииминопроизводного иоди-стым метилом в присутствии метилата натрия. Строение полученых производных под-тверждено совокупностью физико-химических данных, включающих результаты стерео-структурных ЯМР спектроскопических исследований (COSY, NOESY, HMBC, HMQC).

Ключевые слова: 8-аза-*D*-гомогона-12,17*а*-дионы, 12-гидроксииминопроизводные 8-аза-*D*-гомогона-12,17*а*-дионов, *син*- *анти*-изомерия, квантово-механический анализ, ИК, УФ, ЯМР ¹H, ¹³С спектроскопия, COSY, NOESY, HMBC, HMQC.

Изучение биологических свойств 8-азастероидов, в частности 8-азагона-12,17-дионов [1] и 8-аза-*D*-гомогона-12,17*а*-дионов [1–6], показало, что соединения этого ряда проявляют иммуномодулирующие свойства, влияя на иммунитет высших млекопитающих и человека [2, 3, 6]. Более того, установлено [2–4], что в зависимости от структуры эти соединения могут выступать как в качестве активаторов, так и супрессоров иммунного ответа. Эти предпосылки послужили основанием для выяснения роли структурных факторов в направлении и уровне проявляемой иммунной активности, в результате которых было установлено, что оксииминопроизводные 8-аза-*D*-гомогона-12,17*а*-дионов также проявляют иммунную активность [7].

В этом сообщении представлены сведения по синтезу 12-гидрокси- (2) и 12-метокси- (3) -иминопроизводных 16,16-диметил-8-аза-*D*-гомогона-1,3,5(10),13-тетраен-12,17*a*-диона (1), основные физико-химические характеристики полученных и изученных соединений и результаты исследования стереоструктуры и молекулярной динамики этих соединений методами ИК, УФ и ЯМР.

R = H, Me

Взаимодействием 8-аза-*D*-гомогона-12,17*а*-диона 1 с гидрокси- и метоксиаминами в спирте синтезированы 12-оксииминопроизводные 8-аза-*D*гомогонана 2 и 3. Альтернативно 12-оксииминопроизводное 2 получено взаимодействием соединения 1 с гидрохлоридом гидроксиламина с последующим расщеплением образующейся соли 4 основаниями (NaOH, MeONa). 12-Метоксииминопроизводное 3 также получено метилированием гидроксииминопроизводного 2 иодистым метилом в присутствии метилата натрия. Все полученные вещества охарактеризованы совокупностью физико-химических данных, позволяющих утверждать достоверность приписанных структур.

В ИК спектрах производных **2**, **3** присутствуют уширенные асимметричные полосы поглощения (ПП) в области v 1640–1630, имеющие плечи на низкочастотном склоне полос при v ~1610 и ~1590 см⁻¹. Интенсивные ПП при v 1640–1630 см⁻¹ в соответствии с данными работ [8, 9] можно отнести к поглощению, обусловленному валентными колебаниями групп C_(17a)=O, а ПП проявляющиеся в виде плеч – к поглощению, обусловленному колебаниями связей C=N. ПП группы N–OH производного **2** в прессовке KBr расположена при v 3210, в суспензии в вазелиновом масле – при v 3180, а в растворе CHCl₃ – при v 3580 см⁻¹. Это свиде-тельствует о том, что в кристаллическом состоянии гидроксильная группа участвует в межмолекулярных водородных связях, а при переходе к рас-творам (CHCl₃) эти связи разрушаются и наблюдаются колебания сво-бодной гидроксильной группы. Это имеет и еще одно немаловажное зна-чение – наличие свободной гидроксильной группы в растворе (v 3580 см⁻¹) указывает на *анти-* или *E*-конфигурацию гидроксииминогруппы.

В этом сообщении не обсуждается структура соли гидроксииминопроизводного 4, так как этот вопрос имеет самостоятельное значение, выходящее за рамки данного сообщения, и будет рассмотрен отдельно.

Спектры электронного поглощения гидроксииминопроизводных **2**, **3** в отличие от спектра 8-аза-*D*-гомогона-12,17*a*-диона **1**, имеющего две ПП при λ 267 (ε 13 200) и 310 нм (ε 17 500) [10], характеризуются широкой ПП в области λ 300–340 нм (ε 17 000–20 000) и интенсивной составной полосой с максимумом при λ 199–200 нм, длинноволновой склон которой простирается до 240–250 нм. Длинноволновую ПП, согласно данным работы [9], следует приписать поглощению *транс-s-транс* N₍₈₎–C₍₁₄₎=C₍₁₃₎–C_(17а)=О енаминонового хромофора, а коротковолновую – поглощению ароматического хромофора (цикл *A*).

В масс-спектрах гидроксииминопроизводных 2, 3 имеются молекулярные ионы, которым сопутствуют ионы с массами [M+1] и [M-1], а также ионы с массами [M-17] и [M-18] для производного 2 и [M-31] и [M-32] для производного 3, что соответствует отщеплению группы OH и H_2O в первом случае и метоксигруппы и MeOH – во втором.

