# С. Г. Джавахишвили, А. В. Борисов<sup>а</sup>, В. М. Никитченко<sup>6</sup>, С. Н. Коваленко<sup>а</sup>

# ОСОБЕННОСТИ РЕАКЦИЙ НЕСИММЕТРИЧНЫХ 2-МЕРКАПТОИМИДАЗОЛОВ С АРОМАТИЧЕСКИМИ И АЛИФАТИЧЕСКИМИ КЕТОНАМИ

Изучена циклизация несимметричных 2-меркатоимидазолов с алифатическими и ароматическими кетонами. Для  $4-R^{1}-1H-2$ -меркатоимидазолов методами спектроскопии ЯМР <sup>1</sup>H и РСА доказана селективность окислительной циклизации в соответствующие  $3-R^{3}-2-R^{2}-6-R^{1}-имидазo[2,1-b][1,3]$ тиазолы, в то время как  $6-R^{4}-1H-2$ -меркаптобензо[d]имидазолы дают смесь  $6-R^{4}-3-R^{2}-2-R^{3}$ -бензо[4,5]имидазо[2,1-b][1,3]тиазола и  $7-R^{4}-3-R^{2}-2-R^{3}$ -бензо[4,5]-имидазо[2,1-b][1,3]тиазола в соотношении 1:1.

Ключевые слова:  $6-R^4-3-R^2-2-R^3$ -бензо[4,5]имидазо[2,1-*b*][1,3]тиазол,  $7-R^4-3-R^2-2-R^3$ -бензо[4,5]имидазо[2,1-*b*][1,3]тиазол,  $3-R^3-2-R^2-6-R^1$ -имидазо[2,1-*b*][1,3]тиазолы,  $6-R^1-1H-2$ -меркаптобензо[*d*]имидазолы,  $4-R^1-1H-2$ -меркатоимидазол, РСА, селективность.

Производные 2-меркаптоимидазола проявляют высокую активность в реакциях с различными электрофильными реагентами. Анализ литературных данных [1–5] показал, что аналоги получающихся при этом имидазо[2,1-*b*][1,3]тиазолов оказывают высокое противовоспалительное, антибактериальное, антипсихотическое и антиаллергическое действии, являются ингибиторами циклооксигеназы-2 и антагонистами Допамина Д3.

Синтез имидазо[2,1-*b*][1,3]тиазолов описан только для симметричных 2-меркаптоимидазолов, о направлении реакции в случае несимметричных структур данных не найдено [1–3]. С целью изучения реакции 2-меркаптоимидазолов с ароматическими и алифатическими кетонами синтезирован ряд новых имидазо[2,1-*b*][1,3]тиазолов **4**.

Исходные 2-меркаптоимидазолы получены по известным методикам: 4-арил-1Н-имидазо-2-тиолы **1** синтезированы по реакции Марквальда из фенациламинов и роданида калия; 1Н-бензимидазо-2-тиолы **2** – нагреванием *о*-фенилендиаминов с *н*-бутилксантогенатом калия в спирте [6, 7].

Кипячение соединений **1а–с** с соответствующими кетонами в ледяной уксусной кислоте в присутствии серной кислоты приводит к образованию 3-R<sup>3</sup>-2-R<sup>2</sup>-6-R<sup>1</sup>-имидазо[2,1-*b*][1,3]тиазолов **4а–е** с выходом 36–71%, в спектре ЯМР <sup>1</sup>Н которых отсутствует сигнал протона группы NH имидазольного фрагмента.



1 a  $R^1 = H$ , b  $R^1 = 4$ -Cl, c  $R^1 = 4$ -Br; 3 a  $R^1 = 4$ -Br,  $R^2 = 4$ -MeC<sub>6</sub>H<sub>4</sub>, b  $R^1 = 4$ -Br,  $R^2 = 2,5$ -F<sub>2</sub>C<sub>6</sub>H<sub>3</sub>, c  $R^1 = 4$ -Me,  $R^2 = Ph$ , d  $R^1 = 4$ -Cl,  $R^2 = 4$ -O<sub>2</sub>NC<sub>6</sub>H<sub>4</sub>, a–d  $R^3 = H$ ; 4 a  $R^1 = H$ ,  $R^2 = Me$ ,  $R^3 = COMe$ , b  $R^1 = 4$ -Cl,  $R^2 + R^3 = (CH_2)_4$ , c  $R^1 = 4$ -Cl,  $R^2 + R^3 = [CH_2CH(t-Bu)(CH_2)_2]$ ; d  $R^1 = 4$ -Cl,  $R^2 + R^3 = [CH_2CH(Me)(CH_2)_2]$ , e  $R^1 = 4$ -Br,  $R^2 = 4$ -MeC<sub>6</sub>H<sub>4</sub>,  $R^3 = H$ 

