## П. Арсенян, К. Оберте, С. Беляков

## РЕАКЦИЯ 1,2,3-СЕЛЕНАДИАЗОЛОВ С БОРАНАМИ

Исследовано комплексообразование 1,2,3-селенадиазолов с эфиратом трехфтористого бора и фенилдихлорбораном. Молекулярная структура 4-метил-5-этоксикарбонил-1,2,3- селенадиазола подтверждена методом РСА.

Ключевые слова: бораны, 1,2,3-селенадиазолы, комплексы, молекулярная структура.

Большой интерес исследователей к 1,2,3-селенадиазолу и его производным объясняется тем, что эти соединения играют существенную роль в решении многих теоретических и практических вопросов органической химии [1]. Соединения, содержащие селенадиазольный цикл, проявляют ароматический характер, кроме того, очень важна их способность к отщеплению молекулы азота и селена с раскрытием цикла и образованием как продуктов ациклического ряда, так и новых гетероциклов [2, 3]. Поэтому они представляют собой перспективные объекты для изучения механизмов некоторых реакций и синтеза многочисленных интересных в практическом плане соединений [4]. Селенадиазолы в реакциях термолиза с элементарными серой и селеном образуют полисерные и полиселеновые циклические системы [5–7]. Различные селанилэтилены могут быть получены при взаимодействии селенадиазолов с нуклеофильными агентами, такими как бутиллитий, триалкилфосфиты, меркаптаны, дисульфиды и др. [8]

Особый интерес представляют исследования молекулярной структуры 1,2,3-селенадиазолов, поскольку, согласно литературным данным, лишь несколько структур подтверждены методом PCA [9–12].

Целью данной работы является исследование взаимодействия 1,2,3-селенадиазолов с эфиратом трифторида бора и фенилдихлорбораном.

Поскольку у атома селена имеются неподеленные пары электронов, возможно образование комплексов с электронодефицитными соединениями. Взаимодействие эфирата трехфтористого бора и фенилдихлорборана с эквимолярным количеством 4-фенил-1,2,3-селенадиазола 1 в сухом бензоле практически количественно приводит к образованию стабильных комплексов 2 и 3 соответственно. Оба комплекса представляют собой кристаллические вещества, чувствительные к влаге. Данные спектров ЯМР<sup>11</sup>В свидетельствуют о том, что атомы бора в комплексах являются тетракоординированными.



В реакции 4-метил-5-этоксикарбонил-1,2,3-селенадиазола (4) с эфиратом трехфтористого бора образуется смесь продуктов. Однако, комплексообразование соединения 4 с фенилдихлорбораном проходит гладко с образованием одного продукта 5. В результате кристаллизации комплекса 5 из гексана фенилдихлорборан подвергся гидролизу до фенилборной кислоты. Структура смешанных кристаллов 6 была исследована методом РСА.



Молекулярная структура **6** с обозначениями атомов и эллипсоидами их тепловых колебаний представлена на рис. 1. Длина водородной связи между гидроксильным атомом Н фенилборной кислоты и карбонильным кислородом селенадиазола составляет 2.790(4) Å. В элементарной ячейке находятся две молекулы 4-метил-5-этоксикарбонил-1,2,3-селенадиазола **4** и две молекулы фенилборной кислоты (Z = 2). В табл. 1 даны основные длины связей и валентные углы в структуре **6**.



*Рис. 1.* Молекулярная структура Н-комплекса соединения **4** с фенилборной кислотой 290



Рис. 2. Упаковка молекул в кристаллической структуре 6

Длина связи C(5)–Se(1) равна 1.834(4) Å, что меньше, чем длина связи N(2)–Se(1) (1.860(3) Å), угол C(5)–Se(1)–N(2) равен 86.2(2)°. По данным PCA, в других исследованных селендиазолах [9–13] связь C–Se также короче, чем N–Se. Связи N(2)–N(3) и C(4)–C(5) удлинены по сравнению со стандартными двойными связями N=N и C=C [14], что подтверждает ароматичность селенадиазольного цикла.

Таблица 1

| Связь      | l, Å     | Угол            | ω, град. |
|------------|----------|-----------------|----------|
| Se(1)–N(2) | 1.860(3) | N(2)-Se(1)-C(5) | 86.2(2)  |
| Se(1)-C(5) | 1.834(4) | Se(1)-N(2)-N(3) | 111.2(2) |
| N(2)–N(3)  | 1.273(4) | N(2)-N(3)-C(4)  | 118.2(3) |
| N(3)–C(4)  | 1.366(5) | N(3)-C(4)-C(5)  | 113.9(3) |
| C(4)–C(5)  | 1.369(5) | C(4)–C(5)–Se(1) | 110.5(3) |
| C(4)–C(6)  | 1.469(5) | O(3)-B(1)-C(10) | 117.6(3) |
| C(5)–C(7)  | 1.482(5) | O(3)-B(1)-C(10) | 123.5(3) |
| C(7)–O(1)  | 1.200(4) | O(4)-B(1)-C(10) | 118.9(4) |
| C(7)–O(2)  | 1.337(4) |                 |          |
| B(1)–O(3)  | 1.378(5) |                 |          |
| B(1)–O(4)  | 1.346(5) |                 |          |
| B(1)-C(10) | 1.564(5) |                 |          |