Теоретически для реакции 8-аза-*D*-гомогона-12,17*а*-диона 1 с гидроксии метоксиаминами можно предполагать образование как 12-гидроксииминопроизводных 2, 3, так и 17a-гидроксииминопроизводных 5. Однако, как следует из экспериментальных данных, полученные соединения имеют строение именно 12-гидроксииминопроизводных 2, 3. Более того, анализ реакционных смесей с целью обнаружения гипотетических 17а-гидроксииминопроизводных 5 дал отрицательные результаты. Эти данные в контексте с данными работ [11, 12] по синтезу 17*а*-этоксииминопроизводных 8-азастероидов аннелированием 3,4-дигидроизохинолинов с 2-ацетил-5,5-диметил-1-этоксииминоциклогексан-1,3-дионом имеют важное значение для представлений о реакционной способности производных 1 и свойствах производных 2, 3, 5. С другой стороны, для 12-гидроксииминопроизводных 2, 3 можно допустить как син- (6), так и анти-конфигурацию (2, 3) гидроксииминогруппы, однако син-конфигурация 6 представляется менее предпочтительной вследствие стерических и кулоновских взаимодействий с атомом кислорода соседней 17а-карбонильной группы и, как следствие, либо имеет очень низкую заселенность, либо вообще не реализуется.

Квантово-механический анализ молекулярной структуры 12-гидроксииминопроизводного 2 полуэмпирическими методами AM-1 и PM3 (алгоритм Polak–Ribiere) свидетельствует, что молекулы этого соединения могут существовать в виде 4 конформеров 2а–d, различающихся конформациями циклов B и D и определяющей сочленение циклов B и Cконфигурацией не поделенной пары электронов атома N₍₈₎ относительно протона при атоме C₍₉₎, которому условно приписана α -конфигурация.

2a

Рис. 1. Стерео проекции четырех наиболее предпочтительных конформеров оксима 2

по результатам квантово-механического моделирования полуэмпирическим методом АМ-1

Эти четыре наиболее энергетически предпочтительных конформера представлены на рис. 1 стереопроекциями **2а**–**d**, а их квантово-химические параметры – в табл. 1.

Из рис. 1 видно, что пары конформеров **2а,с** и **2b,d** различаются пространственным строением цикла **D**. Цикл **D** имеет конформацию *конверта*, клапаном которого является атом $C_{(16)}$, имеющий α-конфигурацию (уходит за среднеквадратичную плоскость молекулы) в конформациях **2a** и **2c** и β-конфигурацию (располагается перед среднеквадратичной плоскостью молекулы) в коформациях **2b** и **2d**. Пары конформеров **2a,b** и **2c,d** различаются конформацией цикла **B** и сочленением циклов **B** и **C** – *цис*-сочленение в случае конформеров **2a,b** и *mpaнc*-сочленение в случае **2c,d**. В паре конформеров **2a,b** цикл **B** имеет конформацию *конверта*, клапан которого атом $C_{(7)}$ имеет β-конфигурацию, а в паре конформеров **2c,d** цикл **B** имеет конформацию *ванны* или *лодки*, кормовые атомы $C_{(6)}$ и $C_{(9)}$ которой имеют α-конфигурацию.

Согласно расчетным данным (табл. 1, AM-1) конформеры **2a** и **2b** энергетически предпочтительнее конформеров **2c** и **2d**. А в паре конформеров **2a**, **b** конформер **2a** предпочтительнее конформера **2b** и, как следствие, вероятно более заселен. Этот результат хорошо согласуется с рентгеноструктурными данными, ранее полученными для родственных 12,17*a*-дикетопроизводных [13, 14] и свидетельствующими, что молекулы 8-аза-*D*-гомогона-12,17*a*-дионов во всех изученных случаях имеют *цис*сочленение циклов **B** и **C** и α -конфигурацию атома C₍₁₆₎.

Таким образом, согласно результатам квантово-механического анализа наиболее предпочтительными для оксима **2** являются конформеры **2a** и **2b**, различающиеся конфигурацией атома C₍₁₆₎ с *гем*-диметильной группировкой.

Таблица 1

Энергии связывания и теплоты образования* конформеров 2а–d гидроксииминопроизводного 2, рассчитанные полуэмпирическим методами AM-1 и PM3

Соеди-	Конфигурация	$E_{\rm cb},$ ккал/моль	<i>Т</i> _{обр} , ккал/моль
пение	конформера	AM	-1**
2a	9α–8α, 7β, 15α	-4719.6155998	18.6564002
2b	9α-8α, 7β, 15β	-4719.5826692	18.6893308
2c	9α–8β, 6α, 15α	-4717.3305899	20.9414101
2d	9α–8β, 6α, 15β	-4718.6675146	19.6014854
		PM3**	
2a	9α–8α, 7β, 15α	-4728.7718717	9.5001283
2b	9α–8α, 7β, 15β	-4727.0301482	11.2418518
2c	9α–8β, 6α, 15α	-4725.2533976	13.0186024
2d	9α–8β, 6α, 15β	-4726.0513028	12.2206975

* *Е*_{св} – энергия связывания, *Т*_{обр} – теплота образования.

** Град. >0.0001 ккал/моль/Å.

Рис. 2. Ньюменовские проекции по связям C₍₉₎–C₍₁₁₎ (*a*) и C₍₆₎–C₍₇₎ (*b*), демонстрирующие относительное расположение протонов в указанных фрагментах молекулы гидроксииминопроизводного 2 для конформера 2a

Конформеры с *цис*-сочленением циклов **В** и **С** более предпочтительны также при расчете методом PM3 (табл. 1). При этом оба метода указывают на большую предпочтительность конформера с 16α-конфигурацией.

