Б. Виганте, Г. Тирзитис, Д. Тирзите, Б. Чекавичус, Я. Улдрикис, А. Соболев, Г. Дубурс

4-(10-МЕТИЛ-10Н-ФЕНОТИАЗИН-3-ИЛ)-1,4-ДИГИДРОПИРИДИНЫ, 4,5-ДИГИДРОИНДЕНО[1,2-*b*]- и 5,5-ДИОКСО-4,5-ДИГИДРОБЕНЗОТИЕНО[3,2-*b*]ПИРИДИНЫ

С использованием 10-метил-10Н-фенотиазин-3-карбальдегида в различных модификациях синтеза Ганча получены эфиры 4-(10-метил-10Н-фенотиазин-3-ил)замещенных 1,4-дигидропиридин-3,5-ди-, 5-оксо-4,5-дигидро-1Н-индено[1,2-*b*]пиридин- и 5,5-диоксо-4,5-дигидро-1Н-5λ⁶-бензо[4,5]тиено[3,2-*b*]пиридин-3-карбоновых кислот.

Ключевые слова: 10-метил-10Н-фенотиазин-3-альдегид, 1,4-дигидропиридин, синтез Ганча, 4-(10-метил-10Н-фенотиазин-3-ил)-5-оксо-1Н-4,5-дигидроиндено[1,2-*b*]пиридин.

Среди 4-арил- и 4-гетарил-1,4-дигидропиридинов (1,4-ДГП) уже найдены высокоэффективные коронародилататоры [1, 2] и гипотензивные средства [3], не прекращается синтез новых производных 1,4-ДГП с целью выявления соединений с другими, измененными, модифицированными фармакологическими свойствами. Известно, что структура 1,4-ДГП относится к фармакофорным группам или "привилегированным структурам", варьируя заместители в ДГП кольце, можно ожидать селективного действия 1,4-ДГП на разные мембранные рецепторы клетки [4].

Исследована антиокислительная активность (АОА) 1,4-ДГП [5, 6] и обсуждена ее взаимосвязь с фармакологическими свойствами 1,4-ДГП [7, 8]. Найдено, что замена *о*-нитрофенильной группы в положении 4 1,4-ДГП на полициклические гетероциклические заместители (ксантон, азаксантен-9-он, тиоксантен-9-он) заметно влияет на инотропную и вазодилататорную активности [9, 10]. 1,4-ДГП и 4,5-дигидроинденопиридины, содержащие липофильные и объемистые заместители проявляют ингибирующую активность на глутатион-S-трансферазу [11].

В то же время производным фенотиазина свойственна высокая AOA, антирадикальная, нейропротекторная и противоопухолевая активности [12, 13]. В последние годы производные фенотиазина исследуются как нейропротекторы нервных клеток при заболеваниях Альцгеймера [14] и Крейцфелдт–Якоба [15]. Это в совокупности побудило синтезировать производные 1,4-ДГП, имеющие в одной молекуле две фармакотропные группировки – 1,4-ДГП и фенотиазиновую.

Для получения нового ряда моноциклических 1,4-ДГП **2**, 5-оксо-4Hдигидроиндено[1,2-*b*]пиридинов **5**, а также 5,5-диоксо-4,5-дигидробензотиено[3,2-*b*]пиридинов **8** были применены различные модификации

A: NH₄OH, EtOH, t°; Б: EtOH/AcOH, t°; B: EtOH/AcOH, t°; Г: C₆H₆, пиперидин /AcOH, t°; **2a** $R = R^1 = Me$; **b** $R = R^1 = Et$; **c** R = Me, $R^1 = Et$; **3 a** R = Me, **b** R = Et

синтеза Ганча с использованием 10-метил-3-формилфенотиазина 1 в качестве альдегидного компонента. Так, 1,4-ДГП 2b получают кипячением альдегида 1 с ацетоуксусным эфиром и аммиаком в этаноле (схема 1, метод A) с выходом 42%. Соответствующий диметиловый эфир 1,4-ДГП-3,5дикарбоновой кислоты 2a в вышеуказанных условиях образовался лишь с выходом 37%. С целью повышения выхода диметилового эфира 2a проведена конденсация фенотиазина 1 с метиловым эфиром β-аминокротоновой кислоты (схема 1, метод Б). Наилучшим методом получения 2a, а также несимметрично 3,5-дизамещенного 1,4-ДГП 2c, оказался двустадийный синтез (схема 1, метод В): предварительное получение эфиров 2-(10-метил-10Н-фенотиазин-3-илметилен)ацетоуксусной кислоты 3a,b и последующая их циклизация с метил-β-аминокротонатом.

