50-летию Латвийского института органического синтеза посвящается

В. А. Пестунович, Н. Ф. Лазарева

СИНТЕЗ Si-СОДЕРЖАЩИХ ЦИКЛИЧЕСКИХ МОЧЕВИН

При взаимодействии мочевины с N,N'-бис(силилметил)пропилендиаминами (EtO)_{3-n}Me_nSiCH₂NH(CH₂)₃NHCH₂SiMe_n(OEt)_{3-n} (n = 0, 2) синтезированы 1,3-бис[(триэтоксисилил)метил]тетрагидропиримидин-2-он и 1,3-бис[(диметилэтоксисилил)метил]тетрагидропиримидин-2-он, изучено их взаимодействие с треххлористым бором, строение всех синтезированных соединений доказано методом мультиядерной спектроскопии ЯМР.

Ключевые слова: пентакоординированный атом кремния, Si-содержащие циклические мочевины.

Химия соединений пентакоординированного кремния интенсивно развивалась в последние три десятилетия [1–8]. Однако, некоторые ее аспекты остаются малоизученными. В частности, это касается способов конструирования и строения соединений с конкурентным и мостиковым взаимодействием двух акцепторных атомов кремния с единым донорным центром (Si \leftarrow D \rightarrow Si). К настоящему времени имеется только несколько примеров мостиковых кремниевых комплексов [9–12]. Недавно нами был предложен способ получения N,N'-бис(диметилхлорсилилметил)пропиленмочевины [13–15]:

В его основе лежит метод пересилилирования N-TMC-производного хлорметил(хлор)диметилсиланом, ставший уже классическим в синтезе пентакоординированных соединений кремния с координационным узлом C_3SiOC1 [6, 7]. Мы предполагали, что в этом соединении возможна реализация внутримолекулярной мостиковой координационной связи $Si \leftarrow O \rightarrow Si$ (A):

К сожалению, мы не получили убедительных доказательств этого. Позднее, методами квантовой химии (B3LYP, MP2) [16] было показано, что стабильность внутримолекулярных мостиковых комплексов типа Si←O→Si существенно зависит как от размера экваториальных заместителей и электроотрицательности аксиального заместителя у кремния, так и от изменения донорных свойств карбонильной группы. По-видимому, для реализации мостикового внутримолекулярного взаимодействия типа Si←O→Si необходимо изменить валентное окружение атома кремния. Синтез циклических мочевин, содержащих у атома кремния набор различных заместителей, по приведенной выше схеме является трудной задачей. Цель нашей работы – поиск альтернативных способов синтеза таких мочевин, и в этой статье представлены результаты, касающиеся реакции переаминирования мочевины Si-содержащими 1,3-пропилендиаминами. Переаминирование является одной из хорошо известных реакций синтеза алкилированных мочевин [17], в том числе и некоторых кремнийсодержащих мочевин [18-20].

Мы получили N,N'-бис(силилметил)пропилендиамины **1**, **2** взаимодействием ClCH₂SiMe_n(OEt)_{3-n} с 1,3-диаминопропаном:

$$CICH_{2}SiMe_{n}(OEt)_{3-n} + H_{2}N(CH_{2})_{3}NH_{2} \xrightarrow{Et_{3}N} -Et_{3}N \cdot HCl$$

$$\longrightarrow (EtO)_{3-n}Me_{n}SiCH_{2}NH(CH_{2})_{3}NHCH_{2}SiMe_{n}(OEt)_{3-n}$$
1, 2
1, 2
1, 2
1, 2

Выходы соединений 1, 2 не превышают 50% (табл. 1). Наряду с соединениями 1, 2 образуются как продукты моносилилирования, внутримолекулярной циклизации, кватернизации, так и неидентифицированные полимерные продукты. Полученные соединения – высококипящие бесцветные жидкости с сильным специфическим запахом аминов, чрезвычайно чувствительные к влаге воздуха. Строение соединений 1, 2 подтверждено данными ЯМР ¹Н и ¹³С (табл. 2).

Со-еди-	Брутто-	<u>Н</u> Вы	<u>Іайдено,9</u> ічислено,	<u>%</u>	Т. кип., °С	$n_{\rm D}^{20}$	Выход , %
не-	формула	С	Н	Ν	(мм рт. ст.)	· D	
1	$C_{17}H_{42}N_2O_6Si_2$	<u>47.99</u> 47.85	<u>9.65</u> 9.92	<u>6.73</u> 6.57	212–215 (2)	1.4432	38
2	$C_{13}H_{34}N_2O_2Si_2$	<u>50.68</u> 50.93	<u>10.93</u> 11.18	<u>8.91</u> 9.14	158–160 (2)	1.4361	49
3	$C_{18}H_{40}N_2O_7Si_2\\$	<u>47.49</u> 47.76	<u>8.63</u> 8.91	<u>6.25</u> 6.19	240–245 (1)	1.4497	67
4	$C_{14}H_{32}N_2O_3Si_2\\$	<u>50.39</u> 50.56	<u>9.51</u> 9.70	<u>8.52</u> 8.42	183–186 (1.5)	1.4439	81
5	$C_6H_{10}Cl_6N_2OSi_2$	<u>18.72</u> 18.24	$\frac{2.84}{2.55}$	<u>7.36</u> 7.09	_	_	100*
6	$C_{10}H_{22}Cl_2N_2OSi_2$	<u>38.57</u> 38.33	<u>7.28</u> 7.08	<u>9.11</u> 8.94	194–196 (1)	1.4712	49