Очевидно, что для конформеров **2a** и **2b** относительное расположение протонов $C_{(9)}H-C_{(11)}H_2$ и $C_{(6)}H_2-C_{(7)}H_2$ идентично (рис. 2) и, как следствие, в спектрах ЯМР для этих конформеров должен наблюдаться однотипный набор резонансных сигналов, отвечающих ABX-спиновой системе для $C_{(9)}H-C_{(11)}H_2$ протонов и A_2B_2 -системе для вицинальных $C_{(6)}H_2-C_{(7)}H_2$ протонов [15].

В спектрах ЯМР 1 Н и 13 С (CDCl₃) гидроксииминопроизводного 2 присутствует один набор сигналов резонансного поглощения, отвечающий всем структурным фрагментам молекулы, что согласуется с данными квантово-механического моделирования. Спектры соединения 2 были записаны в CDCl₃ и в смеси ДМСО-CDCl₃, 2 : 1, что позволило разнести перекрывающиеся сигналы $C_{(11)}$ На и $C_{(17)}$ Н₂ в спектре ЯМР ¹Н и $C_{(6)}$, $C_{(19)}$ и $C_{(2)}$, $C_{(3)}$ в спектре ЯМР ¹³С для исследования межъядерных взаимодействий (табл. 2, 3). Так, в спектре ЯМР ¹Н в области слабого поля (7.10–7.40 м. д.) имеется характеристичный набор четырех однопротонных сигналов (два дублета и два триплета), связанных спин-спиновыми взаимодействиями. В области сильного поля (1.00-2.60 м. д.) наблюдаются резонансные сигналы атома С(16) гем-диметильной группировки в виде ДВVХ трехпротонных синглетов и сигналы АВ-систем сильносвязанных атомов С(15) и С(17) метиленовых групп. В области поля средней интенсивности (2.70-4.60 м. д.) присутствует набор сигналов, отвечающих молекулярным фрагментам С₍₉₎Н-С₍₁₁₎Н₂ и С₍₆₎Н₂-С₍₇₎Н₂. При этом для сигнала протона С₍₁₁₎Н_в, С₍₉₎Н-С₍₁₁₎Н₂ АВХ-спиновой системы (Н_(11b), рис. 2*a*), имеющего β-конфигурацию, характерно необычайно большое смещение в область слабого поля по сравнению с сигналом аналогичного протона исходного 8аза-*D*-гомогона-12,17а-диона 1 (б 2.83 м. д.), что можно связать со специфическим анизотропным влиянием оксииминогруппировки, имеющей анти-конфигурацию. Еще более явно анизотропное влияние анти-гидроксила проявляется в спектре ЯМР ¹³С в химическом сдвиге атома C₍₁₁₎, достигая $\delta \sim 15$ м. д., по сравнению с влиянием исходного дикетопроизводного (δ C₍₁₁₎ 45.20 м. д.). Существование изомера с *син*-конфигурацией, как отмечалось выше, представляется маловероятным в силу двух обстоятельств: вследствие стерического фактора, во-первых, и кулоновских взаимодействий, во-вторых, одноименно заряженных атома кислорода C_(17a)-карбонильной группы и атомов азота и кислорода C₍₁₂₎-оксиминогруппировки. Квантово-механический анализ гипотетического *син*-изомера 6 (AM-1) подтверждает эту точку зрения и показал: E_{cB} -4718.4289729; $T_{oбp}$ 19.8430231 (град. >0.0001).

Отнесения резонансного поглощения атомов водорода $C_{(9)}Ha$ и $C_{(7)}He$ очевидны. Атом $H_{(9a)}$, выступающий в качестве X-части ABX-спиновой системы протонов $C_{(9)}HC_{(11)}H_2$, имеет две КССВ с протонами при $C_{(11)}$, отвечающие, согласно принципу Карплуса [16], их относительному *транс*и *гош*-расположению (рис. 2*a*), что позволяет строго приписать конфигурации протонам при атоме $C_{(11)}$. Поглощающему в наиболее слабом поле протону при атоме $C_{(7)}$ на основании анализа геминальных и вицинальных КССВ и результатов квантово-механического моделирования приписана $C_{(7)}\beta$ He (экваториальная) конфигурация.

Отнесения атомов углерода в спектрах ЯМР ¹³С (табл. 2, 3) были сделаны на основе анализа корреляционных спектров НМОС и НМВС. Отнесения четвертичных атомов углерода основаны на следующих наблюдениях в спектре HMBC: атом C₍₅₎ имеет кросс-пики со всеми протонами ароматического кольца, с С(9)На и с протонами при атомах С(7) и С₍₆₎. Атом С₍₁₀₎, в свою очередь, не имеет кросс-пиков с протонами при атомах $C_{(1)}$ и $C_{(7)}$, но наблюдаются сигналы с протонами при атоме $C_{(11)}$. У атома C₍₁₃₎ имеются кросс-пики с C₍₁₁₎βHa, C₍₁₇₎αH, C₍₁₇₎βH и интенсивный сигнал с С₍₁₁₎αНе, что свидетельствует дополнительно об экваториальном расположении этого протона. У атома С(14) имеются кросс-пики с протонами при атомах C₍₁₅₎ и C₍₇₎, причем сигнал C₍₇₎βHe более интенсивен, что и следует ожидать, учитывая его экваториальное расположение (угол близок к 0). Интересным является кросс-пик атома C_(17a) с C₍₁₉₎H₃. Хотя его интенсивность мала, можно отметить, что в данном случае реализуется ситуация, когда наблюдается взаимодействие через 4 связи (*w*-константа), что указывает на экваториальное расположение С₍₁₉₎-метильной группы и, соответственно, приписывает аксиальную конфигурацию С(18)-метильной группе.