Соответствующие илиденовые производные **3а,b** были синтезированы кипячением эфиров ацетоуксусной кислоты с 10-метил-3-формилфено-281 тиазином 1 в бензоле в присутствии ацетата пиперидина с азеотропной отгонкой воды [16].

Ранее нами было установлено, что 5-оксо-4,5-дигидроиндено[1,2-*b*]пиридины [17] и 1,4-дигидробензотиено[3,2-*b*]пиридин-5,5-диоксиды [18], содержащие арильные заместители в положении 4, проявляют высокую коронародилатирующую и антиокислительную активности [19–21]. 5-Оксо-4,5-дигидроиндено[1,2-*b*]пиридины с гетероциклическими [3-пиридил-, 4-(3-фенилпиразолил)] заместителями в положении 4 обладают выраженной противоопухолевой активностью [22].

Эфиры 5-оксо-1Н-4,5-дигидроиндено[1,2-*b*]пиридин-3-карбоновой и тиолкарбоновой кислот **5а,b** были получены конденсацией 2-(10-метил-10Нфенотиазин-3-илметилен)индандиона-1,3 **4** с метиловым эфиром β-аминокротоновой кислоты и S-этиловым эфиром ацетотиоуксусной кислоты

Соеди-	Брутто- формула	<u>Найдено, %</u> Вычислено, %				Т. пл., °С*	Выход. %
нение		С	Н	N	S		, /0
2a	$C_{24}H_{24}N_2O_4S$	<u>65.6</u> 66.0	<u>5.6</u> 5.5	<u>6.3</u> 6.4	<u>7.0</u> 7.4	175–177	37 (А), 45 (Б), 70 (В)
2b	$C_{26}H_{28}N_2O_4S$	<u>67.0</u> 67.2	<u>6.1</u> 6.1	<u>6.0</u> 6.0	<u>6.6</u> 6.9	164	42 (A)
2c	$C_{25}H_{26}N_2O_4S$	<u>66.3</u> 66.6	<u>5.8</u> 5.8	<u>6.2</u> 6.2	<u>6.9</u> 7.1	169	65 (B)
3 a	$C_{19}H_{17}NO_3S$	<u>67.5</u> 67.2	<u>5.0</u> 5.1	<u>4.1</u> 4.1	<u>9.0</u> 9.5	125–127	81
3b	$C_{20}H_{19}NO_3S$	<u>67.7</u> 68.0	<u>5.5</u> 5.4	$\frac{4.1}{4.0}$	<u>8.7</u> 9.1	92–97	73
4	$\mathrm{C}_{23}\mathrm{H}_{15}\mathrm{NO}_{2}\mathrm{S}$	<u>74.8</u> 74.8	<u>3.9</u> 4.1	<u>3.6</u> 3.8	<u>8.7</u> 8.7	226	81
5a	$C_{28}H_{22}N_2O_3S$	<u>71.8</u> 72.1	<u>4.7</u> 4.8	<u>5.8</u> 6.0	<u>6.9</u> 6.9	255	69
5b	$C_{29}H_{24}N_2O_2S_2$	<u>70.4</u> 70.1	<u>4.5</u> 4.9	<u>5.2</u> 5.6	<u>12.4</u> 12.9	180–183	70
6a	$C_{28}H_{20}N_2O_3S$	<u>71.4</u> 72.4	$\frac{4.2}{4.3}$	<u>6.2</u> 6.0	<u>6.5</u> 6.9	282	75
6b	$C_{29}H_{22}N_2O_2S_2$	<u>69.9</u> 70.4	<u>4.6</u> 4.5	<u>5.6</u> 5.7	<u>12.7</u> 13.0	173–175	66
7	$C_{22}H_{15}NO_3S_2$	<u>65.2</u> 65.2	<u>3.5</u> 3.7	<u>3.5</u> 3.5	<u>15.5</u> 15.8	252–254	84
8 a	$C_{27}H_{22}N_2O_4S_2$	<u>63.7</u> 64.5	$\frac{4.5}{4.4}$	<u>5.1</u> 5.6	<u>12.1</u> 12.8	200-204	56
8b	$C_{28}H_{24}N_2O_4S_2$	<u>64.7</u> 65.1	<u>4.6</u> 4.7	<u>5.2</u> 5.4	<u>12.3</u> 12.4	172-175	69