Физико-химические характеристики синтезированных соединений

* Без дополнительной очистки.

При нагревании эквимолярной смеси тщательно высушенной мочевины и соединения 1 или 2 наблюдается образование соответствующих силилметилированных циклических мочевин: 1,3-бис[(триэтоксисилил)метил]тетрагидропиримидин-2-она (3) и 1,3-бис[(диметилэтоксисилил)метил]тетрагидропиримидин-2-она (4):

Об окончании реакции свидетельствует прекращение выделения аммиака. В результате реакции образуется вязкая стекловидная масса, которая содержит побочные полимерные продукты. Целевые продукты экстрагируют кипящим хлороформом, после его отгонки и вакуумной перегонки получают чистые соединения **3** и **4**, строение которых доказано спектроскопией ЯМР¹H, ¹³С и ²⁹Si.

Обработка соединений **3** и **4** хлоридом бора приводит к образованию соответствующих 1,3-бис[(трихлорсилил)метил]тетрагидропиримидин-2-она (**5**) и 1,3-бис[(диметилхлорсилил)метил]тетрагидропиримидин-2-она (**6**):

Таблица 2

		$(MD^{1}H) = H = H = (I = H)$			GMD ¹³ C S x z					
Соеди- нение	ЯМР ⁻ Н, ð, м. д. (<i>J</i> , гц)				ЖМР С, д, м. д.					ЯМР ²⁹ Si,
	CH ₃ –Si, c	C ₂ H ₅ O	SiCH ₂ N, c	(CH ₂) ₃	CH ₃ –Si	C_2H_5O	SiCH ₂ N	(CH ₂) ₃	C=O	δ, м. д.
1		1.15 (т, ³ <i>J</i> = 7.0); 3.74 (кв, ³ <i>J</i> = 7.0)	2.09	1.63 (m); 3.08 (t, ${}^{3}J = 6.9$)		18.37; 57.65	29.86	23.58; 52.49		-
2	0.21	1.15 (т, ³ <i>J</i> = 7.0); 3.69 (кв, ³ <i>J</i> = 7.0)	1.85	1.61 (M); 2.98 (T, ${}^{3}J = 6.9$)	-2.67	18.53; 57.96	36.57	21.58; 52.17		_
3		1.19 (т, ³ <i>J</i> = 7.0); 3.78 (кв, ³ <i>J</i> = 7.0)	2.88	1.95 (m); 3.30 (t, ${}^{3}J = 5.9$)		17.41; 58.15	29.73	21.07; 47.95	156.55	-56.82 (25 °C)
4	0.31	1.18 (т, ³ <i>J</i> = 7.0); 3.76 (кв, ³ <i>J</i> = 7.0)	2.92	2.10 (м); 3.21 (т, ³ <i>J</i> =5.8)	-2.25	17.98; 57.12	35.37	21.23; 48.15	159.63	5.83 (25 °C)
5		_	3.16	1.99 (M); 3.51 (T, ${}^{3}J = 6.0$)			45.98	21.09; 45.11	149.87	-13.12 (25 °C) -12.95 (-85 °C)
6	0.55	_	2.87	2.03 (м); 3.36 (т, ³ <i>J</i> =5.8)	4.94		43.24	21.07; 47.02	157.96	-6.65 (25 °C) -6.46 (-90 °C)

Спектры ЯМР ¹H, ¹³C, ²⁹Si (CDCl₃)

Соединение **5** является чрезвычайно гидролитически неустойчивым, разлагается при нагревании и длительном хранении. Нам не удалось найти удовлетворительных способов его очистки. Тем не менее, если реакцию проводить в тщательно высушенном растворителе, в атмосфере сухого аргона, то после отгонки в вакууме растворителя и $B(OEt)_3$ это соединение получается практически чистым. Его спектральные характеристики не изменяются в течение нескольких суток при хранении запаянного вакуумированного образца при -78 °C. Соединение **6** легко очищается в характеристики и хранится в запаянных вакуумированных ампулах длительное время без изменений.