Таким образом, анализ 1D-протонного спектра, спектров COSY и NOESY позволил, безусловно, отнести сигналы всех протонов и установить их расположение относительно плоскости молекулы. С₍₁₎Н легко определяется из взаимодействий с С₍₉₎ α Ha и С₍₁₁₎ α He, а С₍₄₎H с обоими протонами при атоме С₍₆₎ в спектрах COSY и NOESY. В спектре COSY (CDCl₃) С₍₂₎Н имеет кросс-пик слабой интенсивности с С₍₉₎ α Ha, а С₍₃₎H с С₍₆₎ β Ha. В смеси растворителей из-за перекрывания сигналов эти корреляции обнаружить удается только для взаимодействия С₍₃₎H с С₍₆₎ β Ha. Конфигурация протонов в цикле **B** подтверждена NOE-эффектами у С₍₇₎ α Ha с С₍₉₎ α Ha, а у С₍₆₎ β Ha с С₍₁₁₎ β Ha. Наличие интенсивных кросс-пиков С₍₇₎ β He (e-экваториальное положение С₍₇₎ β H) с протонами при

Puc 4. Спектр NOESY оксима **2** в CDCl₃

	Химические сдвиги, δ, м. д. (<i>J</i> , Гц)*				
Nº Nº	С	αHa/e	βH <i>a/e</i>	Наблюдаемые эффекты	
OH	_	~12.75 (ш)	-	-	
1	126.35	7.36 (д, J = 7.7)	_	COSY 9α, NOESY 9α (s), 11α (s), 7α (w), HMBC 9H	
2	127.42	7.25 (т, J = 7.2)	-	COSY 1, 9α (<i>w</i>)	
3	127.42	7.28 (т, J = 7.4)	_	COSY 4, 6β (<i>w</i>)	
4	128.36	7.18 (д, J = 7.4)	-	COSY 6, NOESY 6	
5	133.63	-	-	ΗΜΒС 7αβ	
6**	29.76**	е 2.89 (д. т, J = 15.7, J = 3.2)	а 3.06 (д. д. д. J = 15.6, J = 11.5, J = 4.2)	α-NOESY 9α, 7αβ, β-NOESY 11β (w), 15β (vw)	
7	44.74	а 3.36 (м)	е 4.12 (д. т, J = 12.4, J = 3.7)	α-NOESY 9α, 1 (<i>w</i>), 6α (<i>s</i>), 6β (<i>w</i>), 15α (<i>w</i>); β-NOESY 6α (<i>w</i>), 6β (<i>w</i>), 15α (<i>s</i>), 15β (<i>s</i>)	
9	55.91	а 4.59 (д. д, J = 13, J = 3.4)	_		
10	135.10	-	-	ΗΜΒC 11α, 11β	
11	29.27	<i>е</i> 4.09 (д. д, <i>J</i> = 16.5, <i>J</i> = 4.0)	а 2.36 (д. д, J = 12.8, J = 16.3)	α -NOESY 9α (s), β-NOESY 9α (w)	
12	145.19	_	_	HMBC 11α (s), 11β (w), нет 9α-угол 90°	
13	102.16	-	-	HMBC 11α (s), 11β (w), 17αβ	
14	161.29	_	_	HMBC 7β (s) 7α (w), 15αβ	
15	42.05	а 2.48 (д, <i>J</i> = 16.6)	е 2.55 (д, <i>J</i> = 16.6)	α-NOESY 7α (s), 7β (s), 9α (w), 17α (s), 18, 19 β-NOESY 7β (s), 7α (w), 17β, 18, 19	
16	31.76	-	-		
17	50.32	а 2.35 (д, <i>J</i> = 16.0)	е 2.28 (д, <i>J</i> = 16.0)	α-NOESY 9α, 15α, β-COSY дальняя w-константа 15β, NOESY 15β	
17 <i>a</i>	193.72	-	-	HMBC 17, 19	
18β	27.69	_	a 1.08	COSY дальняя w-константа 15α, 17α	
19α**	29.74**	e 1.13	-	NOESY 9α (w), HMBC 17a	

Спектры ЯМР ¹H, ¹³С и межъядерные взаимодействия оксима 2 в растворе CDCl₃

* *а* – аксиальный, *е* – экваториальный. ** Сигналы атомов углерода могут быть приписаны наоборот.