Физико-химические характеристики соединений 2–8

Таблица 1

^{*} Растворитель для кристаллизации: метанол (соединение 2a), водный метанол (соединения 2b и 2c), этанол (соединения 3a,b), уксусная кислота (соединения 4, 5a,b), смесь этанол–уксусная кислота, 5:1 (соединение 6a).

A: AcOH, t°, пиперидин; Б: MeC(NH₂)=CHCOOMe, AcOH, t°; B: MeCOCH₂COSEt, AcOH, NH₄OAc, t°; Г: NaNO₂, AcOH, 60 °C; Д: AcOH, t°, пиперидин; E: MeC(NH₂)=CHCOR (R = OMe, OEt); AcOH; **5,6 a** R = OMe, **b** R = SEt; **8 a** R = OMe, **b** R = SEt

283

в присутствии ацетата аммония по аналогии с описанным методом [23] (схема 2). В свою очередь, илиденовое производное 1,3-индандиона 4 синтезировали кипячением 10-метил-3-формилфенотиазина с 1,3-индандионом в уксусной кислоте, применяя ацетат пиперидина как катализатор.

5-Оксо-4Н-1,4-дигидроиндено[1,2-*b*]пиридины были окислены до соответствующих пиридинов **6а,b** окислами азота в уксусной кислоте.

Путем циклоконденсации 2-(10-метил-10Н-фенотиазин-3-илметилен)производного бензо[*b*]тиофен-3(2Н)-он-1,1-диоксида 7 с эфирами β-аминокротоновой кислоты в ледяной уксусной кислоте были получены эфиры 2-метил-4-(10-метил-10Н-фенотиазин-3-ил)-5,5-диоксо-4,5-дигидро-1Н- $5\lambda^6$ - бензо[4,5]тиено[3,2-*b*]пиридин-3-карбоновой кислоты **8а,b.** Илиденовое производное 1,1-диоксида 7, в свою очередь, с высоким выходом было синтезировано конденсацией 10-метил-10Н-фенотиазин-3-альдегида **1** с диоксидом 7 в ледяной уксусной кислоте в присутствии ацетата пиперидина как катализатора.

Структура синтезированных 10-метил-10Н-фенотиазин-3-ильных производных моноциклических и полициклических 1,4-ДГП 2, 5 и 8 подтверждена спектральными характеристиками (таблица 2, 3).