Предлагаемый нами механизм реакции основывается на обобщении данных [4, 8] и сводится к следующему:



В доказательство этому в случае ацетофенонов удается выделить промежуточные 2-(алкилтио)-1Н-имидазолы **3а–d**, в спектрах ЯМР <sup>1</sup>Н которых отсутствует сигнал протона тиазольного фрагмента и появляются сигналы протонов метиленовой группы и группы NH имидазольного цикла. Дальнейшее кипячение в тех же условиях интермедиатов **3** приводит к их селективному превращению в описанные выше 3,6-диарилимидазо[2,1-*b*][1,3]тиазолы **4а–е**, о чем свидетельствуют данные РСА, с общим выходом 54–72%. При этом образование альтернативного 3,5-диарилимидазо[2,1-*b*][1,3]тиазола **5** не наблюдается. При взаимодействии 6-R<sup>4</sup>-1H-бензимидазол-2-тиолов с кетонами в уксусной кислоте в присутствии серной кислоты в тех же условиях результатом реакции является смесь двух изомеров:  $6\text{-R}^4$ - $3\text{-R}^2$ - $2\text{-R}^3$ -бензо[4,5]имидазо[2,1-*b*][1,3]тиазола **6** и 7-R<sup>4</sup>- $3\text{-R}^2$ - $2\text{-R}^3$ -бензо[4,5]имидазо[2,1-*b*]-[1,3]тиазола **7** в соотношении 1:1, что следует из данных спектров ЯМР <sup>1</sup>Н.



**2**, **6 a** R = H, **b** 6-Br; **7** R = 7-Br

Направление реакции циклизации подтверждено данными РСА на примере 2-(4-хлорфенил)-5,6,7,8-тетрагидробензо[*d*]имидазо[2,1-*b*][1,3]тиазола (**4b**) (рис. 1) и 6-(4-бромфенил)-3-(4-метилфенил)имидазо[2,1-*b*][1,3]тиазола (**4e**) (рис. 2).



Рис. 1. Структура соединения 4b



Рис. 2. Структура соединения 4е

Длины связей (d) структуры 4b

# Таблица 1

Таблица 2

| Связь                                | d. Å     | Связь                              | d. Å     | Связь                 | d. Å     |
|--------------------------------------|----------|------------------------------------|----------|-----------------------|----------|
|                                      | ,        |                                    | ,        |                       | ,        |
| $Cl_{(1)}-C_{(13)}$                  | 1.753(6) | $C_{(8)}-C_{(9)}$                  | 1.490(5) | $C_{(4)}-C_{(5)}$     | 1.494(5) |
| $S_{(1)} - C_{(4)}$                  | 1.749(4) | $C_{(10)} - C_{(15)}$              | 1.389(7) | C(5)-C(6B)            | 1.530(5) |
| $N_{(1)}-C_{(1)}$                    | 1.376(5) | C(12)-C(13)                        | 1.33(1)  | C(7A)-C(8)            | 1.530(5) |
| N(2)-C(3)                            | 1.303(5) | C(14)-C(15)                        | 1.391(7) | C(7B)-C(8)            | 1.528(5) |
| $C_{(1)} - C_{(2)}$                  | 1.367(6) | S <sub>(1)</sub> -C <sub>(3)</sub> | 1.732(5) | $C_{(10)} - C_{(11)}$ | 1.359(7) |
| C(4)-C(9)                            | 1.317(5) | N(1)-C(3)                          | 1.358(5) | C(11)-C(12)           | 1.382(8) |
| C(5)-C(6A)                           | 1.526(5) | N(1)-C(9)                          | 1.398(5) | $C_{(13)} - C_{(14)}$ | 1.39(1)  |
| C(6A)-C(7A)                          | 1.526(5) | N(2)-C(2)                          | 1.378(5) |                       |          |
| C <sub>(6B)</sub> -C <sub>(7B)</sub> | 1.528(5) | $C_{(2)} - C_{(10)}$               | 1.453(6) |                       |          |