Таблица З

Ато	Химические сдвиги, б, м. д. (Ј, Гц)				
м №	С	αHa/e	βHa/e	Наблюдаемые эффекты	
1	125.64	7.38 (д, J = 7.4)	_	COSY 9, NOESY 9, 11α, 11β	
2	127.09	7.28 (м)	_		
3	126.81	7.33 (м)	-	COSY 6β	
4	128.53	7.29 (м)	-	COSY 6, NOESY 6α	
5	134.68	_	_		
6	29.33	е 2.96 (д. т, J = 16.0, J = 3.5)	а 3.10 (д. д. д. J = 15.7, J = 11.7, J = 4.2)	COSY 4, α-NOESY 7α, β-NOESY 7β	
7	44.94	а 3.44 (д. д. д. J = 13.4, J = 11.1, J = 2.8)	е 4.28 (д. т, J = 13, J = 3.9)	α-NOESY 9α, β-NOESY 15α, 15β	
9	55.54	а 4.69 (д. д, J = 3.8, J = 11.2)	-		
10	136.02	_	_		
11	28.59	е 3.60 (д. д, J = 4.3, J = 15.9)	а 2.54 (д. д, J = 11.5, J = 15.7)	α-NOESY 9α (s), β-NOESY 9α (w)	
12	148.39	_	_		
13	103.12	_	-		
14	162.82	_	_		
15	41.09	а 2.62 (д, <i>J</i> = 17)	е 2.76 (д, <i>J</i> = 17)	α-NOESY 17α, 19, β-NOESY 17β, 18	
16	31.31	_	_		
17	51.15	а 2.29 (д, <i>J</i> = 17)	е 2.19 (д, <i>J</i> = 17)	α-NOESY 15α, 19, β-COSY дальняя w-константа 15β, NOE 18	
17a	191.28	-	-		
18β	27.72	_	a 1.11	COSY дальняя w-константа 15а, 17а	
19α	28.98	e 1.17	-		

Спектры ЯМР ¹Н, ¹³С и межъядерные взаимодействия оксима 2 в растворе ДМСО-d₆–CDCl₃

атоме $C_{(15)}$ подтверждает как правильность отнесений в цикле *B*, так и однозначно доказывает химический сдвиг АВ-спиновой системы протонов при атоме $C_{(15)}$.

Наибольшую сложность вызывает отнесение протонов в цикле D, поскольку система достаточно изолирована от остальных протонов молекулы. Стереохимические отнесения были выполнены следующим образом. Протоны при атоме С(19) обнаруживают слабый NOE-эффект с С₍₉₎αНа в смеси растворителей, что может быть следствием аксиального расположения этой метильной группы. На основании этого с учетом кросс-пиков в спектре NOESY (смесь растворителей) С(19)а с С(17)аНа и $C_{(15)}\alpha Ha$, а $C\beta_{(18)}e$ с $C_{(15)}\beta He$ и $C_{(17)}\beta He$ установлена стереохимия протонов в цикле **D**. Дополнительным доказательством правильности отнесения служит наличие дальних взаимодействий (и-константа через 4 связи) в спектре COSY. Так, кросс-пики наблюдаются между С(15) ВНе и С(17) ВНе, это возможно, когда эти атомы находятся по одну сторону плоскости молекулы и при их экваториальном расположении. Однако в спектре присутствуют кросс-пики между С_{β(18)}H₃, С₍₁₅₎αHa и С₍₁₇₎αHa. При этом 18-метильная группа должна быть аксиальная, а 19-метильная – экваториальная. Последнее положение противоречит выше отмеченному взаимодействию с С₍₉₎αНа. Такая конформация также не соответствует рассчитанной методами AM-1, PM3 и MM2. Объяснением этой аномалии может быть то, что структура молекулы не является абсолютно жесткой и возможны конформационные превращения цикла D с некоторым заселением конформера **2b**. Вследствие этого протоны при атомах $C_{(15)}$ и $C_{(17)}$ могут занимать как псевдоаксиальное, так и псевдоэкваториальное положение, что подтверждается NOE-эффектами различной интенсивности протонов при атоме $C_{(15)}$ с протонами при атоме $C_{(7)}$.

Вероятно, определенная конформационная гибкость реализуется и в кольце **B**, поскольку NOE-эффект наблюдается у $C_{(6)}\alpha He$ с $9\alpha Ha$ и, соответственно, $C_{(7)}\alpha Ha$ с протонами при атоме $C_{(15)}$ (существенно меньшей интенсивности, чем у $C_{(7)}\beta He$).

Попытка определить конфигурацию оксииминогруппы в производном 2 с помощью методов COSY, NOESY оказалась безуспешной, что, вероятно, обусловлено вращением по связи N–O. С учетом этого был проанализирован метиловый эфир гидроксииминопроизводного 3. Однако и в этом случае в спектре NOESY не удалось обнаружить достоверных кросс-пиков метильной группы оксима с протонами тетрациклического скелета молекулы. Вероятно, это также обусловлено свободным вращением по связи N–O.

В целом, спектры эфира, как и ожидалось, имеют весьма близкое сходство со спектрами самого оксима. Тем не менее, в спектрах (табл. 4) были обнаружены следующие изменения. Введение метильной группы оказало небольшое влияние на химические сдвиги ряда протонов и атомов углерода. Так, сигналы $C_{(11)}\alpha$ H и $C_{(1)}$ H переместились в сильное поле на 0.31 и 0.08 м. д., соответственно, а в АВ-системе протонов при атоме $C_{(15)}$ уменьшилась интенсивность внешних линий (отношение химический сдвиг–КССВ 1.5). В спектре ЯМР ¹³С можно отметить сдвиг сигналов атомов $C_{(12)}$ и $C_{(13)}$ в слабое поле (4.5, 2.1 м. д. соответственно), а атома $C_{(17a)} - в$ сильное поле (2 м. д.).