Таблица 2

Соеди- нение	ИК спектр, v , см ⁻¹	УФ спектр, λ_{max} , нм (lg ϵ)			
2a	1600, 1630, 1665, 1710, 3365	207 (4.58), 233 пл. (4.47), 255 (4.55), 339 (3.94)			
2b	1600, 1630, 1650, 1690, 3340	207 (4.58), 233 пл. (4.48), 255 (4.57), 339 (3.96)			
2c	1610, 1650, 1695, 3340	207 (4.60), 233 пл. (4.51), 255 (4.57), 339 (3.97)			
3 a	1600, 1620, 1650, 1680, 1720	245 (4.33), 306 (4.36), 413 (4.11)			
3b	1600, 1620, 1645, 1680, 1720	246 (4.33), 305 (4.34), 412 (4.09)			
4	1620, 1650, 1680, 1720	250 (4.45), 267 пл. (4.25), 331 (4.18), 371 (4.08), 505 (4.29)			
5a	1610, 1640, 1670, 1710, 3180, 3260	233 (4.54), 256 (4.73), 303 (4.11), 473 (3. 48)			
5b	1600, 1630, 1645, 1670, 3160, 3240	233 пл. (4.53), 256 (4.79), 305 (4.24), 490 (3.70)			
6a	1610, 1710, 1730	-			
6b	1610, 1640, 1675, 1710	-			
7	-	210 (4.52), 255 пл. (4.11), 328 (3.61), 375 пл. (3.48), 520 (4.25)			
8a	-	234 пл. (4.25), 258 (4.81), 290 пл. (3.10), 380 пл. (3.50)			
8b	_	230 пл. (4.20), 259 (4.75), 288 пл. (3.20), 380 пл. (3.62)			

Спектральные характеристики соединений 2-8

Таблица З

Спектры ЯМР ¹Н соединений 2–8

Соеди- нение	Химические сдвиги, δ, м. д. (КССВ, <i>J</i> , Гц) (ДМСО-d ₆)
2a	2.18 (6H, c, 2,6-CH ₃), 3.18 (3H, c, NCH ₃), 3.47 (6H, c, 3,5-CH ₃), 4,71 (1H, c, 4-CH), 6.7–7.2 (7H, м, аром.), 8.76 (1H, c, NH)
2b	1.11 (6H, т, <i>J</i> = 7.5, 3,5-CH ₃), 2.22 (6H, с, 2,6-CH ₃), 3.29 (3H, с, NCH ₃), 3.96 (4H, к, <i>J</i> = 7.5, 3,5-OCH ₂), 4.37 (1H, с, 4-CH), 6.7–7.2 (7H, м, аром.), 8.73 (1H, с, NH)
2c	1.11 (3H, т, <i>J</i> = 7.5, 3-CH ₃), 2.20 (6H, с, 2,6-CH ₃), 3.20 (3H, с, NCH ₃), 3.47 (3H, с, 5-OCH ₃), 3.96 (2H, к, <i>J</i> = 7.5, 3-OCH ₂), 4.71 (1H, с, 4-CH), 6.7–7.6 (7H, м, аром.), 8.76 (1H, с, NH)
3 a	2.40 (3H, с, СОСН ₃), 3.36 (3H, с, NCH ₃), 3.87 (3H, с, СООСН ₃), 6.9–7.4 (7H, м, аром.), 7.64 (1H, с, CH=)
3b	1.20 (3H, т, <i>J</i> = 7.5, OCH ₂ C <u>H</u> ₃), 2.33 (3H, с, CH ₃), 3.24 (3H, с, NCH ₃), 4.20 (2H, к, <i>J</i> = 7.5, OCH ₂), 6.9–7.4 (7H, м, аром.), 7.56 (1H, с, CH=)
4	3.33 (3H, с, NCH ₃), 6.9–8.5 (12H, м, аром. + CH=)
5a	2.45 (3H, c, 2-CH ₃), 3.27 (3H, c, NCH ₃), 3.44 (3H, c, COOCH ₃), 4.62 (1H, c, 4-CH), 6.7–7.5 (11H, м, аром.), 10.04 (1H, c, NH)
5b	1.09 (3H, т, <i>J</i> = 7.8, SCH ₂ C <u>H</u> ₃), 2.44 (3H, c, 2-CH ₃), 2.73 (2H, к, <i>J</i> = 7.8, SCH ₂), 3.29 (3H, c, NCH ₃), 4.86 (1H, c, 4-CH), 6.7–7.6 (11H, м, аром.), 10.24 (1H, c, NH)
6a	2.60 (3H, c, 2-CH ₃), 3.60 (3H, c, OCH ₃), 3.84 (3H, c, NCH ₃), 7.27-8.0 (11H, м, аром.)
6b	0.87 (3H, т, <i>J</i> = 7.8, SCH ₂ C <u>H</u> ₃), 2.60 (3H, с, 2-CH ₃), 2.76 (2H, к, <i>J</i> = 7.8, SCH ₂), 3.82 (3H, с, NCH ₃), 7.2–8.0 (11H, м, аром.)
7	3.45 (3H, с, NCH ₃), 7.06–7.27 (5H, м, аром. + CH=), 8.02–8.30 (7H, м, фентиазиновые протоны)
8a	2.11 (3H, c, 2-CH ₃), 3.16 (3H, c, OCH ₃), 3.22 (3H, c, NCH ₃), 4.61 (1H, c, 4-CH), 6.67–7.89 (11H, м, аром. Протоны + фентиазиновые протоны), 9.93 (1H, c, NH)
8b	1.08 (3H, т, $J = 7.0$, CH ₃), 2.34 (3H, c, 2-CH ₃), 3.21 (3H, c, OCH ₃), 3.28 (3H, c, NCH ₃), 3.96 (2H, к, $J = 7.0$, OCH ₂), 6.90–8.27 (11H, м, аром. протоны + фентиазиновые протоны), 9.88 (1H, c, NH)