### Валентные углы (@) структуры 4b

#### Угол Угол ω, град. ω, град. $C_{(3)} - S_{(1)} - C_{(4)}$ $C_{(3)} - N_{(1)} - C_{(1)}$ 89.9(2) 105.6(4) $C_{(3)} - N_{(1)} - C_{(9)}$ 114.7(3) $C_{(1)} - N_{(1)} - C_{(9)}$ 139.6(4) $C_{(3)} - N_{(2)} - C_{(2)}$ 104.1(4) $C_{(2)} - C_{(1)} - N_{(1)}$ 105.9(4) $C_{(1)} - C_{(2)} - N_{(2)}$ 110.6(4) $C_{(1)} - C_{(2)} - C_{(10)}$ 127.3(4) N(2)-C(2)-C(10) 122.1(4) N<sub>(2)</sub>-C<sub>(3)</sub>-N<sub>(1)</sub> 113.8(4) N<sub>(2)</sub>-C<sub>(3)</sub>-S<sub>(1)</sub> 135.9(3) $N_{(1)} - C_{(3)} - S_{(1)}$ 110.3(3) $C_{(9)} - C_{(4)} - C_{(5)}$ $C_{(9)} - C_{(4)} - S_{(1)}$ 113.0(3) 124.1(4) $C_{(5)} - C_{(4)} - S_{(1)}$ $C_{(4)}$ - $C_{(5)}$ - $C_{(6A)}$ 122.9(3) 110.9(9) C<sub>(4)</sub>-C<sub>(5)</sub>-C<sub>(6B)</sub> 109(2) $C_{(7A)}$ - $C_{(6A)}$ - $C_{(5)}$ 110.9(9) $C_{(6A)} - C_{(7A)} - C_{(8)}$ $C_{(7B)} - C_{(6B)} - C_{(5)}$ 114(1) 112(1) $C(_{6B})-C_{(7B)}-C_{(8)}$ $C_{(9)} - C_{(8)} - C_{(7B)}$ 109(2) 109.1(9) $C_{(9)} - C_{(8)} - C_{(7A)}$ C<sub>(4)</sub>-C<sub>(9)</sub>-N<sub>(1)</sub> 109.0(7) 112.0(3) $C_{(4)} - C_{(9)} - C_{(8)}$ 126.0(4) $N_{(1)} - C_{(9)} - C_{(8)}$ 122.0(4) $C_{(11)}$ - $C_{(10)}$ - $C_{(15)}$ 117.9(5) $C_{(11)}$ - $C_{(10)}$ - $C_{(2)}$ 122.2(5)C(15)-C(10)-C(2) C<sub>(10)</sub>–C<sub>(11)</sub>–C<sub>(12)</sub> 119.9(5) 123.0(7) $C_{(13)}$ - $C_{(12)}$ - $C_{(11)}$ 118.2(8) C(12)-C(13)-C(14) 122.2(7) $C_{(12)}$ - $C_{(13)}$ - $Cl_{(1)}$ 120.4(8) $C_{(14)}$ - $C_{(13)}$ - $Cl_{(1)}$ 117.4(8) C(13)-C(14)-C(15) 118.5(7) $C_{(10)}$ - $C_{(15)}$ - $C_{(14)}$ 120.2(6)

# Таблица З

| Длины | связей | (d) | структуры | <b>4</b> e |
|-------|--------|-----|-----------|------------|
|-------|--------|-----|-----------|------------|

| Связь                                | <i>d</i> , Å | Связь                                | <i>d</i> , Å | Связь                              | <i>d</i> , Å |
|--------------------------------------|--------------|--------------------------------------|--------------|------------------------------------|--------------|
| Br <sub>(1)</sub> -C <sub>(16)</sub> | 1.890(5)     | C <sub>(10)</sub> –C <sub>(11)</sub> | 1.374(6)     | C <sub>(5)</sub> –C <sub>(6)</sub> | 1.468(6)     |
| S(1)-C(4)                            | 1.732(5)     | C(13)-C(14)                          | 1.390(6)     | C <sub>(6)</sub> –C <sub>(7)</sub> | 1.390(7)     |
| N(1)-C(1)                            | 1.365(5)     | C(15)-C(16)                          | 1.370(8)     | C(8)-C(9)                          | 1.373(7)     |
| N(2)-C(3)                            | 1.314(6)     | C(17)-C(18)                          | 1.379(7)     | $C_{(9)}-C_{(12)}$                 | 1.521(8)     |
| C(1)-C(2)                            | 1.358(6)     | S(1)-C(3)                            | 1.730(5)     | C(13)-C(18)                        | 1.387(7)     |
| C <sub>(4)</sub> -C <sub>(5)</sub>   | 1.344(6)     | N(1)-C(3)                            | 1.360(5)     | C(14)-C(15)                        | 1.379(7)     |
| $C_{(6)} - C_{(11)}$                 | 1.382(6)     | N(1)-C(5)                            | 1.397(6)     | C(16)-C(17)                        | 1.375(7)     |
| C(7)-C(8)                            | 1.359(7)     | N(2)-C(2)                            | 1.386(5)     |                                    |              |
| C(9)-C(10)                           | 1.389(7)     | $C_{(2)} - C_{(13)}$                 | 1.464(6)     |                                    |              |