Соединения 5 и 6 были изучены методом мультиядерной спектроскопии ЯМР. Спектры ЯМР²⁹Si демонстрируют эквивалентность двух атомов кремния (для соединения 5 δ^{29} Si = -13.12 и для соединения 6 δ^{29} Si = -6.65 м. д.). Однако, химический сдвиг находится в значительно более слабом поле по сравнению с химическими сдвигами (O–Si)хелатных моносилилметилированных мочевин, имеющих идентичное окружение у атома кремния: так б ²⁹Si для 1-триметилсилил-3-[(диметилхлорсилил)метил]тетрагидропиримидин-2-она составляет -41.42, а для N,N-диэтил-N'-фенил-N'-трихлорсилилмочевины δ^{29} Si = -87.9 м. д. [21]. Химические сдвиги 29 Si в соединениях 5. 6 практически не изменяются при понижении температуры (табл. 2). Природа заместителей R и R¹ в амидной группе $RC(O)NR^1$ в ряду (O-Si)хелатных амидов карбоновых кислот существенно влияет на степень внутримолекулярного координационного связывания С=О→Si [22-24]. Так, введение второй N-ацетильной группы в N-хлор-(диметил)силилметил-N-ацетилацетамиде (δ^{29} Si = -24.2 [22]) приводит к значительному ослаблению внутримолекулярного координационного взаимодействия C=O→Si по сравнению с таковым N-хлор(диметил)силилметил-N-метилацетамида (δ^{29} Si = -37.6 м. д. [23, 24]). Вероятно, это обусловлено конкурентным взаимодействием одной силильной группы с двумя донорными группами С=О. По-видимому, в молекулах 5, 6 существует конкурентное взаимодействие двух силильных групп с одним донорным центром С=О, хорошо известное как перегруппировка "флипфлоп" [25, 26]:

Мы надеемся, что разработка альтернативных способов синтеза Si-содержащих циклических мочевин позволит в дальнейшем синтезировать соединения, в которых будет реализовано мостиковое внутримолекулярное координационное взаимодействие Si←O→Si.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹H, ¹³C и ²⁹Si 20% растворов соединений **1–6** записаны на спектрометре JEOL FX 90Q (90, 22.5 и 17.8 МГц соответственно), внутренний стандарт ТМС. Растворители очищены по методикам [27]. Все синтезы проводились в атмосфере сухого аргона. Физико-химические характеристики соединений **1–6** приведены в табл. 1, спектральные – в табл. 2.

N, N'-Бис(силилметил)пропилендиамины 1, 2 синтезируют нагреванием смеси 1,3-диаминопропана и соответствующего хлорметил(алкокси)силана в соотношении 1:3 в толуоле в присутствии 5 экв. триэтиламина в течение 8 ч. Выпавший гидрохлорид триэтиламина отфильтровывают, промывают пентаном и пентановый раствор объединяют с фильтратом. Пентан, толуол, избыток триэтиламина отгоняют при атмосферном давлении, а остаток перегоняют в вакууме.

Синтез 1,3-бис[(триэтоксисилил)метил]тетрагидропиримидин-2-она (3) и 1,3-бис-[(диметилэтоксисилил)метил]тетрагидропиримидин-2-она (4). Эквимолярную смесь 0.05 моль тщательно высушенной мочевины и 0.05 моль кремнийсодержащего амина 1 или 2 перемешивают и медленно нагревают до 80 – 90 °С на масляной бане. Смесь становится гомогенной, затем температуру бани поднимают до 160–180 °С и выдерживают при этой температуре до прекращения выделения аммиака (лакмусовая бумажка). Реакционную массу охлаждают, экстрагируют 100 мл кипящего хлороформа, декантируют. Хлороформ отгоняют при атмосферном давлении, остаток перегоняют в вакууме.

Синтез 1,3-бис[(трихлорсилил)метил]тетрагидропиримидин-2-она (5) и 1,3-бис-[(диметилхлорсилил)метил]тетрагидропиримидин-2-она (6). К охлажденному до -50 °C раствору соединения 3 или 4 в хлористом метилене медленно прибавляют эквимолярное количество BCl₃. Смесь выдерживают при этой температуре в течение 2 ч, затем температуру поднимают до 0 °C и выдерживают при этой температуре в течение 1 сут. После этого температуру реакционной смеси повышают до комнатной, выдерживают 3 ч. Затем растворитель и B(OEt)₃ удаляют в вакууме, остаток вакуумируют в течение нескольких часов. Соединение 5 – вязкое желтоватое масло, чрезвычайно чувствительное к влаге воздуха. При нагревании выше 30 °C или при длительном стоянии разлагается в вакууме без разложения.

Авторы выражают благодарность О. Б. Козыревой и А. И. Албанову за съемку спектров ЯМР.

Работа выполнена при финансовой поддержке грант ИНТАС № 03-51-4164.