По методике, приведенной в [11], была испытана способность ряда синтезированных соединений ингибировать *in vitro* активность глутатион-S-трансферазы. Найдено, что полициклические индено-1,4-ДГП **5** проявляют более выраженную ингибирующую активность по сравнению с моноциклическими 1,4-ДГП **2**. Соединение **5a** в концентрации $5 \cdot 10^{-5}$ М ингибирует эту активность на 56%, соответствующее серусодержащее производное **5b** в этой же концентрации – на 98%, а в концентрации на порядок ниже, т.е. $5 \cdot 10^{-6}$ М, – на 74%. Соответствующее соединению **5b** производное пиридина **6b** ингибирует в концентрации $5 \cdot 10^{-5}$ М на 92%. Исходное соединение **4** в этой же концентрации также ингибирует на 67–70%. Таким образом, можно предположить, что за способность испытанных соединений ингибировать *in vitro* активность глутатион-Sтрансферазы отвечает фенотиазиновая часть молекулы, сопряженная с 2метилениндандионовой группировкой, так как исходный N-метилфенотиазин в концентрации $5 \cdot 10^{-5}$ М проявляет ингибирование только на 29%. Но то, что **5b** значительно эффективнее **5a**, показывает, что нельзя не принимать во внимание и влияние остальной дигидропиридиновой части молекулы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на приборе UR-20 (в нуйоле), УФ спектры – на спектрометре Specord M40 Carl Zeiss Jena в этаноле. Спектры ЯМР ¹Н регистрировали на спектрометрах Bruker WH 90/DC (90 МГц) и Varian Mercury (200 МГц), внутренний стандарт ТМС. Контроль за ходом реакции и индивидуальностью синтезированных соединений осуществлялся с помощью ТСХ на пластинках Merck Silicagel 60 F₂₅₄ UV-254, элюент хлороформ-гексан–ацетон, 9:7:1. Основные характеристики синтезированных соединений приведены в табл. 1, 2.

10-Метил-10Н-фенотиазин получают по известной методике [24] из фенотиазина алкилированием иодистым метилом в гексаметаполе.

10-Метил-10Н-фенотиазин-3-карбальдегид (1) получают формилированием 10-метил-10Н-фенотиазина по Вильсмайеру–Хааку [25].

2,6-Диметил-4-(10-метил-10Н-фенотиазин-3-ил)-3,5-диметоксикарбонил-1,4-

дигидропи- ридин (2а). Б. Смесь 2.41 г (10 ммоль) соединения 1 с 3.45 г (30 ммоль) метилβ-амино- кротоната в 70 мл этанола и 2 мл ледяной уксусной кислоты кипятят в течение 8 ч. Растворители отгоняют в вакууме, остаток растирают с 100 мл воды, выпавшее вещество отфильтровывают, сушат, растворяют в 20 мл ацетона и пропускают через колонку с силикагелем (l = 40 см, d = 2 см, элюент хлороформ-гексан-ацетон-этанол, 9:7:2:1). Собирают фракцию с R_f 0.56. После удаления растворителей, остаток кристаллизуют из метанола. Получают 1.95 г (45%) дигидропиридина 2а. Т. пл. 173–175 °C.