Валентные углы (ω) структуры 4е

## Таблица 4

| Угол                                                 | ω, град. | Угол                                                 | ω, град. |
|------------------------------------------------------|----------|------------------------------------------------------|----------|
| $C_{(3)} - S_{(1)} - C_{(4)}$                        | 89.7(2)  | $C_{(3)}-N_{(1)}-C_{(1)}$                            | 106.4(4) |
| C <sub>(3)</sub> -N <sub>(1)</sub> -C <sub>(5)</sub> | 115.1(4) | $C_{(1)} - N_{(1)} - C_{(5)}$                        | 138.4(4) |
| C(3)-N(2)-C(2)                                       | 103.6(4) | $C_{(2)}-C_{(1)}-N_{(1)}$                            | 105.9(4) |
| $C_{(1)} - C_{(2)} - N_{(2)}$                        | 111.1(4) | $C_{(1)}-C_{(2)}-C_{(13)}$                           | 127.7(4) |
| $N_{(2)}-C_{(2)}-C_{(13)}$                           | 121.2(4) | N <sub>(2)</sub> –C <sub>(3)</sub> –N <sub>(1)</sub> | 113.0(4) |
| $N_{(2)}-C_{(3)}-S_{(1)}$                            | 136.2(4) | $N_{(1)}-C_{(3)}-S_{(1)}$                            | 110.8(3) |
| $C_{(5)}-C_{(4)}-S_{(1)}$                            | 114.1(4) | $C_{(4)} - C_{(5)} - N_{(1)}$                        | 110.3(4) |
| $C_{(4)}-C_{(5)}-C_{(6)}$                            | 127.8(4) | N <sub>(1)</sub> -C <sub>(5)</sub> -C <sub>(6)</sub> | 121.8(4) |
| $C_{(11)} - C_{(6)} - C_{(7)}$                       | 118.1(4) | $C_{(11)} - C_{(6)} - C_{(5)}$                       | 120.5(4) |
| $C_{(7)} - C_{(6)} - C_{(5)}$                        | 121.2(4) | $C_{(8)}-C_{(7)}-C_{(6)}$                            | 120.6(5) |
| $C_{(7)} - C_{(8)} - C_{(9)}$                        | 121.6(5) | $C_{(8)}-C_{(9)}-C_{(10)}$                           | 118.3(5) |
| $C_{(8)}-C_{(9)}-C_{(12)}$                           | 121.3(5) | $C_{(10)}-C_{(9)}-C_{(12)}$                          | 120.4(5) |
| $C_{(11)} - C_{(10)} - C_{(9)}$                      | 120.4(5) | $C_{(10)} - C_{(11)} - C_{(6)}$                      | 120.9(4) |
| $C_{(18)} - C_{(13)} - C_{(14)}$                     | 117.7(4) | $C_{(18)}-C_{(13)}-C_{(2)}$                          | 121.1(4) |
| $C_{(14)}-C_{(13)}-C_{(2)}$                          | 121.2(4) | $C_{(15)}-C_{(14)}-C_{(13)}$                         | 120.8(5) |
| $C_{(16)} - C_{(15)} - C_{(14)}$                     | 120.5(5) | $C_{(15)} - C_{(16)} - C_{(17)}$                     | 119.8(5) |
| $C_{(15)}-C_{(16)}-Br_{(1)}$                         | 119.5(5) | $C_{(17)}-C_{(16)}-Br_{(1)}$                         | 120.5(5) |
| $C_{(16)} - C_{(17)} - C_{(18)}$                     | 119.8(5) | $C_{(17)}-C_{(18)}-C_{(13)}$                         | 121.4(5) |

### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Все растворители и реагенты были получены из коммерческих источников. Температуры плавления синтезированных веществ получены на приборе Buchi B-520 (Швейцария). Спектры ЯМР <sup>1</sup>Н измерены на спектрометре Varian WXR-400 (200 МГц) в ДМСО-d<sub>6</sub>, внутренний стандарт ТМС. РСА проведен на автоматическом четырехкружном дифрактометре Siemens P3/PC. Структура расшифрована прямым методом по комплексу программ SHELXTL. Кристаллы соединений **4b**,е выращивались из их растворов в ДМФА.