Основные межатомные расстояния (1) и валентные углы (@) в структуре 6

Таблица 2

| Связь D–Н…А   | Длина Н-связи<br>D…A, Å | Расстояние<br>D…A, Å | Угол,<br>D–Н…А, град. | Позиция<br>атома А             |
|---------------|-------------------------|----------------------|-----------------------|--------------------------------|
| O(3)–H…O(1)   | 2.867(3)                | 2.03                 | 148                   | <i>x</i> , <i>y</i> , <i>z</i> |
| O(4)–H···O(3) | 2.790(3)                | 1.90                 | 167                   | 2-x, -y, -z                    |

Параметры водородных связей в кристаллической структуре 6

На рис. 2 представлена проекция упаковки молекул кристаллической структуры 6 вдоль кристаллографического направления [1 0 0]. Кроме описанной выше водородной связи в структуре 6 также имеется водородная связь O(4)–H···O(3) (табл. 2). Длины водородных связей несколько превышают среднестатистическое значение, которое для связей типа OH···O равно 2.72 Å [15]. Посредством водородных связей в кристаллической структуре образуются центросимметричные ассоциаты из четырех молекул.

## ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР <sup>1</sup>H, <sup>13</sup>C, <sup>11</sup>B и <sup>77</sup>Se измерены на приборе Varian Mercury-200 (200, 50, 64 и 39.7 МГц соответственно), растворитель ДМСО-d<sub>6</sub>, внутренний стандарт ТМС, внешние стандарты  $BF_3$ -Et<sub>2</sub>O (<sup>11</sup>B) и SeO<sub>2</sub> (<sup>77</sup>Se).

Для рентгеноструктурного анализа монокристаллы 6 были выращены перекристаллизацией из гексана. Кристаллы 6 принадлежат триклинной сингонии; параметры кристаллической решетки: a = 7.4666(3), b = 10.0980(3), c = 11.1689(4) Å,  $\alpha = 107.750(2)$ ,  $\beta = 98.402(2)$ ,  $\gamma = 107.905(2)^{\circ}$ ; V = 735.97(5) Å<sup>3</sup>, F(000) = 344,  $\mu = 2.563$  мм<sup>-1</sup>,  $d_{выч} = 1.539$  г·см<sup>-3</sup>, Z = 2, пространственная группа P 1.

Интенсивности 3389 независимых отражений измерены на автоматическом дифрактометре Nonius KappaCCD (молибденовое излучение с  $\lambda = 0.71073$  Å, графитовый монохроматор) до  $2\theta_{max} = 55^{\circ}$ . В процессе расчетов использовалось 2106 рефлексов с  $I > 2\sigma(I)$ . Структура расшифрована по методике [16]. Уточнение проведено МНК в полноматричном анизотропном приближении по комплексу программ SHELXL [17]. Окончательное значение фактора расходимости R = 0.0441.

Комплексообразование 1,2,3-селенадиазолов с боранами (общая методика). Смесь эквимолярных количеств селенадиазола и борана растворяют в сухом бензоле и перемешивают при комнатной температуре в течение 1 ч. Комплексы 2, 3, 5 выпадают из реакционной смеси через несколько дней. Осадок отфильтровывают и перекристаллизовывают из смеси бензол-гексан, 1:5.

Комплекс 4-фенил-1,2,3-селенадиазола с трифторидом бора (2). Т. пл. 69–70 °С. Спектр ЯМР <sup>1</sup>Н,  $\delta$ , м. д.: 7.42–7.52 (3H, м), 8.03–8.08 (2H, м), 9.38 (1H, с). Спектр ЯМР <sup>13</sup>С,  $\delta$ , м. д.: 127.3, 128.1, 128.4, 132.5, 135.0, 137.4. Спектр ЯМР <sup>11</sup>В,  $\delta$ , м. д.: -4.78. Найдено, %: С 34.74; H 2.22; N 10.11. С<sub>8</sub>H<sub>6</sub>BF<sub>3</sub>N<sub>2</sub>Se. Вычислено, %: С 34.70; H 2.18; N 10.12.