2,6-Диметил-4-(10-метил-10Н-фенотиазин-3-ил)-3,5-диэтоксикарбонил-1,4-дигидропиридин (2b). А. Кипятят смесь 2.41 г (10 ммоль) соединения 1 и 2.60 г (20 ммоль) ацетуксусного эфира в 100 мл этанола с добавлением 5 мл 25% водного раствора аммиака в течение 8 ч. Растворитель отгоняют в вакууме, остаток хроматографируют, как описано выше. Собирают фракцию с R_f 0.66. После удаления растворителей, остаток кристаллизуют из водного метанола (~70%). Получают 1.95 г (42%) бесцветного дигидропиридина 2b. Т. пл. 164 °C.

2,6-Диметил-4-(10-метил-10Н-фенотиазин-3-ил)-3,5-диметоксикарбонил-1,4-дигидропиридин (2а) получают по методу А из альдегида 1 и метилацетоацетата с выходом 37%.

2,6-Диметил-4-(10-метил-10Н-фенотиазин-3-ил)-3-метоксикарбонил-5-этоксикарбонил-1,4-дигидропиридин (2с). В. Кипятят 3.53 г (10 ммоль) соединения **3** и 1.7 г (15 ммоль) метил- β -аминокротоната в смеси 70 мл этанола и 30 мл уксусной кислоты в течение 7 ч. Растворители удаляют в вакууме и масло хроматографируют как описано выше. Собирают фракцию с R_f 0.62. Бесцветное вещество кристаллизуют из водного метанола. Получают 3 г (65%) дигидропиридина **2с**. Т. пл. 169 °С.

2,6-Диметил-4-(10-метил-10Н-фенотиазин-3-ил)-3,5-диметоксикарбонил-1,4-дигидропиридин **2а** получают аналогично из 3.39 г (10 ммоль) метилового эфира 2-(10-метил-10Н-фенотиазин-3-илметилен)ацетоуксусной кислоты **3а**. Выход 3 г (70%).

Синтез эфиров 2-(10-метил-10Н-фенотиазин-3-илметилен)ацетоуксусной кислоты За,b (общая методика). Кипятят 2.41 г (10 ммоль) альдегида 1 с 10 ммоль соответствующего эфира ацетоуксусной кислоты в 150 мл сухого бензола в присутствии 0.2 мл пиперидина и 0.2 мл ледяной AcOH с насадкой Дина-Старка в течение 3 ч. Бензольный раствор промывают водой и высушивают безводным сульфатом натрия. Растворитель отгоняют в вакууме и остаток кристаллизуют из этанола. Получают кристаллы За и 3b оранжевого цвета.

2-(10-Метил-10Н-фенотиазин-3-илметилен)индандион-1,3 (4). Растворяют 1.46 г (10 ммоль) индандиона-1,3 в 60 мл ледяной АсОН при нагревании. К горячему раствору добавляют 2.41 г (10 ммоль) альдегида **1** и 0.1 мл пиперидина и кипятят 10 мин. После

охлаждения отфильтровывают кристаллы темно-фиолетового цвета. Кристаллизуют из AcOH, получают 3.0 г (81%) соединения 4. Т. пл. 226 °C.

2-Метил-4-(10-метил-10Н-фенотиазин-3-ил)-3-метоксикарбонил-5-оксо-1Н-4,5-дигидроиндено[1,2-*b***]пиридин (5а). Растворяют 1.1 г (3 ммоль) соединения 4 в 65 мл ледяной АсОН и доводят раствор до кипения. Добавляют 0.35 г (4.5 ммоль) метил-βаминокротоната и кипятят 10 мин. После охлаждения отфильтровывают кристаллы красного цвета. Кристаллизуют из АсОН, получают 0.96 г (69%) дигидроиндено[1,2-***b***]пиридина 5а** с т. пл. 255 °С.

