Посвящается академику Э. Лукевицу в знак признания его заслуг в области металлоорганической химии

Л. Печ, С. Беляков^а, Я. Ашакс, Э. Силинь, Д. Зарума

СИНТЕЗ И РЕНТГЕНОСТРУКТУРНОЕ ИССЛЕДОВАНИЕ 2-МЕТИЛ-8-СЕЛЕНОЛХИНОЛИНАТА ЦИНКА. СРАВНИТЕЛЬНЫЙ КРИСТАЛЛОХИМИЧЕСКИЙ АНАЛИЗ МОЛЕКУЛ 8-МЕРКАПТО-, 8-СЕЛЕНОЛ- И 2-МЕТИЛ-8-СЕЛЕНОЛ-ХИНОЛИНАТА ЦИНКА

Синтезирован 2-метил-8-селенолхинолинат цинка Zn[C₉H₅(Me)NSe]₂, строение которого подтверждено данными РСА. Выяснено влияние разных лигандных атомов (Se и S) и группы Ме в положении 2 лиганда на геометрию координационного полиэдра атома цинка в 8-меркапто-, 8-селенол- и 2-метил-8-селенолхинолинатах цинка.

Ключевые слова: внутрикомплексные соединения цинка, 8-меркапто-, 8-селенол- и 2-метил-8-селенолхинолинаты цинка, молекулярное строение, РСА.

Сопоставление структур комплексов металлов с 8-меркаптохинолином, 8-селенолхинолином и их производными представляет интерес для выяснения закономерности пространственного строения от природы лигандного атома (S и Se). В данной работе исследовано влияние метильного заместителя в положении 2 хинолинового кольца на строение 2-метил-8селенолхинолината цинка $Zn[C_9H_5(Me)NSe]_2$ (1).

Соединение 1 синтезировано нами с выходом 77% действием на 2,2'-диметил-8,8'-дихинолилдиселенид 50% гипофосфористой кислотой и последующей обработкой образовавшегося 2-метил-8-селенолхинолина водными растворами ацетата натрия и диацетата цинка. Строение продукта 1 изучено с помощью РСА и полученные данные сопоставлены с имеющимися в литературе аналогичными сведениями для 8-селенолхинолината цинка $Zn[C_9H_6NSe]_2$ (2) и 8-меркаптохинолината цинка $Zn[C_9H_6NS]_2$ (3) [1–3].

Кристаллические структуры 1–3 (рис. 1–3) образуют нейтральные комплексы $Zn[C_9H_5(Me)NSe]_2$, $Zn(C_9H_6NSe)_2$ и $Zn(C_9H_6NS)_2$ соответственно. Комплексы цинка являются двухкольцевыми внутрикомплексными соединениями, где два лиганда 8-селенолхинолина или 8-меркаптохинолина бидентатно через атомы Se(S) и N связаны с центральным атомом цинка. Координационные полиэдры атома цинка в комплексах 1–3 – искаженные тетраэдры, образуемые двумя атомами азота и двумя атомами селена (в 1 и 2) или двумя атомами серы (в 3). Длины связей в координационных полиэдрах атома цинка в комплексах 1–3 даны в табл. 1. Искажения тетраэдрической координационной сферы атомов цинка отражаются в валентных углах (табл. 2).

Рис. 1. Общий вид комплекса $Zn[C_9H_5(Me)NSe]_2(1)$ с обозначениями атомов

Межатомные расстояния Zn–Se в комплексах 1 и 2, а также расстояние Zn–S в комплексе 3 свидетельствуют о прочных валентных связях между указанными атомами. Так как средние длины этих связей (2.385 в комплексе 1, 2.368 в комплексе 2 и 2.258 Å в комплексе 3) меньше сумм соответствующих ковалентных радиусов $R(R_{Zn} + R_{Se} = 2.494, R_{Zn} + R_{S} = 2.363$ Å [4]), связи Zn–Se и Zn–S в комплексах 1–3 имеют ковалентный характер.

Рис. 2. Общий вид комплекса Zn(C₉H₆NSe)₂ (2) с обозначениями атомов (представлен один из трех независимых комплексов)

Рис. 3. Общий вид комплекса Zn(C₉H₆NS)₂ (**3**) с обозначениями атомов (атом Zn занимает частную позицию на оси 2 и комплекс имеет собственную симметрию L2)

Атом цинка с атомами азота образует две связи со средней длиной связей Zn–N 2.080 в комплексе 1, 2.055 в комплексе 2 и 2.052 Å в комплексе 3. Эти значения очень близки (комплекс 1) или равны (комплексы 2 и 3) сумме ковалентных радиусов R_{Zn} и R_N (2.059 Å [4]). Следовательно, связи Zn–N в комплексах 1–3 имеют менее выраженный ковалентный характер по сравнению со связями Zn–Se и Zn–S. Замена лигандного атома селена в комплексе 2 на атом серы в аналогичном комплексе 3 практически не вызывает изменений длины связи Zn–N.