Таблица 4

Атом	м Химические сдвиги, б, м. д. (Ј, Гц)			м. д. (<i>J</i> , Гц)
N⁰	С	αHa/e	βH <i>a/e</i>	Наблюдаемые эффекты
NOMe	61.64	3.98 (c)	_	
1	125.96	7.29 (м)	_	COSY 9aH, NOESY 9aH, 11H
2	127.22	7.23 (т, <i>J</i> = 7.2)	_	СОЅҮ 1Н, 3Н, 9αН
3	127.13	7.27 (м)	_	COSY 4H, 6βH (<i>w</i>)
4	128.42	7.17 (д, <i>J</i> = 7.4)	_	COSY 6H, NOESY 6H
5	133.91	_	_	НМВС 9Н, 7Н, 6Н
6	29.83	е 2.87 (д. т, J = 15.9, J = 3.1)	а 3.04 (м)	COSY 4H, α-NOESY 7H, 9αH (w), β-NOESY 7βH, 11βH (w)
7	44.58	а 3.31 (м)	е 4.08 (д. т, J = 12.8, J = 4.0)	α-NOESY 6αΗ, 9αΗ, β-NOESY 6Η, 15Η
9	56.03	4.52 (д. д, J = 3.2, J = 12.5)		
10	135.59	_	-	НМВС 9Н, 11Н, 6Н
11	30.20	3.78 (д. д, J = 15.9, J = 4.0)	2.32 (д. д, J = 12.7, J = 15.9)	α-NOESY 9αH, HMBC 17a (w-константа)
12	149.50	_	_	HMBC 9H, 11H, 17H, Ome
13	104.32	-	_	НМВС 11αН, 15Н, 17Н
14	161.54	_	_	НМВС 7Н, 9Н, 19αН (<i>w</i> -константа)
15	42.04	2.45 (д, <i>J</i> = 16.7)	2.50 (д, <i>J</i> = 16.7)	α-NOESY 18α, β-NOESY 19β
16	31.67	-	_	
17	51.14	2.32 (д, <i>J</i> = 16.0)	2.27 (д, <i>J</i> = 16.0)	β-COSY 15βH (<i>w</i> -константа)
17 <i>a</i>	191.70	_	-	HMBC 15H, 17H, 11αH и 19αH (w-константа)
18β	27.81	_	1.08 (c)	COSY 17αΗ и 15αΗ (w-константа), NOESY 17βΗ, 15βΗ
19α	29.57	1.12 (c)	_	НМВС 17 <i>а</i> (<i>w</i> -константа), NOESY 15αH, 17αH, 9αH (<i>vw</i>)

Спектры ЯМР ¹Н, ¹³С и межьядерные взаимодействия метоксииминопроизводного 3 в растворе CDCl₃

427

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры получали на приборе UR-20. УФ спектры снимали на спектрофотометре Specord M-400 в этаноле. Спектры ЯМР ¹Н и 13 С, а также спектры COSY, NOESY, HMBC, HMQC получали на радиоспектрометре Bruker Avance (500 и 126 МГц, соответственно, ¹Н и 13 С) в растворах CDCl₃ и CDCl₃–ДМСО-d₆, внутренний стандарт ТМС. Масс-спектры получали на приборе Varian MAT-311, прямой ввод, энергия ионизирующих электронов 70 зВ. Температуры плавления определяли на нагревательном блоке Böetius. Ход реакций контролировали методом TCX на пластинках Silufol UV-254, элюент хлороформ–метанол, 9.5:0.5 или 9:1. Использованный в работе 16,16-диметил-8-аза-*D*-гомогона-1,3,5(10),13-тетраен-12,17*a*-дион 1 получили аннелированием 3,4-дигидроизохинолина 2-ацетилдимедоном [10].

16,16-Диметил-12-гидроксиимино-8-аза-*D*-гомогона-1,3,5(10),13-тетраен-17*а*-он (2). К раствору 2.22 г (7.5 ммоль) 8-аза-*D*-гомогона-12,17*a*-дионов 1 в 25 мл ЕtOH прибавляют раствор, который получают, смешивая 0.56 г (8 ммоль) гидрохлорида гидроксиламина и 0.66 г (8 ммоль) плавленого ацетата натрия в 15 мл ЕtOH и отфильтровывая выделившийся NaCl. Полученную смесь оставляют при 20 °С, контролируя ход реакции с помощью TCX (Silufol UV-254, элюент хлороформ-метанол, 9.5:0.5, проявление в УФ свете или экспозицией в I₂ с последующим выжиганием при 200-250 °C). Затем реакционную смесь упаривают наполовину и, затравив эфиром до слабого помутнения, оставляют при 5 °C для кристаллизации. Получают 2.2 г гидроксииминопроизводного 2 в виде прозрачных бледнокремовых призматических кристаллов. Выход 95.2%, т. пл. 230 °С (ЕtOH-эфир, с разл.). ИК спектр (КВг), v, см⁻¹: 3210, 3100–2830, 1635, 1590 пл., 1523, 1495, 1470, 1460–1430, 1360, 1325, 1285, 1225, 1180, 1150, 1120, 1085, 1030, 970, 915, 890, 770, 745; (пленка в вазелине): 3180, 1635, 1523, 1475-1435, 1380, 1365, 1320, 1285, 1120, 970, 915, 770, 745; (раствор в CHCl₃): 3585. УФ спектр (ЕtOH, *с* 2.31·10⁻⁴ м/л), λ_{max} , нм (є): 200 (19 280), 210 (16 250), 247 (5 635), 317 пл. (14 950), 338 (16 900); λ_{\min} , нм (ε): 208.3 (16 030), 239.7 (5635), 270.3 (3900). Найдено, %: С 73.48; Н 7.03; N 9.15. [M]⁺ 310. С₁₉Н₂₂N₂O₂. Вычислено, %: C 73.52; H 7.14; N 9.03. M 310.39.