Ход реакций контролировался методом TCX на алюминиевых пластинках, покрытых силикагелем (Merck, Kieselgel 60 F-254).

Рентгено-структурное исследование. 2-(4-Хлорфенил)-5,6,7,8-тетрагидробензо-[d]имидазо[2,1-b][1,3]тиазол (4b). Параметры элементарной ячейки и интенсивности 2424 отражений (2423 независимых,  $R_{int} = 0.231$ ) измерены на автоматическом четырехкружном дифрактометре Siemens P3/PC (МоКа, графитовый монохроматор, 20/ $\theta$ -сканирование,  $2\theta_{max} = 50^{\circ}$ ). Структура расшифрована прямым методом по комплексу программ SHELX97 [9]. При уточнении структуры налагались ограничения на длины связей в разупорядоченном фрагменте  $Csp^3-Csp^3$  1.53 Å. Положения атомов водорода для неразупорядоченной части молекулы выявлены из разностного синтеза электронной плотности, а для атомов  $C_{(6)}$  и  $C_{(7)}$  рассчитаны геометрически и уточнены по модели "наездника" с  $U_{\mu_{30}} = 1.2U_{3KB}$  неводородного атома, связанного с данным атомом водорода. Структура уточнена по  $F^2$  полноматричным МНК в анизотропном приближении для неводородных атомов до  $wR_2 = 0.158$  по 2382 отражениям ( $R_1 = 0.061$  по 1115 отражениям с  $F > 4\sigma(F)$ , S = 0.980).

Кристаллы ромбические, C<sub>15</sub>H<sub>13</sub>ClN<sub>2</sub>S, при 20 °C: a = 14.433(3), b = 7.504(1), c = 25.641(5) Å, V = 2777.3(9) Å<sup>3</sup>,  $M_r = 288.78$ , Z = 8, пространственная группа *Pbca*,  $d_{\text{выч}} = 1.381 \text{ г/см}^3$ ,  $\mu(\text{Мо}K\alpha) = 0.412 \text{ мм}^{-1}$ , F(000) = 1200.

Все неводородные атомы пятичленных гетероциклов и хлорфенильного заместителя лежат в одной плоскости с точностью 0.02 Å, что приводит к возникновению стерического напряжения между имидазольным циклом и атомами водорода бензольного кольца, о чем свидетельствуют укороченные внутримолекулярные контакты  $H_{(1)}...H_{(11)}$  2.30 (сумма вандер-ваальсовых радиусов 2.34 [10]),  $H_{(11)}...C_{(1)}$  2.70 (2.87),  $H_{(15)}...N_{(2)}$  2.55 Å (2.67 Å).

Тетрагидроцикл разупорядочен по двум конформациям (**A** и **B**) *полукресло* с заселенностью **A** : **B** = 64:36% (параметры складчатости [11]: S = 0.74,  $\theta = 35.35^{\circ}$ ,  $\Psi = 28.40^{\circ}$  для конформера **A** и S = 0.80,  $\theta = 35.17^{\circ}$ ,  $\Psi = 29.25^{\circ}$  для конформера **B**). Отклонения атомов C<sub>(6)</sub> и C<sub>(7)</sub> от среднеквадратичной плоскости остальных атомов цикла составляют –0.38 и 0.33 Å в **A** и 0.37 и –0.41 Å в **B** соответственно.

В кристалле между молекулами обнаружены межмолекулярные укороченные контакты  $H_{(6ab)}...C_{l(1)}$  (-*x*, -*y*, 1-*z*) 2.95 (сумма ван-дер-ваальсовых радиусов 3.06),  $H_{(12)}...Cl_{(1)}$  (0.5-*x*, -0.5+*y*, *z*) 2.87,  $Cl_{(1)}...H_{(5b)}$  (*x*, 0.5-*y*, -0.5+*z*) 3.03,  $S_{(1)}...C_{(7b)}$  (*x*, 1+*y*, *z*) 3.44 (3.51),  $S(1)...H_{(7ba)}$  (*x*, 1+*y*, *z*) 2.94 Å (2.96 Å) (табл. 1, 2).

**6-(4-Бромфенил)-3-(4-метилфенил)имидазо[2,1-b][1,3]тиазол** (**4e**). Параметры элементарной ячейки и интенсивности 2885 отражений (2671 независимых,  $R_{int} = 0.072$ ) измерены на автоматическом четырехкружном дифрактометре Siemens P3/PC (Мо*K* $\alpha$ , графитовый монохроматор,  $\theta/2\theta$ -сканирование,  $2\theta_{max} = 50^{\circ}$ ).