Длины связей Se–C в комплексах 1 и 2 не различаются и имеют ковалентный характер, так как их средние значения, равные, соответственно, 1.903 и 1.908 Å, заметно меньше суммы ковалентных радиусов атомов R_{Se} и R_{C} (1.933 Å [4]).

Внутрициклические хелатные углы Se–Zn–N и S–Zn–N – почти прямые; их средние значения в комплексах 1–3 составляют 89.9, 89.5 и 89.3° соответственно. Искажение тетраэдрического окружения атомов цинка характеризуется также значениями углов Se(S)–Zn–Se(S) и N–Zn–N

Таблица 1

Соеди- нение 1	d, Å	Соеди- нение 2 * [2]	d, Å	Соеди- нение 3 [3]	d, Å
Zn-Se(1A)	2.3790(4)	Zn–Se(1)	2.3659	Zn–S	2.258(1)
Zn-Se(1B)	2.3913(3)	Zn–Se(2)	2.3699		
Zn-N(1A)	2.087(2)	Zn-N(1)	2.059	Zn–N	2.052(3)
Zn-N(1B)	2.074(2)	Zn-N(2)	2.051		

Длины связей (d) при атомах Zn в соединениях 1-3

* Даны усредненные значения из трех независимых молекул.

Таблица2 125

Соеди- нение 1	ω, град.	Соеди- нение 2 [3]*	ω, град.	Соеди- нение 3 [3]	ω, град.
Se(1A)ZnSe(1B)	124.45(2)	Se(1)Zn(1)Se(2)	141.3	SZnS'	139.0(1)
N(1A)ZnN(1B)	115.63(9)	N(1)Zn(1)N(2)	107.8	NZnN'	114.7(2)
Se(1A)ZnN(1A)	89.54(6)	N(1)Zn(1)Se(1)	89.6	SZnN (эндо)	89.3(1)
Se(1B)ZnN(1B)	90.22(6)	N(2)Zn(1)Se(2)	89.4	SZnN (экзо)	113.01
Se(1A)ZnN(1B)	126.80(7)	N(2)Zn(1)Se(1)	115.1		
Se(1B)ZnN(1A)	111.82(6)	N(1)Zn(1)Se(2)	112.0		
ZnSe(1A)C(8A) cped. ZnSe(1A)C(8A)	90.62	Zn(1)Se(1)C(8)	91.0	ZnSC(8)	94.6

Валентные углы (ω) для атомов Zn в соединениях 1-3

* Среднее от 3. Двугранный угол между координационными плоскостями SeZnN (соединения 1 и 2) и SZnN (соединение 3), 0: 91.26 (соединение 1), 87.5–89.9 (соединение 2), 74.7 (соединение 3).

между одноименными связями. В соединении **1** эти углы, соответственно, 124.45(2) и 115.63(9)°; в соединении **2** – 141.3 и 107.8°, в соединении **3** – 139.0(9) и 114.7(2)°. Остальные межлигандные углы Se(S)–Zn–N в координационных полиэдрах атома цинка заметно различаются между собой и принимают значения 126.80(7) и 111.82(6)° в комплексе **1**, 115.1 и 112.0° в комплексе **2** и 113.01° в комплексе **3**.

Двугранные углы между координационными плоскостями Se(1A)ZnN(1A), Se(1B)ZnN(1B) в комплексе 1 и Se(1)ZnN(1), Se(2)ZnN(2) в комплексе 2 равны 91.3 и 88.7°, соответственно, в соединении 3 угол между аналогич-ными плоскостями S(1)ZnN(1) и S(2)ZnN(2) равен 74.7°. Эти значения также указывают на искаженную тетраэдрическую координацию цен-трального атома цинка, как в 8-селенолхинолинате, так и, особенно, в 8-меркаптохинолинате цинка.

Пятичленные металлоциклы в комплексах 1–3 строго не плоские и имеют более или менее выраженную конформацию кресла. В ком-плексе 1 степень планарности обоих металлоциклов заметно различается. Металлоцикл лиганда В приблизительно плоский, так как угол перегиба металлоцикла по линии Se...N составляет 2.0°, но угол перегиба металлоцикла лиганда А увеличен до 19.2°. При анализе геометрии молекулы изоструктурного соединения $Cd[C_9H_5(Me)NSe]_2$ [5] мы предложили увеличенный перегиб одного из металлоциклов объяснить π - π -взаимодействием соответствующих центросимметрично связанных лигандов. В комплексе 1 расстояние между центросимметрично связанными плоскостями хинолиновых колец лиганда А равно 3.470(6) Å,

Рис. 4. Проекция кристаллической структуры комплекса $Zn[C_9H_5(Me)NSe]_2(1)$ на плоскость *уz*

что также свидетельствует о слабом π - π -взаимодействии [6]. Расстояние между ближайшими контактирующими атомами C(10A)...C(10A') составляет 3.705(6) Å. Расстояние между центросимметрично связанными плоскостями хинолиновых колец лиганда В равно 3.625(18) Å, расстояние между ближайшими контактирующими атомами C(2B)...C(2B') – 3.676(5) Å. Взаимодействующие хинолиновые кольца на проекции кристаллической структуры **1** вдоль оси *x* (рис. 4) отмечены пунктиром.