Производное 2 получают альтернативно кипячением в течение 1 ч эквимолярной смеси 3.5 ммоль 8-аза-*D*-гомогона-12,17*a*-дионов **1** и гидрохлорида гидроксиламина в EtOH с последующей нейтрализацией раствора эквимолярным количеством этилата натрия с последующей обработкой, как и в описанном выше опыте. Получают 0.99 г оксиминопроизводного **2** в виде прозрачных призматических кристаллов. Выход 91.5%, т. пл. 231–232 °C (CHCl₃, с разл.).

16,16-Диметил-12-метоксиимино-8-аза-*D***-гомогона-1,3,5(10),13-тетраен-17***а***-он** (3). К раствору 1.48 г (5 ммоль) соединения 1 в 20 мл ЕtOH прибавляют спиртовой раствор 0.55 мл (10 ммоль) метоксиамина в 10 мл ЕtOH и оставляют при 20 °С, контролируя ход реакции с помощью TCX (см. выше). Спустя 36 ч реакционную смесь упаривают при пониженном давлении досуха, остаток растворяют в CHCl₃ и, затравливая эфиром и гексаном до слабого помутнения, оставляют кристаллизоваться при 5 °С. Получают 1.4 г соединения 3 в виде белых призматических кристаллов. Выход 87.2%, т. пл. 164–167 °С (эфир-гексан, с разл.). ИК спектр (КВг), v, см⁻¹: 3050–2830, 1642, 1610 пл., 1575, 1520, 1495, 1450, 1380, 1370–1345, 1320, 1290, 1230, 1220, 1150, 1120, 1095, 1050, 835, 760, 750. УФ спектр (EtOH, *c* 4.22·10⁻⁴ м/л), λ_{max} , нм (ϵ): 199 (19 455), 207 пл. (13 525), 231 пл. (2610), 304 (19 930); λ_{min} , нм (ϵ): 250 (950). Найдено, %: С 74.24; Н 7.40; N 8.49. [M]⁺ 324. С₂₀H₂₄N₂O₂. Вычислено, %: С 74.04; Н 7.46; N 8.64. *M* 324.48.

Производное 3 получают альтернативно алкилированием производного **2**. К раствору 0.78 г (2.5 ммоль) соединениея **2** в 15 мл EtOH в токе Ar прибавляют 0.1 г (2.5 ммоль) NaOH в 5 мл EtOH, перемешивают в течение 10–15 мин, затем прибавляют раствор 0.17 мл (2.7 ммоль) иодистого метила в 5 мл EtOH. Полученную смесь выдерживают 2 ч при 20 °C, а затем кипятят 1 ч и упаривают досуха. Остаток растворяют в 3–5 мл CHCl₃ и фильтруют через 3 г нейтрального оксида алюминия, для хроматографии промывая хлороформом. Целевой продукт выделяют, как и в описанном выше эксперименте. Выход 85.1%, т. пл. 166–167 °C (хлороформ–эфир–гексан, с разл.)

Гидрохлорид 16,16-диметил-12-гидроксиимино-8-аза-*D*-гомогона-1,3,5(10),13тетра-ен-17а-она (4). К раствору 0.25 г (0.8 ммоль) соединения 1 в 5 мл ЕtOH прибавляют раствор 0.065 г (0.94 ммоль) гидрохлорида гидроксиламина в 5 мл ЕtOH и полученную смесь кипятят 1 ч. Затем упаривают наполовину, разбавляют эфиром до помутнения и оставляют на 36 ч при 5 °C. Выделившиеся кристаллы отфильтровывают, промывают на фильтре смесью спирт–эфир, 1:2, и перекристаллизовывают из спирта с эфиром. Выход 93.5%, т. пл. 232 °C (ЕtOH, с разл.). ИК спектр (КВг), v, см⁻¹: 3100–2830, 2640 ш, 2385 ш, 1663, 1612, 1593, 1555; (пленка в вазелине): 2365 ш, 1663, 1610, 1593, 1560, 1500–1420, 1380, 1325, 1315, 1280, 1230, 1220, 1180, 1120, 1095, 1065–1025, 1000, 970, 950, 930, 870, 835, 760, 740. УФ спектр (EtOH, *c* 2.35·10⁻⁴ м/л), λ_{max} , нм (є): 200.4 (17 525), 282.9 (11 100), 324.5 (16 500); λ_{min} , нм (є): 249.1 (2980), 299.1 (10 000). Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 1.13 (3H, с, С₍₁₆CH₃); 1.20 (3H, с, С₍₁₆)CH₃); 2.37 (1H, д. *J* = 15.6, C₍₁₇)H_B); 2.49 (1H, д. *J* = 15.6, C₍₁₇)H_A); 2.80 (1H, д. *J* = 16.8, C₍₁₅)H_B); 2.84 (1H, д. *д. J* = 16.8, *J* = 15.6, C₍₁₁₎H_B); 3.06 (1H, т. т. *J* = 16.2, *J* = 3.6, *J* = 3.6, C₍₆)He); 3.19 (1H, д. т. д. *J* = 16.2, *J* = 10.8, *J* = 3.6, C₍₇₇Ha); 3.87 (1H, д. *д. J* = 16.8, *J* = 4.8, C₍₁₁₎H_A); 4.36 (1H, т. т. *J* = 13.2, *J* = 3.6, *J* = 3.6, C₍₇₇Ha); 5.07 (1H, д. *д. J* = 15.6, *J* = 4.8, C₍₉)H_X); 7.26–7.41 (4H, м, C₍₁)H, C₍₂)H, C₍₃)H, C₍₄)H). Найдено, %: C 66.00; H 6.70; Cl 10.57; N 8.07. [M]⁺ 311. C₁₉H₂₂N₂O₂·HCl. Вычислено, %: C 65.79; H 6.68; Cl 10.22; N 8.08. *M* 346.86.