2-Метил-4-(10-метил-10Н-фенотиазин-3-ил)-5-оксо-3-(этилтио)карбонил-1Н-4,5-дигидроиндено[1,2-*b***]пиридин (5b). Растворяют 1.1 г (3 ммоль) соединения 4** в 50 мл ледяной АсОН. Добавляют 1.46 г (10 ммоль) S-этилового эфира ацетоуксусной кислоты и 2.5 г ацетата аммония и кипятят смесь 10 мин. Отгоняют растворитель в вакууме до половины объема. После охлаждения отфильтровывают красные кристаллы. Кристаллизуют из АсОН, получают 1.0 г (70%) дигидроиндено[1,2-*b*]пиридина **5b**. Т. пл. 180–183 °С.

Синтез 3-замещенных 2-метил-4-(10-метил-10Н-фенотиазин-3-ил)-5-оксоиндено-[1,2-*b*]пиридинов 6а,b (общая методика). Растворяют 2 ммоль соответствующего дигидроиндено[1,2-*b*]пиридина 5а, АсОН в 10 мл ледяной АсОН, добавляют 1 г нитрита натрия по порциям и нагревают смесь до 80 °C в течение 10 мин. После охлаждения разбавляют 20 мл воды, выпавшие желтые кристаллы отфильтровывают и кристаллизуют из смеси этанола и АсОН (5:1 по объему). Получают кристаллы пиридинов 6а,b бледно-желтого цвета.

2-(10-Метил-10Н-фенотиазин-3-илметил)-3-оксо-1,2-дигидро-1 λ^6 -бензо[*b*]тиофен-**1,1-диоксид (7).** Кипятят 1.2 г (5 ммоль) альдегида 1 и 0.95 г (5.2 ммоль) бензо[*b*]тиофен-3(2Н)-он-1,1 диоксида в 50 мл ледяной АсОН в присутствии 0.1 мл пиперидина в качестве катализатора 30 мин. После охлаждения отфильтровывают кристаллы темно-фиолетового цвета. Кристаллизуют повторно из АсОН получают 1.7 г (84%) соединения 7. Т. пл. 252–254 °C.

2-Метил-4-(10-метил-10Н-фенотиазин-3-ил)-3-метоксикарбонил-4,5-дигидро-1Н-5λ⁶-**бензо[4,5]тиено[3,2-***b***]пиридин-5,5-диоксид (8а).** Растворяют 0.81 г (2 ммоль) соединения 7 в 30 мл ледяной АсОН при нагревании и доводят до кипения. Прибавляют 0.3 г (2.5 ммоль) метилового эфира β-аминокротоновой кислоты и кипятят раствор 30 мин. После охлаждения и добавления воды, отфильтровывают желтые кристаллы, перекрис-таллизовывают из смеси этанол–АсОН. Получают 0.56 г (56%) метилового эфира **8**а. Т. пл. 200–254 °C.

2-Метил-4-(10-метил-10Н-фенотиазин-3-ил)-3-этоксикарбонил-4,5-дигидро-1H-5λ⁶**бензо[4,5]тиено[3,2-***b***]пиридин-5,5-диоксид (8b)** получают аналогично из бензо[*b*]тиофен-3-она 7 и этилового эфира β-аминокротоновой кислоты с выходом 69%. Т. пл. 172–174 °С.