Структура расшифрована прямым методом по комплексу программ SHELXTL [9]. Поглощение учтено полуэмпирическим методом по результатам  $\psi$ -сканирования,  $T_{min} = 0.329$ ,  $T_{max} = 0.757$ . Положения атомов водорода выявлены из разностного синтеза электронной плотности и уточнены по модели "наездника" с  $U_{изо} = 1.2U_{экв}$  неводородного атома, связанного с данным атомом водорода. Структура уточнена по  $F^2$  полноматричным МНК в анизотропном приближении для неводородных атомов до  $wR_2 = 0.112$  по 2600 отражениям ( $R_1 = 0.051$  по 1484 отражениям с  $F > 4\sigma(F)$ , S = 0.953).

Кристаллы триклинные,  $C_{18}H_{13}BrN_2S$ , при 20 °C: a = 7.379(2), b = 7.804(2), c = 14.408(4) Å,  $\alpha = 76.12(2)^\circ$ ,  $\beta = 79.57(2)^\circ$ ,  $\gamma = 88.22(2)^\circ$ , V = 792.1(4) Å<sup>3</sup>,  $M_r = 369.27$ , Z = 2, пространственная группа  $P\bar{1}$ ,  $d_{\rm выч} = 1.548$  г/см<sup>3</sup>,  $\mu$ (Мо $K\alpha$ ) = 2.723 мм<sup>-1</sup>, F(000) = 372.

Бициклический фрагмент плоский с точностью 0.01 Å. Бромфенильный заместитель при атоме С<sub>(2)</sub> практически копланарен плоскости бицикла (торсионный угол C<sub>(1)</sub>–C<sub>(2)</sub>–C<sub>(13)</sub>–C<sub>(14)</sub>–4.4(7)°), что приводит к возникновению укороченных внутримолекулярных контактов H<sub>(18)</sub>…N<sub>(2)</sub> 2.58 (сумма ван-дер-ваальсовых радиусов 2.67 [10]) и H<sub>(14)</sub>…C<sub>(1)</sub> 2.72 Å (2.87 Å). Заместитель при атоме C<sub>(5)</sub> развернут относительно плоскости бициклического фрагмента (торсионный угол C<sub>(4)</sub>–C<sub>(5)</sub>–C<sub>(6)</sub>–C<sub>(7)</sub> 54.8(6)°).

В кристалле между молекулами обнаружены укороченные межмолекулярные контакты  $H_{(14)}...S_{(1)}$  (1+x, y, z) 2.99 (3.01),  $H_{(11)}...N_{(2)}$  (-1-x, 1-y, 1-z) 2.64 Å (2.67 Å) (табл. 3, 4).

**2-(1Н-Имидазол-2-илтио)-1-(R<sup>3</sup>-фенил)этаноны 3** (общая методика). А. К раствору 3 ммоль 2-меркаптоимидазола и 3.3 ммоль соответствующего кетона в 10–15 мл ледяной уксусной кислоты добавляют 3.3 ммоль 96% серной кислоты, реакционную смесь перемешивают 15–20 мин при 70 °C, охлаждают до комнатной температуры. Образовавшийся осадок отфильтровывают и промывают водным спиртом.

Б. (встречный синтез). К раствору 3 ммоль 2-меркаптоимидазола в 10 мл (3.3 ммоль) водно-спиртового раствора гидроксида калия прибавляют раствор 3.3 ммоль соответствующего ω-бромацетофенона в 5 мл этанола, перемешивают 3–5 мин до начала кристаллизации. Осадок отфильтровывают, промывают водой, а затем спиртом. Выход 87–95%.

**2-{[4-(4-Бромфенил)-1Н-имидазол-2-ил]тио}-1-(4-метилфенил)этанон** (**3**а). Т. пл. 155–157 °С, выход 97%. Спектр ЯМР <sup>1</sup>Н, б, м. д. (*J*, Гц): 2.27 (3H, с, CH<sub>3</sub>); 4.90 (2H, с, CH<sub>2</sub>); 7.09 (2H, д, *J* = 8, ArH); 7.30–7.55 (4H, м, ArH); 7.60 (2H, д, *J* = 10, ArH); 12.45 (1H, с, NH). 120

**2-{[4-(4-Бромфенил)-1Н-имидазол-2-ил]тио}-1-(2,5-дифторфенил)этанон (3b)**. Т. пл. 143–145 °С, выход 92%. Спектр ЯМР <sup>1</sup>Н, δ, м. д.: 5.05 (2H, c, CH<sub>2</sub>); 6.90 (1H, м, ArH); 7.25 (1H, м, ArH); 7.40–7.73 (5H, м, ArH); 7.90 (1H, м, ArH); 12.55 (1H, c, NH).