Авторы выражают благодарность академику НАН Республики Беларусь, профессору А. А. Ахрему за внимание к проводимым исследованиям и полезные обсуждения результатов.

СПИСОК ЛИТЕРАТУРЫ

- 1. А. А. Ахрем, Б. Б. Кузьмицкий, Ф. А. Лахвич, В. А. Хрипач, Ю. Л. Журавков, в кн. *Химия и биология иммунорегуляторов*, Зинатне, Рига, 1985, с. 265.
- Б. Б. Кузьміцкі, І. Р. Дадзькоў, Ю. Л. Жураўкоў, М. А. Канапля, Г. А. Шафранская, В. У. Гулякевіч, В. М. Пшанічны, У. А. Хрыпач, Весци Акад. навук БССР. Сер. биол. навук, № 1, 79 (1987).
- 3. Б. Б. Кузьмицкий, И. Г. Дадьков, Ю. Л. Журавков, Н. А. Конопля, Г. С. Любин, А. Е. Машкович, В. М. Насек, О. В. Гулякевич, В. Н. Пшеничный, В. А. Хрипач, *Весци Акад. навук БССР. Сер. хим. навук*, № 1, 64 (1989).
- 4. Н. А. Конопля, О. В. Гулякевич, А. Л. Михальчук, Б. Б. Кузьмицкий, *Весци Акад.* навук Беларуси. Сер. хим. навук, № 3, 91 (1994).
- Б. Б. Кузьмицкий, О. В. Стома, Л. М. Слепнева, А. Е. Машкович, В. М. Насек, О. В. Гулякевич, А. Л. Михальчук, *Фармакология и токсикология*, **52**, № 2, 71 (1989).
- 6. Н. А. Конопля, Г. С. Любин, В. М. Насек, Б. Б. Кузьмицкий, в кн. Итоги и перспективы развития биоорганической химии в Республике Беларусь, Гродно, 1998, с. 51.
- 7. Г. С. Любин, И. Г. Дадьков, О. В. Гулякевич, Б. Б. Кузьмицкий, *Весци Акад. навук* Беларуси. Сер. хим. навук, № 2, 93 (1990).
- 8. А. Л. Михальчук, О. В. Гулякевич, А. А. Ахрем, *ЖОрХ*, 28, 1771 (1992).
- 9. О. В. Гулякевич, А. Л. Михальчук, А. А. Ахрем, *XTC*, 187 (1995). [*Chem. Heterocycl. Comp.*, **31**, 160 (1995)].
- А. А. Ахрем, А. М. Моисеенков, В. А. Криворучко, Ф. А. Лахвич, А. И. Поселёнов, Изв. АН СССР, Сер. хим., 2078 (1972).
- O. V. Gulyakevich, I. L. Rubinova, D. B. Rubinov, A. L. Mikhalchuk, *Mendeleev Commun.*, 183 (1998).
- 12. О. В. Гулякевич, И. Л. Рубинова, Д. Б. Рубинов, А. Л. Михальчук, ЖОХ, 69, 1561 (1999).
- O. V. Gulyakevich, I. L. Rubinova, D. B. Rubinov, A. A. Govorova, A. S. Lyakhov, A. L. Mikhal'chuk, *Mendeleev Commun.*, 119 (1999).
- О. В. Гулякевич, А. Л. Михальчук, А. И. Веренич, Д. Б. Рубинов, А. А. Зенюк, А. А. Ахрем, в кн. *Енамины в органическом синтезе*, УрО РАН, Екатеринбург, 1996, с. 111.
- 15. Р. Байбл, Интерпретация спектров ядерного магнитного резонанса (эмпирический подход), под ред. Э. И. Федина, Атомиздат, Москва, 1969, 224 с.
- 16. А. Жунке, Ядерный магнитный резонанс в органической химии, Мир, Москва, 1974, 59 с.

Государственное научное учреждение Институт биоорганической химии НАН Республики Беларусь, Минск 220141 e-mail: labst@iboch.bas-net.by Поступило 10.08.2005