Сравнение геометрии молекул $Zn[C_9H_5(Me)NSe]_2$ (1) и $Zn[C_9H_6NSe]_2$ (2) показывает, что введение группы Ме во второе положение лиганда комплекса 1 сопровождается очень незначительным удлинением связей Zn–Se и Zn–N, но заметно влияет на одноименные межлигандные углы: уменьшение углов SeZnSe от 141.02 (в комплексе 2) до 124.45(2)° (в комплексе 1) и небольшое увеличение углов NZnN от 107.8 (в комплексе 2) до 115.63(9)° (в комплексе 1). Координационные полиэдры атомов цинка, представляющие собой более или менее искаженные тетраэдры (2Se + 2N), существенно не меняются.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

2-Метил-8-селенолхинолинат цинка (1). К раствору 0.2 г (0.45 ммоль) 2,2'-диметил-8,8'-дихинолилдиселенида в 2 мл 3 М соляной кислоты прибавляют 10 мл этанола, 1 мл 50% раствора гипофосфористой кислоты (9.7 ммоль) и выдерживают реакционную смесь 5 мин. К полученному раствору 2-метил-8-селенолхинолина прибавляют 4 мл насыщенного водного раствора ацетата натрия (60 ммоль) и раствор 0.09 г (0.41 ммоль) Zn(MeCOO)₂·2H₂O в 2 мл воды. Выпавший желтый осадок продукта 1 отфильтровывают, промывают водой и сушат на воздухе. Выход 0.16 г (77%). Найдено, %: С 47.83; Н 3.05; N 5.37. С₂₀H₁₆N₂Se₂Zn. Вычислено, %: С 47.32; Н 3.18; N 5.52.

Монокристаллы комплекса 1 выращены из раствора хлороформ-гептан, 2:1.

Рентгеноструктурный анализ комплекса 1. Экспериментальный материал для определения кристаллической структуры соединения 1 получен от дифракции хорошо ограненного желтого монокристалла размером $0.04 \times 0.25 \times 0.32$ мм. Параметры элементарной ячейки и интенсивности 3049 независимых отражений с $I > 3\sigma(I)$ измерены при комнатной температуре на автоматическом дифрактометре Bruker-Nonius KappaCCD (МоКа-излучение, $\lambda = 0.71073$ Å). Кристаллы соединения 1 триклинные, a = 7.5206(2), b = 10.0679(3), c = 12.7487(4) Å, $\alpha = 80.8485(12)$, $\beta = 86.6889(13)$, $\gamma = 69.6081(13)^\circ$, V = 893.28(5) Å³, M = 507.652, Z = 2, $d_{\text{выч}} = 1.887$ г/см³, пространственная группа P 1. Структура решена прямым методом [7] и уточнена полноматричным МНК с использованием программы [8]. Окончательное значение факторов расходимости R = 0.042 и $R_w = 0.099$. Кристаллографические характеристики, координаты атомов и их тепловые параметры, длины связей, значения валентных углов в молекуле соединения 1 депонированы в Кембриджском банке структурных данных (ССDC 289468).

Авторы благодарны Латвийскому совету по науке за финансирование работы (проект № 05.1552).

СПИСОК ЛИТЕРАТУРЫ

- E. Silina, J. Ashaks, V. Belsky, A. Stash, L. Pech, Yu. Bankovsky, *Latvijas Ķīmijas Žurnāls*, 419 (2001).
- L. Pech, J. Ashaks, V. Belsky, A. Stash, E. Silina, Yu. Bankovsky, *Latvijas Ķīmijas Žurnāls*, 341 (2004).
- 3. И. Р. Берзиня, В. К. Бельский, А. П. Стурис, Я. В. Ашакс, Ю. А. Банковский, Л. Я. Печ, Изв. АН ЛатвССР, Сер. хим., 42 (1987).
- 4. Дж. Кемпбел, Современная общая химия, Мир, Москва, 1975, т. 1, с. 548.
- 5. E. Silina, J. Ashaks, S. Belyakov, L. Pech, D. Zaruma, *RTU Zinātniskie raksti. Sēr. Materiālzinātne un lietišķā ķīmija*, **11**, 63 (2005).
- 6. G. Gilli, *Molecules and Molecular Crystals*, in *Fundamentals of Crystallography*, C. Giacovazzo (Ed.), Univ. Press, Oxford, 2002, p. 585.
- A. Altomare, M. C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, G. G. Moliterni, G. Polidori, R. J. Spagna, *J. Appl. Crystallogr.*, 115 (1999).
- S. Mackay, C. J. Gilmore, C. Edwards, N. Stewart, K. Shankland, maXus Computer Program for the Solution and Refinement of Crystal Structures, Bruker Nonius, Delft, The Netherlands, MacScience, Japan & The University of Glasgow, 1999.

Институт неорганической химии Рижского технического университета, Саласпилс LV-2169, Латвия e-mail: nki@nki.lv Поступило 05.01.2006

^аЛатвийский институт органического синтеза, Рига LV–1006, Латвия