**1-(4-Метилфенил)-2-[(4-фенил-1Н-имидазол-2-ил)тио]этанон (3с)**. Т. пл. 135–137 °С, выход 95%. Спектр ЯМР <sup>1</sup>Н, б, м. д. (*J*, Гц): 2.20 (3H, с, СН<sub>3</sub>); 4.95 (2H, с, СН<sub>2</sub>); 6.95–7.20 (3H, м, ArH); 7.25–7.50 (4H, м, ArH); 7.65 (1H, с, CH); 7.75 (2H, д, *J* = 10, ArH); 12.40 (1H, с, NH).

**2-{[4-(4-Хлорфенил)-1Н-имидазол-2-ил]тио}-1-(4-нитрофенил)этанон** (**3d**). Т. пл. 165–166 °С, выход 95%. Спектр ЯМР <sup>1</sup>Н, б, м. д.: 5.05 (2H, с, CH<sub>2</sub>); 7.30–7.65 (5H, м, ArH); 8.10–8.44 (4H, м, ArH); 12.35 (1H, с, NH).

**Имидазо[2,1-b][1,3]тиазолы 4а-е, 6а,b, 7** (общая методика). А. К раствору 3 ммоль 2-меркаптоимидазола и 3.3 ммоль соответствующего кетона в 10–15 мл ледяной уксусной кислоты добавляют 3.3 ммоль 96% серной кислоты и кипятят 1–1.5 ч. Охладив до комнатной температуры, разбавляют 5 мл воды. Образовавшийся осадок отфильтровывают, промывают водой, растворяют в горячем спирте, продукт реакции осаждают 15% водным раствором аммиака. Выходы 36–72%.

Б. К раствору 3 ммоль 2-(1Н-имидазол-2-илтио)-1-(R<sup>3</sup>-фенил)этанона в ледяной уксусной кислоте добавляют 3 ммоль серной кислоты, кипятят 20–40 мин. Охладив до комнатной температуры, разбавляют 5 мл воды. Образовавшийся осадок отфильтровывают, промывают водой, растворяют в горячем спирте, продукт реакции осаждают 15% водным раствором аммиака. Выход продуктов реакции 41–75%.

**1-(3-Метил-6-фенилимидазо[2,1-***b***][1,3]тиазол-2-ил)этанон (4а)**. Т. пл. 191–194 °С, выход 68%. Спектр ЯМР <sup>1</sup>Н, δ, м. д.: 2.15 (3H, с, CH<sub>3</sub>); 2.5 (3H, с, Ac); 7.30–7.55 (5H, м, ArH); 8.20 (1H, с, CH).

**2-(4-Хлорфенил)-5,6,7,8-тетрагидробензо[***d***]имидазо[<b>2**,1-*b*][**1**,3]тиазол (**4**b). Т. пл. 180–183 °С, выход 58%. Спектр ЯМР <sup>1</sup>Н, б, м. д. (*J*, Гц): 1.6 (4H, с, 2CH<sub>2</sub>); 2.65 (4H, м, 2CH<sub>2</sub>); 7.38 (2H, д, *J* = 9, ArH); 7.60 (2H, д, *J* = 9, ArH); 8.18 (1H, с, CH).

**7**-*трет*-Бутил-2-(4-хлорфенил)-5,6,7,8-тетрагидроимидазо[2,1-*b*][1,3]бензотиазол (4с). Т. пл. 160–163 °С, выход 45%. Спектр ЯМР <sup>1</sup>Н, δ, м. д. (*J*, Гц): 0.80 (9H, с, 3CH<sub>3</sub>); 1.25–1.70 (3H, м, CH<sub>2</sub>); 2.00–2.20 (1H, м, CH); 2.30–2.80 (4H, м, 2CH<sub>2</sub>); 7.40 (2H, д, *J* = 8, ArH); 7.82 (2H, д, *J* = 8, ArH); 8.16 (1H, с, CH).

**2-(4-Хлорфенил)-7-метил-5,6,7,8-тетрагидробензо**[*d*]имидазо[2,1-*b*][1,3]тиазол (4d). Т. пл. 164–165 °С, выход 36%. Спектр ЯМР <sup>1</sup>Н, δ, м. д. (*J*, Гц): 1.05 (3H, д, CH<sub>3</sub>); 1.50 (1H, м, CH); 1.75–2.10 (2H, м, CH<sub>2</sub>); 2.15–2.35 (1H, м, 1/2CH<sub>2</sub>); 2.55–2.80 (3H, м, 3/2CH<sub>2</sub>); 7.40 (2H, д, *J* = 8, ArH); 7.82 (2H, д, *J* = 8, ArH); 8.16 (1H, c, CH).