Комплекс 4-фенил-1,2,3-селенадиазола с фенилдихлорбораном (3). Т. пл. 91–92 °С. Спектр ЯМР <sup>1</sup>Н,  $\delta$ , м. д.: 7.42–7.60 (6H, м), 8.03–8.07 (2H, м), 8.23–8.27 (2H, м), 9.39 (1H, с). Спектр ЯМР <sup>13</sup>С,  $\delta$ , м. д.: 127.7, 128.0, 128.9, 129.1, 132.0, 132.7, 135.6, 137.0, 166.8. Спектр ЯМР <sup>11</sup>В,  $\delta$ , м. д.: 29.48. Спектр ЯМР <sup>77</sup>Se,  $\delta$ , м. д.: 1569.9. Найдено, %: С 45.74; Н 3.08; N 7.70. С<sub>14</sub>H<sub>11</sub>BCl<sub>2</sub>N<sub>2</sub>Se. Вычислено, %: С 45.70; Н 3.01; N 7.61.

Комплекс 5-этоксикарбонил-4-метил-1,2,3-селенадиазола с фенилдихлорбораном (5). Спектр ЯМР <sup>1</sup>Н,  $\delta$ , м. д. (J,  $\Gamma$ ц): 1.34 (3H, т, J = 4.0), 3.02 (3H, c), 4.35 (2H, к, J = 4.0), 7.43–7.73 (5H, м). Спектр ЯМР <sup>13</sup>С,  $\delta$ , м. д.: 14.1, 24.9, 62.6, 127.9, 131.0, 131.1, 132.5, 135.6, 162.3. Спектр ЯМР <sup>11</sup>В,  $\delta$ , м. д.: 29.60. Спектр ЯМР <sup>77</sup>Se,  $\delta$ , м. д.: 1574.6. Найдено, %: С 38.10; Н 3.41; N 7.36. С<sub>12</sub>Н<sub>13</sub>ВСl<sub>2</sub>N<sub>2</sub>O<sub>2</sub>Se. Вычислено, %: С 38.14; Н 3.47; N 7.41.

Получение Н-комплекса 4-фенил-5-этоксикарбонил-1,2,3-селенадиазола 4 с фенилборной кислотой (6). Комплекс 5 растворяют в гексане при комнатной температуре и оставляют кристаллизоваться при 5 °С. Через 2 сут получают кристаллы соединения 6. Спектроскопические данные соединения 4, входящего в Н-комплекс, приведены в работе [18].

Авторы выражают искреннюю благодарность Латвийскому совету по науке (гранты 05.1757 и 05.1758) за финансовую поддержку.

## СПИСОК ЛИТЕРАТУРЫ

- 1. W. Ando, N. Tokitoh, Heteroatom Chem., 1 (1991).
- D. H. Reid, in Comprehensive Heterocyclic Chemistry II: A Review of the Literature 1982– 1995, R. C. Storr (Ed.), Pergamon, Oxford, 1996, vol. 4, p. 743.
- 3. M. Regitz, S. Krill, Phosphorus Sulfur Silicon Relat. Elem., 99, 15 (1996).
- 4. G. Mugesh, W.-W. du Mont, H. Sies, Chem. Rev., 101, 2125 (2001).
- 5. D. N. Harpp, R. A. Smith, J. Am. Chem. Soc., 104, 6045 (1982).
- 6. G. M. Whitesides, J. Houk, M. A. K. Patterson, J. Org. Chem., 48, 112 (1983).
- 7. R. Sato, T. Kimura, T. Goto, M. Saito, Tetrahedron Lett., 29, 6291 (1988).
- 8. N. Tokitoh, Y. Okano, W. Ando, M. Goto, H. Maki, Tetrahedron Lett., 31, 5323 (1990).
- 9. W. Ando, Y. Kumamoto, H. Ishizuka, N. Tokitoh, Tetrahedron Lett., 28, 4707 (1987)
- П. Арсенян, К. Оберте, К. Рубина, С. Беляков, Э. Лукевиц, ХГС, 599 (2004). [Chem. Heterocycl. Comp., 40, 503 (2004)].
- 11. V. Batzel, R. Boese, Z. Naturforsch., B: Chem. Sci., 36, 172 (1981).
- А. В. Иретский, М. Л. Петров, Ю. Н. Кукушкин, Е. Б. Шамуратов, А. С. Батсанов, Ю. Т. Стручков, *Металлоорг. хим.*, 4, 1314 (1991).
- 13. G. A. Morales, F. R. Fronczek, J. Chem. Crystallogr., 24, 811 (1994).
- 14. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans. 2, S1–S19 (1987).
- 15. L. N. Kuleshova, P. M. Zorkii, Acta Crystallogr., B37, 1363 (1981).
- Altomare, M. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. Moliterni, R. Spagna, J. Appl. Crystallogr., 32, 115 (1999).
- G. M. Sheldrick, SHELXL-97. A Program for Crystal Structure Refinement. Univ. of Göttingen, Göttingen, Germany, 1997. Release 92-2.
- 18. I. Lalezari, A. Shafiee, M. Yalpani, J. Org. Chem., 36, 2836 (1971).

Латвийский институт органического синтеза, Pura LV-1006 e-mail: pavel.arsenyan@lycos.com Поступило 06.02.2006