СПИСОК ЛИТЕРАТУРЫ

- R. M. Robertson, D. Robertson, in *Goodman and Gilman's: The Pharmacological Basis of Therapeutics*, J. G. Hardman, L. E. Limbird, P. M. Molinoff, R. W. Ruddon, A. Goodman Gilman (Eds.); McGraw–Hill Ryerson Ltd., Inc., 1996, p. 759.
- 2. R. Peri, S. Padmanabhan, A. Rutledge, S. Singhs, D. I. Triggle, J. Med. Chem., 2906 (2000).
- V. I. Parinov, A. G. Odinec, A. P. Gilev, G. J. Dubur, D. H. Muceniece, J. J. Ozol, V. D. Shatz, M. P. Gavars, B. A. Vigante, *Arzneim.-Forsch.*, 35, 808 (1985).
- 4. D. J. Triggle, Current Pharmaceutical Design, 12, 443 (2006).
- 5. G. Tirzitis, I. Kirule, G. Duburs, Fat. Sci. Technol., 10, 411 (1988).
- 6. G. Tirzitis, D. Tirzite, Z. Hyvonen, Czech. J. Food Sci., 19, 81 (2000).
- 7. K. Yao, Y. Ina, K. Nagashima, K. Ohmori, T. Ohno, Biol. Pharm.Bull., 23, 766 (2000).
- 8. M. Inoye, T. Mio, K. Sumino, Eur. J. Clin. Pharmacol., 56, 35 (2000).
- 9. A. Rampa, A. Chiarini, A. Bisi, R. Budriesi, P. Valenti, Arzneim.-Forsch., 41, 707 (1991).
- 10. P. Valenti, A. Chiarini, F. Gasperi, R. Budriesi, Arzneim.-Forsch., 40, 122 (1990).
- 11. D. Tirzite, G. Tirzitis, B. Vigante, G. Duburs, Biochem. Pharmacology, 46, 773 (1993).
- 12. K. Fukuzumi, N. Ikeda, M. Egawa, J. Am. Oil Chem. Soc., 53, 623 (1976).

- 13. S. Nagy, G. Argyclan, J. Molnar, M. Kawase, N. Motohashi, *Anticancer Res.*, 16, 1916 (1996).
- 14. B. Moosman, T. Skutella, K. Beyer, C. Behl, Biol. Chem., 382, 1601 (2001).
- 15. C. Korth, B. May, F. E. Cohen, S. B. Prusiner, Proc. Natl. Acad. Sci. U. S., 98, 9836 (2001).
- M. Frigerio, A. Zaliani, C. Riva, G. Palmisano, T. Pilati, C. A. Gandolfi, *Tetrahedron Lett.*, 29, 6335 (1988).
- 17. Б. А. Виганте, Я. Я. Озолс, Г. Я. Дубур, Изв. АН ЛатвССР, Сер. хим., 707 (1980).
- Р. Р. Дубуре, Б. А. Виганте, Я. Я. Озолс, Г. Я. Дубур, Г. И. Розентале, *XГС*, 1563 (1986).
 [*Chem. Heterocycl. Comp.*, 22, 1267 (1986)].
- 19. R. R. Dubure, R. O. Vitoliņa, J. J. Ozols, G. J. Duburs, A. A. Kimenis, G. V. Zariņš, USSR Inventor's certificate 1018396; *Chem. Abstr.* 105, 191950 (1986).
- B. A. Vīgante, J. J. Ozols, G. O. Sileniece, A. A. Kimenis, G. J. Dubur, USSR Inventor's certificate 794006; *Chem. Abstr.*, 95, 704 (1981).
- B. A. Vīgante, J. J. Ozols, R. O. Vitoliņa, G. O. Sileniece, A. A. Kimenis, G. J. Dubur, Ger. Offen. 2909852; *Chem. Abstr.*, 94, 15579 (1981).
- E. A. Bisenieks, J. R. Uldrikis, G. J. Duburs, G. D. Tirzit, A. Z. Dauvarte, A. A. Zidermane, E. V. Ivanov, T. V. Ponomareva, USSR Inventor's certificate 1050261; *Chem. Abstr.*, 124, 333068 (1996).
- B. A. Vīgante, J. J. Ozols, G. J. Duburs, USSR Inventor's certificate, SU 1 198 067 (1985); Chem. Abstr., 105, 190979 (1986).
- 24. H. Normant, T. Cuvighy, J. Normant, B. Angelo, Bull. Soc. Chim. France, 12, 3446 (1965).
- 25. V. Farcasan, I. Oprean, C. Bodea, Rev. Roum. Chim., 15, 1433 (1970).

Латвийский институт органического синтеза, Pura LV-1006 e-mail: vigante@osi.lv Поступило 10.05.2006