**6-(4-Бромфенил)-3-(4-метилфенил)имидазо[2,1-b][1,3]тиазол (4е).** Т. пл. 216–218 °С, выход 55%. Спектр ЯМР <sup>1</sup>Н, δ, м. д. (*J*, Гц): 2.25 (3H, с, CH<sub>3</sub>); 7.18 (1H, с, CH); 7.35 (2H, д, *J* = 10, ArH); 7.53 (2H, д, *J* = 8, ArH); 7.70 (2H, д, *J* = 10, ArH); 7.88 (2H, д, *J* = 8, ArH); 8.21 (1H, с, CH).

**1-(3-Метилбензо[4,5]имидазо[2,1-***b***][1,3]тиазол-2-ил)-1-этанон (ба).** Т. пл. 198–200 °С, выход 70%. Спектр ЯМР <sup>1</sup>Н, δ, м. д. (*J*, Гц): 2.60 (3H, с, Ac); 3.10 (3H, с, CH<sub>3</sub>); 7.34 (2H, м, ArH); 7.69 (1H, д, *J* = 8, ArH); 8.08 (1H, д, *J* = 8, ArH).

**1-(6-Бром-3-метилбензо[4,5]имидазо[2,1-***b***][1,3]тиазол-2-ил)-1-этанон (6b) и 1-(7-бром-3-метилбензо[4,5]имидазо[2,1-***b***][1,3]тиазол-2-ил)-1-этанон (7). Выход смеси 58%. Спектр ЯМР <sup>1</sup>Н, б, м. д.: 2.55 (6H, с, 2Ac); 3.05 (6H, с, 2CH<sub>3</sub>); 7.45–7.55 (4H, м, ArH); 7.87 (1H, с, ArH); 8.00 (1H, с, ArH).** 

### СПИСОК ЛИТЕРАТУРЫ

- 1. И. А. Мазур, П. М. Кочергин, *XIC*, 508 (1970). [*Chem. Heterocycl. Comp.*, **6**, 470 (1970)].
- 2. М. И. Юрченко, Б. В. Курмаз, П. М. Кочергин, *ХГС*, 996 (1972). [*Chem. Heterocycl. Comp.*, **8**, 906 (1972)].
- 3. Abd El-Wareth A. O. Sarhan, Abdalla M. Mahmoud, Tetrahedron, 52, 10485 (1996).
- J. Y. Gauthier, C. K. Lau, Y. Leblanc, C.-S. Li, P. Roy, M. Therien, Z. Wang, US Pat. 5552422; <u>http://164.195.100.11</u>.

- I. Laszlovszky, G. Domány, G. Ferenczy, C. Jr. Szántay, E. Thuroczyné Kálmán, E. Lapis, F. Trischler, B. Hegedús, F. Auth, M. Csejtei, E. Kárpáti, B. Kiss, J. Laszy, M. Pellioniszné Paróczai, A. Sarkadi, S. Szabó, US Pat. 6103724; http://164.195.100.11.
- 6. M. R. Grimmett, Imidazole and Benzimidazole Synthesis, Best Synthetic Methods; Acad. Press Ltd., 106 (1997).
- 7. Синтезы органических препаратов, Изд-во иностр. лит., Москва, 1953, т. 4, с. 295.
- Вейганд, Конрад и Хильгетаг, Методы эксперимента в органической химии, под ред. Н. Н. Суворова, Химия, Москва, 1968, 944 с.
- 9. G. M. Sheldrick, SHELXTL PLUS. PC Version. A System of Computer Programs for the Determination of Crystal Structure from X-ray Diffraction Data. Rev. 5.1. (1998).
- 10. Ю. В. Зефиров, П. М. Зоркий, *Успехи химии*, **58**, 713 (1989).
- 11. N. S. Zefirov, V. A. Palyulin, E. E. Dashevskaya, J. Phys. Org. Chem., 3, 147 (1990).

Государственное научное учреждение Научно-технический комплекс Институт монокристаллов НАН Украины, Харьков 61001 e-mail: dzhavakhishvili@isc.kharkov.com Поступило 22.04.2005

<sup>а</sup>Национальный фармацевтический университет, Харьков 61002, Украина e-mail: kosn@ic.kharkov.ua

<sup>6</sup>Харьковский национальный университет им. В. Н. Каразина, Харьков 61077, Украина e-mail: timur@online.kharkiv.com