СПИСОК ЛИТЕРАТУРЫ

- 1. S. N. Tandura, M. G. Voronkov, N. V. Alekseev, Top. Curr. Chem., 131, 99 (1986).
- 2. R. R. Holmes, Chem. Rev., 90, 17 (1990).
- 3. R. R. Holmes, Chem. Rev., 96, 927 (1996).
- 4. R. J. P. Corriu, J. Organomet. Chem., 400, 81 (1990).
- 5. C. Chuit, R. J. P. Corriu, C. Reye, J. C. Young, Chem. Rev., 93, 1371 (1993).
- 6. D. Kost, I. Kalikhman, in *The Chemistry of Organic Silicon Compounds*, Y. Apeloig, Z. Rappoport (Eds.), Wiley, Chichester, U.K., 1998, vol. 2, p.1339.
- 7. М. Г. Воронков, В. А. Пестунович, Ю. И. Бауков, Металлоорг. химия, 4, 1210 (1991).
- 8. Э. Лукевиц, О. Пудова, XTC, 1605 (1996). [Chem. Heterocycl. Comp., 32, 1381 (1996)].
- 9. K. Tamao, T. Hayashi, Y. Ito, M. Shiro, Organometallics, 11, 2099 (1992).
- 10. K. Tamao, T. Hayashi, Y. Ito, M. Shiro, J. Am. Chem. Soc., 112, 2422 (1990).
- 11. T. Hoshi, M. Takahashi, M. Kira, Chem. Lett., 683 (1996).
- 12. K. Ebata, T. Inada, C. Kabuto, H. Sakurai, J. Am. Chem. Soc., 116, 3595 (1994).
- L. I. Belousova, O. B. Kozyreva, A. E. Pestunovich, V. A. Pestunovich, M. G. Voronkov, in *The XVI International Conference on Organometall. Chemistry* (10–15 July), U.K. Sussex. Book of Abstracts, 1994, p. 331.
- N. F. Lasareva, L. I. Belousova, O. B. Kosyreva, Yu. Ovchinnikov, V. A. Pestunovich, in The XI International Symposium of Organosilicon Chemistry, September 1–6, Montpellier II, France, Abstracts, 1996, PB80
- 15. A. I. Albanov, A. Bassindale, E. F. Belogolova, N. N. Chipanina, G. A. Gavrilova, N. F. Lazareva, V. A. Pestunovich, V. F. Sidorkin, P. Taylor, V. K. Turchaninov, in *The 12th International Symposium on Organosilicon Chemistry, May 23–28, 1999, Program, Abstract, and List of Participants Sendai International Center, Sendai, Japan, 1999, p. 171.*
- 16. V. F. Sidorkin, E. F. Belogolova, V. A. Pestunovich, Chem. Eur. J., 12, 2021 (2006).
- 17. К. Вейганд, Г. Хильгетаг, Методы эксперимента в органической химии, М., Химия, 1968.
- 18. J. W. Gilkey, R. H. Kranke, Pat. USA 3208971 (1965), PHXum., 22C341 (1966).
- 19. D. Seyferth, A.W. Dow, H. Menzel, T. C. Flood, J. Am. Chem. Soc., 90, 1080 (1968).
- 20. D. Seyferth, H. Menzel, A. W. Dow, T. C. Flood, J. Organomet. Chem., 44, 279 (1972).
- 21. A. R. Bassindale, M. Borbaruah, S. J. Glynn, D. J. Parker, P. G. Taylor, *J. Organomet. Chem.*, **606**, 125 (2000).
- И. Д. Калихман, О. Б. Банникова, Л. И. Белоусова, Б. А. Гостевский, Э. Лиепиныш,
 О. А. Вязанкина, Н. С. Вязанкин, В. А. Пестунович, *Металлоорг. химия*, 1, 683 (1988).
- 23. R. W. Hillard, C. M. Ryan, C. H. Yoder, J. Organomet. Chem., 153, 369 (1978).
- 24. C. H. Yoder, C. M. Ryan, G. F. Martin, P. S. Ho, J. Organomet. Chem., 190, 1 (1980).
- 25. N. Auner, R. Probst, F. Hahn, E. Herdtweck, J. Organomet. Chem., 459, 25 (1993).
- U. H. Berlekamp, P. Jutzi, A. Mix, B. Neumann, H.-G. Stammler, W. W. Schoeller, *Angew. Chem.*, **111**, 2071 (1999).
- 27. A. J. Gordon, R. A. Ford, The Chemist's Companion a Handbook of Practical Data, Techniques and References, John Wiley&Sons, 1972.

Иркутский институт химии им. А. Е. Фаворского СО РАН, 664033 Иркутск e-mail: nataly lazareva@irioch.irk.ru Поступило 28.08.2006